

AUTOMATIC HANDSHAKE CONTACT
INFO EXCHANGER

By

AMBIECA SAHA

WILLIAM HANLEY

KUANYSH SAMIGOLLAYEV

Final Report for ECE 445, Senior Design, Spring 2013

TA: Justine Fortier

01 May 2013

Project No. 13

ii

Abstract

We designed and created a wireless contact information exchanger that would do so upon

a handshake. The device (henceforth, called ‘bracelet’) has a user interface, comprising of two

switches (Receive and Send) and two LEDs to warn the user against low battery and low

memory).

This device uses an accelerometer to detect a handshake, a Bluetooth module to send

and/or receive business cards, a microcontroller to coordinate this sequence of actions, an

external memory to store the received business cards. However, to make the bracelets send data

without errors, one had to be set as Master and the other Slave.

Received business cards can be uploaded to a personal computer or even to a phone (in

case the second person involved in handshake does not own a bracelet).

Although our design worked, there are still improvements that can be made by

eliminating the master/slave switch, developing a better user interface (that would allow user to

automatically convert uploaded received business cards into a contact file), adding a contact

picture in the business card and stepping down power consumption when not in use.

iii

Contents

1. Introduction ... 1

1.1 Purpose .. 1

1.2 Functionality ... 1

1.3 Design Subdivisions .. 2

2. Design ... 4

2.1 Design Alternatives ... 4

2.2 PCB Design ... 4

2.3 Design Details ... 6

2.3.1. Microcontroller ... 6

2.3.2. Bluetooth Module ... 8

2.3.3. Accelerometer ... 9

2.3.4. External Memory .. 11

2.3.5. Low Battery Indicator ... 13

2.3.6. Low Memory Indicator ... 14

2.3.7. Power Supply .. 15

2.3.8. Manual Switches ... 15

3. Design Verifications ... 17

3.1 Testing Procedures .. 17

3.2 Test Results ... 17

3.2.1. Microcontroller Testing .. 17

3.2.2. Bluetooth Module Testing .. 17

3.2.3. Accelerometer Testing .. 19

iv

3.2.4. External Memory Testing ... 20

3.2.5. Low Battery Indicator Testing .. 21

3.2.6. Low Memory Indicator Testing .. 22

3.2.7. Power Supply Testing ... 23

3.2.8. Manual Switch Testing ... 23

3.3 Discussion of Failed Verifications .. 24

4. Costs .. 25

4.1 Parts .. 25

4.2 Labor ... 26

4.3 Grand Total ... 26

5. Conclusions ... 27

5.1 Accomplishments .. 27

5.2 Uncertainties ... 27

5.3 Ethical Considerations .. 27

5.4 Future Work .. 30

References ... 31

Appendix A – Requirements and Verifications Table .. A.1

Appendix B – PCB Schematics & Layouts .. B.1

Appendix C – Microcontroller Code .. C.1

1

1. Introduction

1.1 Purpose

The goal of this project was to produce a wearable and affordable device that would be

capable of transmitting and receiving contact information from other users.

We wanted to use our knowledge of communications and systems design to engineer a

device that would improve the way people exchange contact information with each other –

 Instead of taking time to exchange information and wasting paper with business cards,

one could automatically receive and send contact information electronically and

wirelessly with the shake of a hand.

 This device would eliminate the need to print new business cards whenever information

is updated.

 It would allow easy organization and access of contact information (eliminates the need

to carry around huge stack of business cards; reduces risk of accidentally losing

someone’s business card).

This project would be useful for a lot of people in the business world and might be able to

revolutionize the process of business card exchange and personal information exchange in

general.

1.2 Functionality

The function of our device is to let users exchange business card information after a

handshake has occurred. The device automatically transfers contact information wirelessly to the

other user. This information can also be sent to a Smartphone. After coming home from a

business meeting, conference, etc. the user can attach his/her device to a computer and upload all

the contact data he/she received. Once the data is uploaded to the computer, the memory can be

cleared and the main code can be reprogrammed to the bracelet.

2

1.3 Design Subdivisions

The project was broken into many modules, which each perform specific tasks, explained

in detail under Section 3. The modules we decided to implement are shown in Figure 1.

