
	
  
	
  

 

PORTABLE BCI STIMULATOR 

By 

Bonnie Chen 

Randy Lefkowitz 

Siyuan Wu 

Final Report for ECE 445, Senior Design, Spring 2013 

TA: Ryan May 

01 May 2013 

Project No. 17 



ii	
  
	
  

 

Abstract 

The goal of this project is to design a stimulator for a brain computer interface (BCI) that is 
portable in design. The design is to have 10 flashing LEDs, 5 for each eye, controlled via 
Bluetooth and mounted on a pair of goggles. The visual feedback will be recorded by signals 
from the user’s brain in an Electroencephalography (EEG) system, and proper data acquisition 
will be handled by the BCI system. 



iii	
  
	
  

 

Contents 
 

1. Introduction ............................................................................................................................................... 1 
1.1 Purpose ............................................................................................................................................ 1 

1.2 Functions ............................................................................................................................................. 1 
1.3 Blocks.................................................................................................................................................. 1 

1.3.1 PC ................................................................................................................................................. 1 
1.3.2 Wireless Receiver......................................................................................................................... 1 
1.3.3 Microcontroller............................................................................................................................. 2 
1.3.4 LED Array.................................................................................................................................... 2 
1.3.5 Power............................................................................................................................................ 2 

2. Design........................................................................................................................................................ 3 
2.1 PC ........................................................................................................................................................ 5 
2.2 Wireless Receiver................................................................................................................................ 6 
2.3 Microcontroller.................................................................................................................................... 7 
2.4 LED Array........................................................................................................................................... 7 
2.5 Power................................................................................................................................................... 8 

3. Design Verification ................................................................................................................................... 9 
3.1 BlueTooth Receiver............................................................................................................................. 9 
3.2 Microcontroller.................................................................................................................................... 9 
3.3 LED Driver.......................................................................................................................................... 9 
3.4 LED Array......................................................................................................................................... 10 
3.5 Power Supply .................................................................................................................................... 10 

3.5.1 Bluetooth receiver ...................................................................................................................... 11 
3.5.2  Arduino...................................................................................................................................... 11 
3.5.3 LED Driver................................................................................................................................. 11 
3.5.4 LEDs........................................................................................................................................... 11 

3.6 PC ...................................................................................................................................................... 11 
3.7 Overall testing: .................................................................................................................................. 11 

3.7.1 EEG Classification Testing ........................................................................................................ 11 
3.7.2 Frequency analysis with MATLAB ........................................................................................... 12 



iv	
  
	
  

3.7.3 Power Budget ............................................................................................................................. 13 
3.7.4 Possible Improvements: ............................................................................................................. 14 

4. Costs ........................................................................................................................................................ 15 
4.1 Cost Analysis..................................................................................................................................... 15 

5. Conclusion............................................................................................................................................... 16 
5.1 Accomplishments .............................................................................................................................. 16 
5.2 Uncertainties...................................................................................................................................... 16 
5.3 Ethical Considerations....................................................................................................................... 16 
5.4 Future Work ...................................................................................................................................... 17 

6.    References ............................................................................................................................................ 18 
Appendix A Requirement and Verification Table................................................................................... 19 
Appendix B  Arduino UNO Datasheet .................................................................................................... 23 
Appendix C  Code.................................................................................................................................... 24 



1	
  
	
  

1. Introduction 
Brain Computer Interfaces (BCI) based on Electroencephalography (EEG) allow for the monitoring 
and analysis of ongoing brain activity in real time. The signals measured by this technology can be 
used to control user interfaces without the requirement of the human motor system. This technology 
can benefit those with paralysis and other severe disabilities. 
 

1.1 Purpose 
As of now, the majority of BCI systems are currently large and immobile, and therefore impractical 
for use in everyday life outside of a lab. There are several components to a BCI system such as data 
acquisition, a classification system, as well as stimulation, all of which must be made portable to 
create a portable BCI. To address this problem, we set out to create a portable stimulator that can 
communicate wirelessly with the parts that are monitoring brain activity. The stimulator will consist 
of LEDs flickering at predefined frequencies, with attention to luminescence (we don't want our 
LEDs to blind the user so it must be at the right intensity for each user) as well as controls to adjust 
the frequencies while maintaining accurate timing. Our design goals are to make the stimulation for 
the BCI and EEG portable and integrated wirelessly so that users are not confined to just a lab setting 
and that the system could be tested and used in different environments. 
 

1.2 Functions 
The circuit design is a glasses-mounted stimulator, which includes proper mounting for 5 LEDs 
around the right eye, creating convenience to the user and adding to the portability of the EEG and 
BCI system. 
 
