# Flexible Electronics Vitals Sensor By Russell Geschrey & Matthew Frank ECE 445 Spring 2013 - Prof. Paul Carney

# **Introduction**

#### Purpose

We chose this project because of our interest in cutting edge wireless communication systems, namely BAN's (body area networks) and their recent integration with flexible electronics research here at the University of Illinois. This area of research, if it is successful, could greatly change healthcare and advance the field of bioinformatics.

### Objectives

The goal is to create a small flexible electronics transmitter, about the size of an average bandage, which can measure a person's vitals such as ECG (heart rate) and core body temperature. It will transmit this information over the air in real time to a receiver, where it will be displayed in a graph format and stored for later analysis (such as for medical studies). The following is a list of features of the proposed project, along with the perceived benefits of each.

- Wire-free vitals monitor
  - Allows for mobility while still being able to monitor patients
- Small size and flexibility allows for reduction in physical profile
  - o Device is less intrusive and more seamlessly integrated into everyday tasks
  - Capable of being used where previous "rigid" devices were unable to operate
- Ability to display near-real time data via wireless transmitter
  - $\circ$   $\;$  Allows for studies that could not normally be performed with wired devices  $\;$

# <u>Design</u>

**Block Diagram** 

#### **Transmitter**



Reciever



## **Block Descriptions**

#### **Transmitter**

-Wireless power charging device

- Passively charges the device wirelessly or
- actively charge it via a base station and inductive charging system

-Vitals Monitoring system

- Reads various vitals and translates them into analog voltages.
- Multiplexing device decides which data is transmitted
- A/D converter translates analog voltages into digital waveforms for transmissions.

-Wireless Data Transmission System

- Voltage Controlled Oscillator maps data onto the carrier
- Antenna transmits data to receiver to be demodulated for analysis

#### **Receiver**

-Demodulator

• Demodulates the waveform from the receiving antenna, removing the carrier frequency

#### -A/D Converter

• Symbol recognizer interprets the bits that were mapped onto the demodulated signal and reads data into processing unit

-Data processing and display unit

• Data is read into a CPU which then interprets the data, stores it and can display it in easy-to-read form.

## **Requirements and Verification**

#### Requirements

- Power device should be able to effectively charge the device for an effective use of 8 hours.
- Sensor data should accurately reflect real analysis of vitals with error of less than 5%.
- Wireless transmission system should be able to successfully transmit data to receiver at distances of up to ~3 feet (or comparable to Bluetooth).

#### Verification

- Simulations will be conducted to determine best devices for the implementation.
- Devices will be tested on hard-board configuration. Each stage of the device should function independently of the other devices.
- Device will then be tested using flexible materials.

#### **Tolerance Analysis**

Key factors in the Tolerance Analysis will be size and power consumption. While wireless charging mechanisms have had a lot of success in previous applications, the device must still be able to effectively stay powered without the user losing the goal of mobility. Typical devices of this nature run at under 1 W (this will be our threshold). In addition, the upper limit on typical flexible electronic chip thickness is ~ .6mm. This will be the upper limit for all components used for our device. Finally, the device will need to be able to reliably transmit the data to a receiver at typical Personal Area Network (PAN) distances.

# Cost and Schedule

## **Cost Analysis**

All costs are calculated on a per-unit basis, assuming that bulk discounts are applied. Fabrication costs are to be reimbursed by the Materials Science Research group in MRL.

| Part # and Description       | Cost   | Quantity Needed | Total    |
|------------------------------|--------|-----------------|----------|
| VCO (MAX2750)                | \$1.18 | 1               | \$1.18   |
| Flexible Electronic Antennas | \$10   | 2               | \$20     |
| (fabricated)                 |        |                 |          |
| Local Oscillators (LTC6992)  | \$2.25 | 2               | \$4.50   |
| Flexible ECG sensors         | \$600  | 1               | \$600    |
| (fabricated)                 |        |                 |          |
| Sensor Amplifiers (AD627B)   | \$4.54 | 2               | \$9.08   |
| Total Parts:                 |        |                 | \$634.76 |

Labor: \$40.00 per hour for 10 hours per week for 16 weeks for two team members.

Total Labor: \$12,800 \* 2.5 =

Total Cost:

\$32,000

\$32,634.76

#### Schedule

| Wook | Data              | Tasks                                              | Team<br>Mombor |
|------|-------------------|----------------------------------------------------|----------------|
| WEEK | Date<br>2/2 - 2/6 | Write Project Proposal                             | Mott & Russ    |
| 1    | 2/3-2/0           | Sign up for mock design review                     | Matt           |
|      | 2/0               | Attend Exprisestion Cominer MDI                    | Dues           |
|      | 2/0               | Attend Fabrication Seminar MKL                     | Russ           |
| 2    | All week          | Create Detailed Electrical Design                  | KUSS           |
|      | All week          | electronics                                        | Matt           |
| 2    | All week          | Simulate proposed design on ADS                    | Matt & Russ    |
| 2    | All week          | Prepare for Design Review                          | Matt           |
| 4    | 2/25-             | repare for Design Review                           | Iviati         |
|      | $\frac{2}{2}$     | Design Review                                      | Matt & Russ    |
|      | All week          | Simulate and revise design                         | Russ           |
| 5    | 3/4               | Order parts                                        | Matt           |
| -    | 3/7               | Oversee fabrication of materials                   | Russ           |
| 6    | 3/11              | Individual Progress Reports                        | Matt & Russ    |
|      | All week          | Learn how to use the reciever software / parts     | Matt           |
|      | All week          | Begin integration and preliminary tests            | Russ           |
| 7    | All week          | Spring Break : Chicago 2013                        | Matt & Russ    |
|      | All week          | Meet up to go over results of last week            | Matt & Russ    |
|      |                   | Plan, decide what features are implementable given |                |
|      | All week          | results                                            | Matt & Russ    |
| 8    | 3/25              | Sign up for mock-up demos                          | Matt           |
|      | All week          | Test reciever design                               | Matt           |
|      | All week          | Test transmitter design                            | Russ           |
| 9    | 4/1               | Mock up Presentation                               | Russ & Matt    |
|      | All week          | Test Full System with reciever and transmitter     | Matt           |
|      | All week          | Order additional parts, complete extra fabrication | Russ           |
| 10   | 4/8               | Test final revision                                | Matt & Russ    |
|      | All week          | Make necessary changes, order parts, etc           | Russ           |
|      | All week          | Simulate new revision                              | Matt           |
| 11   | 4/15              | Test final revision                                | Matt & Russ    |
|      | 4/15              | Sign up / Prepare for Demo                         | Matt           |
|      | All week          | Begin writing report                               | Russ           |
| 12   | All week          | Prepare for Demo                                   | Matt & Russ    |
|      | 4/22 -            |                                                    |                |
|      | 4/25              | Demos                                              | Matt & Russ    |
|      | 4/29 -            |                                                    |                |
| 13   | 4/30              | Final Presentation                                 | Matt & Russ    |