____ Power Flow

____ Data Connection

Figure 1: Top Level Block Diagram for Device

3

Figure 2: Overall Circuit Schematic for Device

4

2. Design

2.1 Design Alternatives

One of the biggest problems we faced while working on this project was to coordinate the

two Bluetooth modules to transfer data error-free. Upon a handshake, if both Bluetooth modules

tried to connect to each other at the same time, the connection attempt would fail and no data

would be transferred. So to tackle this problem, in the interest of time, we came up with a crude

engineering solution: prior to a handshake, one device would be designated as the Master and the

other as Slave. Upon a handshake, the Slave would turn its discoverability on. The Master would

then be able to connect to the slave, initiate the communication and at the end of data transfer,

the Master would also kill the connection.

However, as mentioned earlier, this was only a crude engineering solution that would

allow us to produce a working device. After the demo, we were able to come up with a better

solution that would eliminate the need to coordinate who is the Master and who is the Slave with

the other user before every handshake. This can be achieved by sending the Bluetooth modules a

command (GK) that finds out if they are currently connected or not (elaborated in Section 5.4).

2.2 PCB Design

To maximize the robustness of our design, we soldered all components onto the PCB

(Printed Circuit Board). To ensure that our device fit on a user’s wrist, we made two small PCBs.

One PCB, which contains the power supply and user interface (switches and warning LEDs), is

located on the lateral side of the user’s wrist (figure 3). The other one is located on the medial

side of the user’s wrist (figure 4). These two PCBs are connected by 7 wires that wrap around the

user’s wrist. These wires connect the outputs of the user interface and power supply to the rest of

the circuit components. To minimize the size of PCBs, we soldered any low-height components

in the area under the accelerometer breakout board and Bluetooth breakout board (figures 5 & 6).

The lateral-side PCB with the power supply is 2.23”x1.7’’ with 32 mil traces. The dimensions of

the medial-side PCB are 2.23”x1.61’’ with 16 and 32 mil traces. These trace widths are rated at

approximately 1A [1]. The largest current drawn at anytime for a circuit happens when the

5

Bluetooth is connected and transmitting data and will not exceed 60 mA. The PCB schematics

and layouts are located in Appendix B.

Figure 3: Lateral-side PCB Showing User Interface and Power Supply

 Figure 6: Medial-side PCB

Figure 4: External Memory Under Accelerometer

Breakout Board

Figure 5: Memory Indicator Circuit Under Bluetooth

Breakout Board

6

2.3 Design Details

2.3.1. Microcontroller

The microcontroller controls all the components in the circuit.

The microcontroller interacts with every component in our device except the low

battery indicator circuit. We chose to use an Arduino microcontroller because of its

large open source software environment and if needed, we could easily find help with

common problems on many online forums. In order to perform initial tests on our

components, we used a larger Arduino Uno platform, which uses an ATmega328P

microcontroller [2]. After initial testing and verification of the components we moved

on to using the 3.3V Arduino Pro Mini microcontroller. The Pro Mini was

functionally equivalent to the Arduino Uno except that it has an 8 MHz clock instead

of the Uno’s 16 MHz [3]. Further, it runs on 3.3V instead of the Uno’s 5V power

requirement. The Arduino Pro Mini has a RAW input pin that accepts any

unregulated voltage between 3.5-12V and regulates it on the board to 3.3V. The

biggest advantage of using the Arduino Pro Mini instead of the Arduino Uno was its

small size and weight. The dimensions of the Arduino Pro Mini are 0.7”x1.3’’ and it

weighs less than 2 grams [4]. This makes it ideal to be used for small and lightweight

projects such as ours.

However, when moving over from the Uno to the Mini, we encountered the

problem that the 3.3V Pro Mini did not support the Software Serial Communication

pins that we were using on digital pins 5 and 6 of the Uno microcontroller. Therefore,

we had to make changes in both our hardware and software design. The Pro Mini was

only able to perform serial communications out of its hardware serial pins 1 and 2.

This meant that the device would have to share these pins between the connections to

the Bluetooth Module transmitter/receiver and the serial connections necessary to

read the contents of the memory onto the computer. Therefore, we had to break-out

headers on the medial-side PCB which would allow switching connections to these

serial communication pins of the Mini when necessary.

Figure 7 shows a detailed flow chart of the microcontroller program function.