The stimulator takes inputs from a PC operator, and receives the LED blinking frequencies and 
intensities wirelessly through Bluetooth. Wireless communication with the PC enables the stimulator 
to be operable from a distance of around 30 ft. 
 
Flashing lights can induce pain to the user’s eyes. The stimulator prevents this by giving the user 
controls to vary the frequency and brightness of each LED. The frequencies of each LED controlled 
by the user can be variable from 1 to 99 Hz, which includes the useable operating limits of EEG 
detection of about 5-15 Hz. The intensity of each LED has 3 settings, all within a safe operating 
range, which gives the user sufficient control of light intensity coming from each LED. 

1.3 Blocks 
The stimulator can be broken up into multiple modules. 
 

1.3.1 PC 
The PC is where a user can change the LED frequencies and intensities using the serial monitor in 
the Arduino IDE. It also includes a built-in Bluetooth transmitter, which is used to send the data to 
the stimulator. 

1.3.2 Wireless Receiver 
The wireless receiver uses Bluetooth 2.0 protocol to receive the data from the PC and delivers it to 
the microcontroller. 



2	
  
	
  

1.3.3 Microcontroller 
The microcontroller module is the brain of the project. We used an Arduino UNO to do all the 
computing and to control the flashing of the LEDs. The Arduino then outputs to the LED driver, 
which controls intensity. 

1.3.4 LED Array 
The LED array consists of  5 LEDs and a TI TLC-5940 LED driver. The LED driver is used to 
control the intensity of each LED using pulse width modification (PWM). The LEDs are flashed on 
and off by the microcontroller, and are mounted on a pair of glasses. The locations are adjustable, 
thanks to magnetic mounts. 

1.3.5 Power 
The power supply for the stimulator must be portable, so we used a 7.4V Lithium Ion rechargable 
battery. It powers the Arduino, which then supplies power to the Bluetooth receiver, LED driver, and 
LEDs. 



3	
  
	
  

 

2. Design  
The implementation of the stimulator in the overall BCI system is shown in Figure 1. The brain 
signals from the user are being monitored by the EEG and is amplified and sent to the computer for 
Data Acquisition and Signal Processing. After this the signal is sent to the User Interface, which 
takes inputs for the controls to the stimulator. The control inputs from the user are transmitted to the 
stimulator from the computer and the resulting changes are fed back to the user being monitored with 
the EEG. 
 

 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure	
  1:	
  Full	
  System	
  
Overview	
  



4	
  
	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

	
  

Figure	
  2:	
  Top-­‐Level	
  Stimulator	
  
Schematic	
  



5	
  
	
  

 
Figure 3: Stimulator Circuit Diagram 

 

2.1 PC 
The PC runs the Arduino IDE, and communicates with the Arduino via Bluetooth. When the serial 
monitor is opened, the user is shown the default LED frequencies, and is prompted with an option to 
change them. The user enters a simple command (such as LED0 5 to set LED 0 to 5Hz), and the 
command is verified, then sent to the microcontroller. Besides frequencies, this program also allows 
the user to change the intensity values of the LEDs between the 3 levels that we decided were safe 
and effective (INT 2). The PC also has a built-in wireless transmitter. Once paired with the receiver, 
the PC is able to communicate with the portable stimulator using Bluetooth 2.0 protocol. 



6	
  
	
  

 
Figure 4: Input Algorithm Flow Chart 

2.2 Wireless Receiver 
The EGBT-046S wireless receiver is a UART serial TTL Bluetooth module. It has 4 channels: an 
input of 3.3V -5V, Ground, TX, RX. Both TX and RX have 3.3V outputs. Communication is set up 
by connecting the RX channel of the receiver to the TX channel of the Arduino and the TX of 
receiver to the RX of the Arduino. After the pairing is done through programming on the PC, data is 
sent through command lines on the pc to the Arduino. The wireless receiver will receive and interpret 
the multiple packets of serial data sent from the PC as if the two were connected by a wire, and 
translate them into a signal for the microcontroller to work with in outputting the correct frequency. 

 
Figure 5: Bluetooth Receiver [3] 



7	
  
	
  

  
 

2.3 Microcontroller 
The microcontroller used for the stimulator is the Arduino UNO R3. The controller input is serial 
data from the wireless receiver, and it outputs the frequencies and intensities chosen and set by the 
user to the LED driver through the PWM and Digital Output pins. It is powered by the 7.4V battery. 
After storing the frequencies and intensities as variables, the algorithm used first calculates the 
program’s runtime, then it determines if it is time for each LED to toggle. It then sets the LED values 
using the TLC5940 library’s tlc.set(channel,value) command, where channel is the LED number, and 
value is either off or on. After the new LED value is set the values are latched into the LED driver 
using tlc.update(). 