7

8

Figure 7: Microcontroller Flow Chart

2.3.2. Bluetooth Module

The Bluetooth module on our device is used for wireless data transfer upon a

handshake. Our device uses an RN-42 Bluetooth module on a breakout board from

Sparkfun Electronics. We configured the Bluetooth modules (as well as every other

component in our circuit) to transfer data with a 9600 baud rate. Equation 2.1 below

shows how long a business card of 200 bytes will take to transfer at this baud rate.

 (2.1)

9

When the user shakes hands, if the device is the Master, the microcontroller will

send serial data “$$$” to the Bluetooth module. The Slave device will make itself

temporarily discoverable. When the Bluetooth module reads the “$$$” on its Rx

(receiver) pin the module will enter CMD (command) mode. Once in command mode

the microcontroller can signal the Bluetooth to perform an inquiry scan to connect the

other nearby Bluetooth RN-42 module that is temporarily discoverable. Once it

connects to the other device, both modules will automatically enter data mode. In this

mode, serial data is transferred between the two modules at their defined baud rate. In

data mode, the data transfer happens according to the flow chart in the

microcontroller section (figure 7). The complete list of commands that were used to

set up communication between the modules is listed in the RN-42 User Manual [5]

and can be viewed in the microcontroller code in Appendix C.

2.3.3. Accelerometer

The accelerometer on our device outputs analog voltages to the microcontroller

for sampling and processing. We chose to use the ADXL335 triple axis

accelerometer. We picked this chip because it had low cost and measured acceleration

on the three Cartesian axes that were necessary to detect a handshake. The hardware

design for this chip solely consisted of attaching the three axis outputs to the analog

inputs on the Arduino board. This section explains the software design that was used

for handshake detection.

Acceleration from both motion and gravity was used in this process. The data

received from the accelerometer was processed by the microcontroller. Our device

was designed to detect two different types of handshakes:

a. A handshake starting with the user’s initial arm position being by

his/her side pointing to the ground

b. A handshake that is continued from a previous handshake, that is the

user’s initial arm position is already horizontal (finishing up a previous

handshake)

10

Before the microcontroller could process the acceleration data it had to go into the

Analog-to-digital converter of the Arduino. This resulted in the analog voltages being

sampled and mapped to a value between 0 and 1024. In our design, the

accelerometer’s is aligned such that the x-axis is pointing towards the user’s shoulder

and the y-axis points in the vertical direction.

Figure 8 shows a sample output (corresponding to ‘a’ above) after accelerometer

data has been sampled by the Arduino’s analog to digital converter. The left column

represents the acceleration on the X-axis, middle column the Y-axis, and the right

column represents the Z-axis. One can see that the X-axis has a large change in output

value. When a large change in the X-output is detected we went on to check for Y-

oscillations around its mean value of around 610 when the arm is perpendicular to the

body. Only when these two events happen in close succession, the microcontroller

signals that a handshake has occurred.

Figure 8: Sample Data From Accelerometer Detecting An Arm Swing And A Consecutive Handshake

 A similar design method is used for the horizontal handshake for the bullet point

‘b’ mentioned above. The only difference is that we are looking for large changes in

acceleration on the Z-axis corresponding to the swing, instead of the X-axis.

11

2.3.4. External Memory

We used the 24LC256 EEPROM for storing received business card data. This was

necessary to incorporate into our project because the microcontroller on-board

memory was too small to meet our storage needs. The external memory of our circuit

was designed to operate with the analog input pins A4 and A5 on the Arduino. These

two analog input pins support I
2
C communication [6]. Pin A4 is used as the SDA

(serial data) line and pin A5 is the SCL (serial clock) line. The SDA line is a

bidirectional connection used to transfer addresses and data between the memory and

Arduino. The SCL line is used to synchronize data transfer between the two

components. The design processes for writing to and reading from this memory is

explained below. The Arduino “Wire” library is used to accomplish these processes.

Writing to the memory:

After we receive a business card upon data transfer, we want to store this card into

memory. In order to do this the external memory requires a start bit and control byte

to be sent to it through the SDA line. The first 4 bits of the control byte are a set

control word “1010”. The next three bits are device-addressing bits, which are all

grounded because we are only using one memory chip. The last bit in the control byte

is Read/Write’ (R/W’). This bit will be a “0” because we are writing to the chip.

Immediately after the control byte is sent we send two bytes representing the address

to write to and finally send the byte of data to write and the stop bit. This process is

summarized below in Figure 9, taken from the 24LC256 datasheet [7].