 

 
Figure 6: Timing Algorithm Flow Chart 

2.4 LED Array 
The LED array consists of an LED driver (TI TLC-5940), which sends the proper PWM signal 
outputs to 5 LEDs around an eye. The TLC-5940 is powered by 5V from the Arduino, and outputs to 



8	
  
	
  

each channel a voltage of 2-3.2V, which is the necessary voltage to light up the LEDs. The LED 
driver receives serial data from the microcontroller module and feeds the data to a connected array of 
5 Lillypad LEDs, which are mounted onto a wearable glasses frame using magnets. The LEDs have a 
2-3.2 voltage drop across each and a maximum forward current of 25mA. The LED driver has an 
IREF pin that is used to set a constant current on each channel’s output. We placed a 2kohm resistor 
between the IREF pin and ground, limiting the output current of each channel to 20mA. The LEDs 
output the final blinking frequency to the user. 

 

 
Figure 7: LED Equivalent Circuit 

2.5 Power 
All portable components in the stimulator require power from this module. The microcontroller is 
powered by a 7.4V 1250mAh lithium ion battery. Because of the voltage regulators in the Arduino 
Uno, the other components are connected through the 5V output pin on the Arduino. The TI TLC-
5940 LED driver and the Bluetooth module have maximum input voltages of 5V, which is what we 
used to drive the 5 LEDs. 
 



9	
  
	
  

 

3. Design Verification 
 

 

3.1 Bluetooth Receiver 
We first added the Bluetooth device to the computer. The next step was to open a serial port that 
sends data to the Arduino. To test if the Bluetooth was working properly, we ran a test program on 
the Arduino that turns an LED on when we send a 1 from the computer wirelessly, and off when we 
send a 0. 
No data was collected for the testing of this part.  
 

3.2 Microcontroller 
First we had to test if the command is properly received and the microcontroller can retrieve the 
information we need. We did that by typing in LED A ab or INT 1/2/3 and the Arduino printed the 
LED number A and frequency value ab back to the terminal to make sure the right value is retrieved 
before assigning them.  
 

The next step is to calculate the runtime of each LED with the frequency given. With the frequency 
given, we calculated the time for each LED to be on and off (assuming 50% duty cycle), and when it 
should be on, we set the intensity the value we want. (the user can select 3 levels of intensity )  
 

We verified the frequency by looking at its value in the IDE. We also looked at each LED’s value 
over 1 second on the IDE, and make sure that they are on and off the correct number of times based 
on their frequencies. (Ex: LED0 has a value of 5 Hz and intensity=50%. LED0 should switch 
between 0 and 2048 5 times over 1 second). 
 

3.3 LED Driver 
 

The first thing to make sure is the LED driver must provide proper power dissipation to properly 
handle and control every LED. We monitored the current output by the TLC-5940 as well as the 
voltage across the LEDs to make sure that the current does not exceed 25mA which is the rating we 

are basing the value of  off of and that the voltage value is no greater than 3.2 V which 
is the maximum voltage to power the LEDs and no less than 2V which is the minimum voltage to 
power the LED. 
 



10	
  
	
  

The current draw from a single LED when we tested is 19.6 mA and when it is tested along with 4 
four other LEDs the average of the current through is 19.45 mA. None of the LED has current more 
than 25 mA. And as expected, the frequency and intensity level, which is set by the PWM duty cycle, 
does not have a major effect on the value of the current drawn.  
 

The next step is to test the actual frequency of the LED with an oscilloscope. First we chose to test 
low frequencies, 2 HZ, 4 HZ, 6 HZ, 8 HZ, 10 HZ : 
 
 
Target Frequency (Hz) Achieved Frequency (Hz) 
2 1.996-2.004 
4 3.98-4.02 
6 5.5-6.5 
8 7.9-9.1 
10 10 

Table 1: Low Frequency Bandwidth 

 

Target Frequency Achieved Frequency 
20 20 
40 38-42 
60 59-63 
80 77-83 
99 100 

Table 2: High Frequency Bandwidth 

3.4 LED Array  
 

We wanted to make sure each LED operates with an intensity that will not cause discomfort to the 
user. Verification for the LED intensities consisted of finding safe operating limits and environments 
in which the stimulator should be used. This was done first qualitatively by us looking at the LEDS, 
but to receive more quantitative data, there needed to be a proper recording method of finding the 
luminance values for the LEDs which requires a proper photodetector such as a photodiode or power 
meter to measure different intensity levels of the LEDs 
 

3.5 Power Supply 
 

Sufficient power must be provided for every component and must be efficient in delivering power 
that will allow maximum usage time of the stimulator for the user. 
 



11	
  
	
  

3.5.1 Bluetooth receiver 
The power for the Bluetooth comes from the Arduino 3.3V output pin. We tested for a stable open 
circuit voltage output from the Arduino 3.3V pin using a multimeter connected from the output pin to 
ground and make sure the voltage does not vary over 5% to ensure proper power to the Bluetooth 
module, anymore than that could affect the behavior of the wireless transmission. The actual voltage 
on the receiver is 3.30V.  
 

3.5.2  Arduino  
The Arduino Uno was powered by a 7.4V LiPo battery, with which we measured using a multimeter 
connected from the positive battery terminal to ground to ensure that no less than 5% of that value is 
coming out.  The actual voltage we read was 7.37V. 
 

3.5.3 LED Driver 
The LED driver has an input voltage of 5V from the Arduino, with which we measured with the 
multimeter in the same fashion as to how we measured the power for the Bluetooth module. The 
actual voltage on it was ~4.9v.  
 

3.5.4 LEDs 
We tested the currents drawn by the LEDs with a multimeter to make sure that no less than 0.5mA 
 and no more than 25 mA of the required forward current was being measured. Any less would 
probably not be enough to power the LED and will be visible if the LED was not turning on, in 
which we would then step backwards in the power testing and analyze the driver to see if it was 
outputting the correct constant output current. The test data were included previously in the LED 
driver part.  

 

3.6 PC 
Make sure the computer can find the Bluetooth device and be able to add the device.  
 
 

3.7 Overall testing: 

3.7.1 EEG Classification Testing  
The overall requirement of our project is the correct classification of LED frequency on an EEG 
system.  
In the demo, all our frequencies were correctly classified. However different frequencies and 
intensities would have affected the results and response time and there are too much to consider 
and most of them are out of our control. So what we can do is analyze the frequency data with 
MATLAB for further testing.  
 



12	
  
	
  

3.7.2 Frequency analysis with MATLAB  
To further analyze our results, we tested the frequency data with oscilloscope and record the 
frequency data of about 50 seconds. Then we use Matlab to do the analysis for the data. Here are 
the frequencies we tested, along with the mean and variance of the data: 
 
1 Hz: µ = 1.0912, σ2 = 0.41 
6 Hz: µ = 6.0694, σ2 = 0.36 
7 Hz: µ = 7.1238, σ2 = 1.37 
8 Hz: µ = 8.1937, σ2 = 2.01 
9 Hz: µ = 9.2745, σ2 = 5.22 
10 Hz: µ = 10.495, σ2 = 10.77 
 
As we can see in Figure 8. the frequencies we have of our LEDs have a stable result when the 
frequency is low, but as the testing frequency gets higher, the results were more off.  
 



13	
  
	
  

 
Figure 8: Frequency Bandwidth Samples 

At lower frequencies, though the mean and variance looks better than higher frequencies, there 
are actually quite a lot of samples that are off from the frequencies we desired, but since they are 
not off by much, the result still provided good feedback from the EEG; as the frequency gets 
higher, we can see there are more samples at the frequencies we want but there are very few 
samples that are off by the desired frequency quite a lot. Though these samples made the mean 
and variance of the high frequency farther from the targeted frequency value, the actually result 
of EEG classification is still the same because the samples are only off for a very short period of 
time (~1ms) and for most of the time they were operating at the desired frequency.  
 

3.7.3 Power Budget 
Component                     Imax (mA)         Voltage 
Microcontroller          40 * 2 output pins     7-12V (ideal) 
LEDs                          20 * (10 LEDs)     3.2V (green, white) 
Bluetooth Module         40              3.3V 
LED Driver                     120              5V 
_____________                ______________      ______________ 
Total                  440             ----------------- 
 
Estimated Usage time = 1250 [mAh] / 440 [mA] ≅ 3 hours of charge 
 



14	
  
	
  

3.7.4 Possible Improvements: 
We had some noise when we tested the frequencies in Beckman. It’s possible that the 
surrounding signals from other machines were affecting the results (there’s a large magnet from 
the MRI machine in the basement of the building). A proper testing environment for our device 
would be outdoors since there would be less noise interfering with our device. Also the design 
for the stimulator is to be portable and used in various environments, so testing this aspect of the 
device would give us more qualitative and quantitative results for the frequency readings. 
 