 Figure 9: Writing to External Memory

12

We decided to store the number of business cards currently in the memory in

memory address ‘0’. Every time we write another card to memory this number gets

incremented and stored back in address ‘0’. This number allows use to know what

address we are writing the current business card data to. Equation (2.2) below

summarizes what memory address we would write the current card to. The plus one

offset is because we are storing the number of business cards in the first memory

location so every address needs to be incremented by 1.

 (2.2)

So this business card will be written in addresses:

(Starting address) to (starting address + 200)

Reading from the memory:

When the user uploads the program to read the stored business cards to their

computer we needed to extract every business card that was currently in the memory.

The 24LC256 read protocol is pretty similar to writing to it. Except now you don’t

need to pass a data byte after the two address bytes. The process is shown in Figure 7,

the figure is taken from the 24LC256 datasheet [7].

Figure 10: Reading from the External Memory

The read function that we wrote returns the byte of data stored in the specified

memory location. We also designed the external memory so that one can clear the

memory after reading its contents.

13

2.3.5. Low Battery Indicator

 We decided to design a low battery indicator that would warn the user when their

batteries had approximately 15% charge remaining. This would give them sufficient

amount of time to replace the device batteries. After referencing the data sheet [8] we

decided that when the voltage over each battery hit approximately 2.4V there would

be 15% charge remaining. Since we were using two button cell batteries in series we

would need to detect when the output of the power supply decreased to under 4.8V

(equation 2.3).

 (2.3)

In order to detect this threshold, we decided to use an op amp circuit as an analog

comparator. The op amp compares the two voltages on its positive and negative input

terminals. When being used as a comparator, an op amp operates in open loop and

non-linearly. The basic concept is when the non-inverting input (+ve terminal) is at a

higher voltage than the inverting input (-ve terminal) then the output saturates to its

highest possible output voltage. When the opposite was true and the inverting input is

at a higher potential than the non-inverting input then the output saturates to the

lowest voltage it can output. Figure 11 below shows the schematic of our design for

this component.

Figure 11: Schematic for Low Battery Indicator

14

So when the voltage divided battery falls below the voltage at the non-inverting

node (set by the Zener diode), the output will become high and light up the blue LED

at the output warning the user that the battery life is low.

2.3.6. Low Memory Indicator

The low memory indicator was included in our design to warn the user when the

remaining space of the external memory was running low. This component is a red

LED that lights up when the memory is running low. In order to do this we attached a

red LED to a digital output pin of the Arduino Pro Mini along with a 1kΩ current

limiting resistor. The setup of this circuit is pictured below in Figure 12 as a simple

resistor in series with an LED going to ground [8].

Figure 12: Circuit Schematic for Low Memory Indicator

A KVL loop around this circuit gives:

 (2.4)

Where

Vs = Arduino Pro Mini output voltage – 3.3V

 Vf = approximate forward voltage for red LED ~ 1.85V [9]

15

 i = current required to light LED to desired brightness

We want ~1.15mA of current to light our LED so we obtain R = 1kΩ.

2.3.7. Power Supply

The design of the power supply is simply two CR2477 button cell batteries in

series (figure 13). These are 3V batteries rated at 1000mAh [10], so the output of the

power supply will be 6V and 1000mAh. In order to attach these button cells to the

PCB we needed to order sockets (BH1000G) for these button cells. The terminals of

these sockets were soldered to the PCBs. An advantage of using these sockets is that

the button cells can be easily replaced when they die.

Figure 13: Circuit Schematic for Power Supply Module

2.3.8. Manual Switches

In order for the user to select what mode they want data transfer to occur in (send

only, receive only, send & receive, off), we added two switches (Send/Tx and

Receive/Rx) to the device’s user interface. The design of this module was fairly

straightforward. The positive terminal of the switches had a 10kΩ pull up resistor

leading to Vcc while the negative terminal was fed to the circuit ground. The output of

16

both these user switches was sent to digital input pins on the microcontroller so that

the mode can be read and corresponding data transfer can occur.

Figure 14: Circuit Schematic for Manual Switches

17

3. Design Verifications

3.1 Testing Procedures

Functional tests were preformed for all components in our design. The tests performed on

the components in our Requirements and Verification will be explained in detail in the next

section. The main testing we performed that was not specified in our design review document

was the overall device functionality testing that we performed once the device was

assembled. This testing was necessary because we wanted to make sure all the functions that

we originally proposed worked as desired.

In order to perform the overall device functionality tests we uploaded the handshake code

to both devices. After doing this we tested all 16 possible user switch configurations. To

verify that each resulted in correct transfer for each device we read the contents of the

memory out to the computer screen after every handshake. After some testing and

debugging, all the modes worked as desired.

3.2 Test Results

3.2.1. Microcontroller Testing

In order to verify that our microcontroller was working correctly, we tested it with

other components of our circuit. After doing so and successfully controlling all

components of our device, we concluded that everything was working as desired.

3.2.2. Bluetooth Module Testing

In order for our project to function properly, we required that the Bluetooth

modules connect and communicate without error within distances of 0.2m – 5m. Data

transfer is required to reach up to 5 meters because firstly, Bluetooth technology

usually has a delay of a couple seconds when making a connection and secondly, in

case one of the users involved in handshake walks away right after handshake, the

data transfer should still be completed without errors. It is also required to perform

18

the actual data transfer in less than 2 seconds and kill the established connection after

data transfer is complete.

To verify these results we built two simple circuits. One was a stationary

Bluetooth Module attached to the Arduino Uno. This Uno was connected to a laptop

and was able to receive data input from the keyboard. The other circuit was on a

smaller breadboard and consisted of another Bluetooth Module attached to an

Arduino Pro Mini. This circuit was moved around to different distances from the

stationary Bluetooth module and tested from various distances between 0.2m – 5m.

The testing procedure was to send data from the keyboard to the stationary Bluetooth

module that would connect to the mobile Bluetooth and send data to it. The mobile

Bluetooth would receive this data and read it into the Arduino Pro Mini that it was

attached to. The Pro Mini would then echo the data back to the Bluetooth and this

data would then be sent back to the stationary Bluetooth. This data would be printed

back onto the computer screen to verify it was the same data that we sent. Data

transfer was successful at all tested distances at a baud rate of 9600 bits/second. A

sample output and the code for each microcontroller are shown in Figure 15 below.

Figure 15: Bluetooth Testing Code and Sample Output

19

3.2.3. Accelerometer Testing

In order for our device to properly detect a handshake, our accelerometer was

required to properly measure acceleration due to both gravity and motion on all 3

axes.

To verify that these requirements were being met, we connected each of the 3

axes’ outputs to the oscilloscope independently. We verified that when no

acceleration was being measured on the axis we were probing, the voltage on the

oscilloscope would read a value around 3.3V. When we tilted the chip to measure

acceleration due to positive and/or negative gravity, we verified that the two outputs

were equidistant above and below the zero acceleration to due to gravity (0-level)

output. After this requirement was verified we also wanted to make sure the

accelerometer correctly measured acceleration due to motion (to detect an arm-swing

or oscillations during handshake). In order to do this, we orientated the chip such that

no acceleration would be measured on the axis of interest. After doing this, we shook

the device and verified that corresponding acceleration due to motion was measured

on the oscilloscope. This looked like the voltage level oscillating around the 0-level.

Each of these tests was performed on all 3 axes.

Figure 16 shows a snapshot of the oscilloscope during the acceleration due to

gravity testing. The middle trace on the plot is the 0-level (zero acceleration due to

gravity) on the axis of interest. The two equidistant traces represent positive and

negative acceleration due to gravity.

20

Figure 16: Accelerometer Output Measuring Acceleration Due to Gravity

3.2.4. External Memory Testing

Our external memory requirements were quite straightforward. The memory was

required to properly write given data to the address specified by the code. It was also

required to read the correct data from the address specified by the code.

In order to test these requirements we wrote 4 different “mock” business cards to

subsequent memory locations. After these cards were all written to the memory we

uploaded code that would read all of these business cards to the computer screen at

one time. The output we viewed on the serial monitor verified that the data was

correctly being written and read from the memory.

21

3.2.5. Low Battery Indicator Testing

The main requirement of the low battery indicator circuit was to turn on

the warning LED when approximately 15% of battery charge remained (i.e. when

the power supply voltage is equal to 4.8V)

To verify the functionality of this circuit, we input the DC power supply in

the lab to the battery terminals of the circuit. We then swept the voltage of the

power supply by 0.1V at a time and verified that the blue LED was off for Vsupply

> 4.8V and was on for Vsupply < 4.8V. The op amp output voltage that turns on the

led is shown in Figures 17 and 18.