15	
  
	
  

 

4. Costs 
 

4.1 Cost Analysis 
 

Part Retail Cost ($) Quantity Actual Cost ($) 

PCB 30.00 1 30.00 

Lilypad Micro LEDs 3.95 2 (packs of 5) 7.90 

Arduino Uno R3 39.00 1  39.00  

TLC-5940 6.00 1 6.00 

EGBT-0463 Bluetooth SMD Module 7.00 1 7.00 

Venom 7.4V LiPo Battery  15.89 1 15.89 

Venom LiPo Battery Charger 26.79 1 26.79 

Barrel Jack Battery Connector 2.95 1 2.95 

Glasses Mounting Frame 7.00 2 14.00 

Total 138.58 11 149.53 

Table 3: Parts Cost 

Name Hourly Rate Total Hours Total * 2.5 

Siyuan Wu $35.00 150 $13.125 

Bonnie Chen $35.00 150 $13.125 

Randy Lefkowitz $35.00 150 $13.125 

Total $105.00 450 $39,375 

Table 4: Labor Costs 

 

 

 



16	
  
	
  

 

Component Cost 

Parts $149.53 

Labor $39,375.00 

Grand Total $39,524.53 

Table 5: Total Cost 

 

5. Conclusion 

5.1 Accomplishments 
Our stimulator was able to achieve the proper frequency readings while interacting the the EEG 
system and the response time was within a range of 3-10 seconds for the user to match the 
frequencies running on the classifier program for the BCI. Even at the lowest light intensity settings 
of around 10/4096 of the PWM, the stimulator was able to provide a strong enough response from 
the user to be read. While the response time for lower intensities took around double the time to 
achieve the matching frequency signal as opposed to a stronger PWM value of 20/4096, the tradeoff 
for better user comfort preceded the response time. 

5.2 Uncertainties 
The testing results for higher frequencies (30-99 Hz) coming from the LED driver gave us greater 
variance and spread compared to the lower frequency range that is usually tested with the EEG (5-10 
Hz). 
We were also unable to attain the proper luminance measuring devices such as a power meter to get 
quantitative measurements for the intensity of each LED. While the demo could be done by testing 
on our own group members, we will need to find the proper luminance values that follow the ANSI 
Standards on Luminescence for safe operating limits on near-eye LEDs in order to operate the 
stimulator on other users. 

5.3 Ethical Considerations 
One safety concern is the use of the lithium-ion polymer battery. The worst-case scenario is the case 
in which the lithium battery explodes/expands because of an accidental short circuit in the PCB 
design which can cause the circuit to overheat. To prevent unwanted battery interactions with the 
face, we designed the mounting frame such that the battery will be placed in farthest away from the 
face by routing longer wires from each LED to the PCB which can be mounted or held by 
somewhere else on the user.  
Also because the final output of our stimulator system is into the user’s eyes, we must preserve the 
comfort and visual perception of the user, meaning that the LED array accounts for not only precise 
frequencies and duty cycle output, but also safe operating limits for various users such that no 
discomfort or harm will be done onto the user’s vision through the use of the blinking lights. This 
required us to find proper testing and operating limits that are safe for long periods of exposure to 
blinking lights to the human eye. [6] 



17	
  
	
  

5.4 Future Work 
While the project accomplished everything that was necessary to achieve the proper frequency 
readings from the EEG, there are still several areas for improvement that can help make the 
stimulator ready for use in industry and to be tested on a greater sample of users for research. 
 

- More testing can be done with the EEG to determine the ideal threshold for response time, 
classification and stability of the system. This would be done through testing a greater range of 
frequencies and determining the thresholds of accuracy that is typically used in the Data Acquisition 
and processing of the EEG readings. 
 

- Access to proper luminance testing devices would help us to secure the quantitative safety limits of 
near-eye LED operation. We would have liked to gather measurements with the proper candela 
values that are safe for people who are observing fast and bright blinking lights to avoid the possible 
occurrence of a seizure if the user is sensitive to certain pulses of light. 
 

- The design of the mounting frame could be improved to create a more aesthetic and easily 
adjustable form to the stimulator, especially for the positioning of the LEDs on the frame. We would 
love to run the mounting frame through with someone knowledgeable in Industrial or Mechanical 
Engineering Design to improve this aspect of the stimulator. 
 