Figure 17: Op amp output (purple) is below turn-on voltage of blue LED (yellow) when power supply

(green) is at full charge

22

Figure 18: Op amp output (purple) is above turn-on voltage of blue LED (yellow) when battery voltage

(green) is below 4.8V

3.2.6. Low Memory Indicator Testing

The low memory indicator LED was required to light up when the number of

business cards in memory was greater than the low memory threshold we set up in the

code.

In order to verify that this component was working we set the threshold to 2 cards

and populated the memory with 2 business cards. We verified that the red LED turned

on.

23

3.2.7. Power Supply Testing

Our power supply was required to supply a regulated 6 0.5V to the RAW input

to the Arduino Pro Mini.

To verify that the button cells were outputting this voltage we simply probed the

ground and positive terminal of the power supply onto the oscilloscope. Figure 19

shows the power supply output.

Figure 19: Output of Power Supply Module Supplying 6V 0.5V

3.2.8. Manual Switch Testing

The manual switches in our circuit were required to output logic high when on

and output logic low when off. To test this for each switch we simply probed the

output of the switch when logic high and low was on its inputs. We verified that the

output toggled between high and low depending on the position of the switch.

24

3.3 Discussion of Failed Verifications

All of our verifications ended up passing except the power supply module. The button

cells were able to supply power to separate components to the circuit but when we attached

the power supply module to the entire load, the voltage swung greatly between 6V and under

3V. This might have been because the total load of the device was too large for the button

cells and therefore, some components might not have been getting sufficient current.

A solution to this problem could be to step down the voltage of the power supply to

approximately 4V (because maximum requirement for any component is 3.5V) before it is

connected to the rest of the circuit. This decrease in voltage before the load would allow us to

supply a greater current to the device.

25

4. Costs

Table 1 below summarizes the cost of each component that we used in building this

device. It also compares the cost of the device we built in lab with the production cost. It can be

seen that if we were to produce this device on a large scale, some of the biggest savings would

stem from the accelerometer and Bluetooth. This is because for mass production, we would use

the chip without break out boards. These two alone account for a savings of $40.99. On the

whole, mass production would be $48.82 cheaper.

4.1 Parts

Table 1: Mass Production Cost for 1 Device

Part Quantity Price

($)

Production Cost

($)

Unit Bulk Unit Bulk

ADXL335

Accelerometer

1 24.95 7.96 24.95 7.96

Microcontroller

Arduino Mini Pro

1 9.95 7.96 9.95 7.96

RN-42 Bluetooth 1 39.95 15.95 39.95 15.95

External Memory 1 1.95 1.56 1.95 1.56

Power Supply

(Lithium 3V button

cells)

2 2.25 1.12 4.50 4.98

Battery Socket

(BH1000G)

2 1.42 0.89 2.84 1.78

LED 2 2.49 0.28 4.98 0.56

Zener Diode 1 0.25 0.20 0.25 0.20

Op Amp 1 0.70 0.23 0.70 0.30

Resistors 8 0.05 0.05 0.40 0.40

Capacitors 3 0.10 0.10 0.30 0.30

Total 90.77 41.95

26

4.2 Labor

Table 2: Labor Costs

Name Rate/hour Overhead (x

2.5)

Hours * Total

($)

W. Hanley 35 87.5 180 15,750

K. Samigollayev 35 87.5 180 15,750

A. Saha 35 87.5 180 15,750

Total $ 47,250

Assuming a 15 hour work week for 12 weeks

4.3 Grand Total

Table 3: Total Costs

Section Total

($)

Parts (bulk price) 41.95

Labor 47,250.00

Total $ 47,291.95

27

5. Conclusions

5.1 Accomplishments

Our group was successfully able to complete what we wanted to do at the start of

our project. We built a bracelet that successfully transfers business card data between two

devices upon a handshake. All the user switch configurations ended up transferring data

in the way they were designed to do. Not only did we have successful transfer between

devices, but we also were able to transfer business card data upon a handshake to a

Bluetooth terminal on a Smartphone.