18	
  
	
  

 

6.    References 
 

[1]    TLC-5940 Data Sheet. Texas Instruments 
        <http://www.ti.com/lit/ds/symlink/tlc5940.pdf> 
 

[2]    Arduino Uno R3 Schematic. SparkFun Electronics 
        <http://arduino.cc/en/uploads/Main/Arduino_Uno_Rev3-schematic.pdf> 
 

[3]    EGBT-045MS Bluetooth Module. Rasmicro 
<http://www.rasmicro.com/Bluetooth/EGBT-045MS-

046S%20Bluetooth%20Module%20Manual%20rev%201r0.pdf> 
 

[4]     Luminous Efficacy Tables. Georgia State University 
<http://hyperphysics.phy-astr.gsu.edu/hbase/vision/efficacy.html> 

 

[5]    Photodiode Tutorial. Thorlabs 
        <http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=285> 
 

[6]    Guidance for the reduction of photosensitive epileptic seizures cause by television. ITU            
    <http://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.1702-0-200502-I!!PDF-E.pdf> 
 

[7]    TLC5940 Arduino Library. Google Code 
        <http://code.google.com/p/tlc5940arduino/> 
 
 
 
 

 

 



19	
  
	
  

 

Appendix A Requirement and Verification Table 
 

PC and Bluetooth Transmitter  

Requirements Verification 

1.) Wireless communications must be 
configured through the PC to ensure 
proper transmission of the data 
 
 
 

2.) PC must be able to take in channels 
(LEDs or intensity) and values 
(frequencies or intensity values) from 
users, verify that they are valid, and 
store them. 
 
 

3.) The computer must translate the 
stored values into serial data. 
 
 
 
 

1.) For pairing the device, we find the Bluetooth device 
in control panel and add the Bluetooth device to PC. If it 
shows successfully added, it is connected to the PC.  
 

 
 
2.) We will test that the input is being taken from the 
user, validated, and stored by inputting values we know 
are invalid and observing the expected error prompt, as 
well as giving valid values that we will then print back to 
the screen. 
 
 
3.) When a value is changed, the code will change the 
value of our 11 bit output variable. It will make 1 start 
bit, convert the channel into an address (next 3 bits), and 
the value of that channel into the last 7 bits. We will then 
print the new computer output to the screen and verify it 
is correct. 

 

BlueTooth Receiver 

Requirements Verification 

1.) Transmitter from the PC must 
be supported by the Bluetooth 
receiver 
 
 
 
 
 

2.) Test if the Bluetooth receiver 
has received the data sent from the 
putty 
 

1.) Verify the computer has a Bluetooth transmitter that is 
either Bluetooth version 2.1+ or 2.0, 1.2, 1.1. Data will be 
sent to the Bluetooth receiver from the PC through PUTTY. 
Choose serial as connection type. Pick the right COM 
connection port and make the connection.  
 
 
 
2.) To test this, we will run program on the Arduino that 
turns an LED on when we send a 1 from the PC, and off 
when we send a 0. 
 



20	
  
	
  

 
 

3.) TTL Bluetooth Receiver must 
be able to receive data transmitted 
at a frequency that will not 
interfere with the operating 
frequencies for the LEDs 

 

 
3.) After the receiver-end code on the Arduino is done, we 
will test and see if sending frequency signals that are higher 
than the upper bound operating frequency (100Hz +) to 
ensure that the transmission frequency of Bluetooth of 
~2.4GHz will not affect the overall signal in functioning 
properly, monitoring the received data with an oscilloscope. 

 
 

Microcontroller 

Requirements Verification 

1.) After the testing for Bluetooth 
module is done, we will now test if 
the microcontroller has receive the 
correct data from Bluetooth module. 
  
 
 
 
 
 
 

2.) We will test that the serial data is 
properly decoded, and the correct 
values are stored in our variables. 
 
 
 

3.) A counter will operate at 
Arduino clock frequency. The code 
will keep track of which LED 
should be on or off at each clock 
pulse. 
 
 
 
4.) The data then needs to be output 
in a way that the TLC5940 can 
interpret (serial). We will be using 
the Arduino’s tlc library (tlc.set and 
tlc.update) to send the data. 

1.) To test this, since there is not much display to show 
what was received, we will test this part by viewing the data 
on the receiving pin using the Arduino IDE. 
For example, now we want to set LED0 to frequency 2HZ. 
The decoded data seen on the pin should be  1        000 
       0000010 
     start   LED        Value 
 

 
 
 
2.) We will input a known 11 bit value to the decode 
function, and we will print out the values of our 5 LED and 
1 intensity registers to verify that the correct value has been 
stored in the correct location. 
 

 
 
3.) We will verify the counters speed by looking at its value 
in the IDE. We will also look at each LED’s value over 1 
second on the IDE, and make sure that they are on and off 
the correct number of times based on their frequencies. (Ex: 
LED0 has a value of 5 Hz and intensity=50%. LED0 should 
switch between 0 and 2048 5 times over 1 second). 
 

4.) We will verify that each time an LED value changes, 
tlc.set is called, and tlc.update is called at the correct 
intervals. 

 



21	
  
	
  

LED Array 

Requirement Verification 

1.) The serial data sent to the 
LED driver will output the 
correct PWM signals to the 
desired output pins (10 total) 
 
 
 
 

2.) LED driver must provide 
proper power dissipation to 
properly handle and control 
every LED 
 
 
 
 
 
 

3.) Each LED must operate 
with an intensity that will not 
cause discomfort to the user 

1.) We will set our GSCLK to a predetermined frequency, then 
change the value of GS register 1, and by monitoring the output of 
channel 1 on an oscilloscope, we will verify that the duty cycle 
being seen is the correct fraction of the 4096 count grayscale cycle 
(2048=50% of GSCLK, etc). 
 
 
 
 
 
2.) Monitor the current output by the TLC-5940 as well as the 
voltage across the LEDs. Make sure that the current does not 

exceed 25mA which is the rating we are basing the value 
of  off of and that the voltage value is no greater than 3.2 V 
which is the maximum voltage to power the LEDs and no less than 
2V which is the minimum voltage to power the LED 
 

 
 
3.) Verification for the LED intensities will consist of finding safe 
operating limits and environments in which the stimulator can be 
used. This will be done first qualitatively by us looking at the 
LEDS, but to insure that this is achieved, there must be a proper 
recording method of finding the luminance values for the LEDs 
which will require a photodiode to measure different intensities. 
[4] 

a. The LED intensity will be measured with a 
photodetector and amplifier (optional). The photodiode 
(~4mm in diameter, the average size of the pupil) 
generates a current to give us the Power present on the 
photodiode at distance ~50mm from the photodetector. 
This is equivalent to the distance we are mounting the 
LEDs away from the user’s eyes. We can then find the 
number of cds the LED is giving off at that distance. [5] 

 
b. If the current signal generated by the photodiode is too 
small, add an amplifier to measure the current. 

 
c. Test and measure several light intensities by changing 
the PWM value for each LED channel, record and measure 
which light colors and levels of intensity are the most 
comfortable to the user.  

 



22	
  
	
  

Power Supply 

Requirement Verification 

Sufficient power must be 
provided for every portable 
component  
1.)  Bluetooth  
 
 
 
 
 
 
 
 
 

2.)Microcontroller 
 
 
 
 
 

3.) LED Driver 
 
 
 
 
 

4.) LEDs 
 
 
 
 
 
 
 
 
 

5.) Power supply must be 
efficient in delivering power that 
will allow maximum usage time 
of the stimulator for the user. 

 

 
1.) The power for the Bluetooth will be coming from the 
Arduino 5V output pin. We will need to test for a stable open 
circuit voltage output from the Arduino 5V pin using a 
multimeter connected from the output pin to ground and make 
sure the voltage does not vary over 5% to ensure proper power 
to the Bluetooth module, anymore than that can affect the 
behavior of the wireless transmission. 
 
 
 
2.) The Arduino Uno will be powered by 7.4V battery, with 
which we will measure using a multimeter connected from the 
positive battery terminal to ground to ensure that no less than 
5% of that value is coming out. 
 

 
3.) The LED driver will have an input voltage of 5V from the 
Arduino, with which we will measure with the multimeter in 
the same fashion as to how we measured the power for the 
Bluetooth module. 
 

4.) We will test the currents drawn by the LEDs with a 
multimeter and make sure that no less than 0.5mA of the 
required forward current is being measured. Any less will 
probably not be enough to power the LED and will be noticed 
if it is not turning on, in which we will need to step backwards 
in the power testing and look at the driver and see if it is 
outputting the correct constant output current which is 120ma. 
 
 
 
5.) Find the current draw at multiple loads using a multimeter, 
which should fall within 5% of the specified amps given by 
the data sheets, compare power usage with the given values 
for the current and voltages to the rated mAhs on the batteries 
to determine usage time for the stimulator (see section 3.5.3) 

 

 

 



23	
  
	
  

Appendix B  Arduino UNO Datasheet [2] 

 
 

 



24	
  
	
  

 

Appendix C  Code 
 

#include <Tlc5940.h> 

#include <tlc_animations.h> 

#include <tlc_config.h> 

#include <tlc_fades.h> 

#include <tlc_progmem_utils.h> 

#include <tlc_servos.h> 

#include <tlc_shifts.h> 

 

const int ledcount = 5;  //number of LEDs to control 

 

//  SET INITIAL VARIABLES HERE 

int intensity = 10;  //intensity value (probably 0-4096) 

int freq[ledcount] = {20,6,7,8,9};  //set the LED frequencies here. Lower numbers give the best accuracy 

 

int ledState[ledcount];  //each LED can be 0 or intensity 

//int freq = 5;  //used for initial tests 

//unsigned long interval = 1000000/freq;  //LED period in microseconds (used for testing) 

unsigned long currentmicros = 0;  //start the counter at 0 

unsigned long previousmicros[ledcount];  //array holding last time each LED changed 

unsigned long interval[ledcount];  //how long to stay on/off to achieve the desired frequency 

String name = ""; 

String st2 = "LED"; 

String st3 = "INT"; 

 

boolean nameEntered = false; 



25	
  
	
  

int lednumber; 

int frequency; 

char buff; 

char buffa; 

int j; 

 

 

void setup() 

{ 

Tlc.init(); 

Serial.begin(9600); 

  Serial.println("Please enter command."); 

for(int i = 0; i < ledcount; i++) 

{ 

  interval[i] = 500000/freq[i];  //set all of the intervals 

  previousmicros[i] = 0;        //initialize counters 

  //Serial.println(freq[i]);      //printing frequencies and intervals just to make sure 

  //Serial.println(interval[i]); 

} 

} 

 

void timer() 

{ 

 

  for(int i = 0; i < ledcount; i++)  //for each LED 

  { 

    if(currentmicros - previousmicros[i] >= interval[i])   //if it has been enough time since the last flip  

    { 

    // save the last time you blinked the LED 



26	
  
	
  

      previousmicros[i] = currentmicros;   

 

    // if the LED is off turn it on and vice-versa: 

      if (ledState[i] == 0) 

        ledState[i] = intensity; 

      else 

        ledState[i] = 0; 

     // Serial.println(freq[i]);  //print the frequency value each time it changes (just for debugging) 

      Tlc.set(i,ledState[i]);  //Loads TLC register 

      Tlc.update();            //latches data into LED driver 

    } 

  } 

} 

 

void loop() 

{ 

 

while (Serial.available()) { 

  char readChar = (char)Serial.read();  

 

  // If the next character is a linefeed (enter) 

  // the name is complete. Exit the while() loop. 

  if (readChar == '\n') { 

    nameEntered = true; 

    continue; 

  } 

  // If the character wasn't enter, add it to the name string. 

  name += readChar; 

} 



27	
  
	
  

 

// If a name has been entered (followed by \n) 

// print "Hello name!" 

if (nameEntered) { 

if (name.startsWith(st2)&& (name[3]>='0')&& (name[3]<='9') && (name[5]>='0')&& 
(name[5]<='9')&&(name[4]==' ') && (name[6]>= '0')&&(name[6]<= '9'))  

// if name[0,2] eq INT && name[5,8] are integers 

{ 

  Serial.println("legal "); 

  buff = name[3]; 

  lednumber = buff-'0';//!!!LED number!!!// 

  buff = name[5]; 

  buffa= name[6]; 

  frequency = 10*(buff-'0')+(buffa-'0');//!!!!!frequency!!!// 

  freq[lednumber] = frequency; 

  interval[lednumber] = 500000/freq[lednumber];  //set all of the intervals     

  for(j=0; j<ledcount;j++) 

  { 

    Serial.print (j); 

    Serial.println(freq[j]); 

  } 

} 

  else if(name.startsWith(st3)&&(name[3]==' ')&& ((name[4]=='1') ||(name[4]=='2')|| (name[4]=='3'))  ) 

  {     Serial.println("legal "); 

     if (name[4] == '1') 

     { 

       intensity = 10; 

             Serial.print (intensity); 

 



28	
  
	
  

     } 

     else if (name[4] == '2') 

     { 

       intensity = 20; 

             Serial.print (intensity); 

 

     } 

     else  

     { 

       intensity = 30; 

             Serial.print (intensity); 

 

     } 

  }  

else {Serial.println("illegal command");} 

 

  // Once the name has been printed, erase it and start over. 

  name = ""; 

  nameEntered = false; 

} 

while (!Serial.available())  //run loop for 100 seconds to get enough data 

{ 

  currentmicros = micros();  //call micros from main function to ensure it gets whole program time 

  timer(); 

} 

} 