We are also happy that we were able to achieve a reasonable size and weight for

our final product. The bracelet has a similar size and weight of a standard wristwatch.

5.2 Uncertainties

Although we were able to complete all basic functionality of our device, we were

not able to test it when there were more than two devices in close proximity to each other.

If multiple devices are discoverable at the time the Master preforms the inquiry scan, then

the Master might not connect to the correct device. This would cause data to be

transferred to the incorrect person and raises privacy issues. We believe that during an

inquiry scan the Bluetooth would connect to the closest available device it finds, but we

are not completely sure about the functionality of the inquiry scan.

5.3 Ethical Considerations

The purpose of the Automatic Handshake Info Exchanger is to simplify and

enhance the user’s ability to exchange personal contact information. We strive to

complete this project bearing in mind the IEEE Code of Ethics in Section 7.8 of IEEE

Policies. The most relevant policies pertaining to our project are detailed as follows:

28

3. To be honest and realistic in stating claims or estimates based on available data;

Throughout the development of the device, we will follow the 3
rd

 code closely,

and only make claims and estimates based on real data acquired from our design. We will

be honest and will not falsify the data acquired from our test procedures.

1. To improve the understanding of technology; its appropriate application, and

potential consequences;

2. To maintain and improve our technical competence and to undertake

technological tasks for others only if qualified by training or experience, or after

full disclosure of pertinent limitations;

After this project, we will have learned a great deal about various real-world

technologies such as Bluetooth, the ATMega328p microcontroller, external Memory,

motion sensors, accelerometers, gyroscopes. This will improve our understanding of

these technologies and their applications, and also improve our technical competence, as

directed in the 5
th

 and 6
th

 codes of the IEEE Code of Ethics.

3. To seek, accept, and offer honest criticism of technical work, to acknowledge and

correct errors, and to credit properly the contributions of others;

10. To assist colleagues and co-workers in their professional development and to

support them in following this code of ethics.

Furthermore, while working on the project, we will build an environment that

promotes engineer professionalism, which welcomes constructive and honest criticisms,

acknowledges errors, assists peer workers with their professional and academic

developments, and credits appropriate contributions, as cited in the 7
th

 and 10
th

 codes of

the IEEE Code of Ethics.

9. To avoid injuring others, their property, reputation, or employment by false or

malicious action;

29

We will make sure that the data transmitted through this device will offer the

users with data that is as accurate as possible, and will not provide them with false

information, in order to avoid damaging.

In addition to IEEE Code of Ethics, we will also ensure that privacy of the users is

protected and that the device is transmitting the authorized data only.

30

5.4 Future Work

By the end of the semester, our group was happy that we achieved almost all of

our design goals. However, there is always scope for improvements.

Most importantly, we would like to eliminate the Master/Slave switch (in order to

eliminate the need to coordinate with the other user who is the Master and who is the

Slave before every handshake). To tackle this, we came up with the solution that both

Bluetooths will try to connect to each other at different random times (less than 1000

millisecond) after a handshake. As long as the random delays are staggered, either roe

will be able to establish connection first. After they have both made an attempt we would

send a command (GK) to the Bluetooth on each device to check whether they are

connected or not. If they are connected then we can continue with data transfer. However,

if they are not connected then try to connect again after another random delay on each

module.

Other future work on our project includes

 Developing a user interface for uploading the business cards. This would include

making an application for Smartphones and a computer program that can organize

and store these uploaded business cards to files.

 We would also like to incorporate a picture to be transferred along with a business

card

 Another area we would like to work on would be to reduce power consumption

and increase lifetime of the device by using sleep mode when not in use.

31

References

1. UltraCAD Design, Inc. (n.d.). Ipc trace/temperature charts. Retrieved from

http://www.ultracad.com/ipcchart.htm

2. Atmel. (n.d.). 8-bit avr microcontroller with 4/8/16/32k bytes in-system programmable

flash. Retrieved from http://www.atmel.com/Images/doc8161.pdf

3. Team Arduino. (2008, 08 15). Original arduino mini design by team arduino. Retrieved

from http://arduino.cc/en/uploads/Main/Arduino-Pro-Mini-schematic.pdf

4. Sparkfun Electronics. (n.d.). Arduino pro mini 328 - 3.3v/8mhz. Retrieved from

https://www.sparkfun.com/products/9220

5. Roving Networks Wireless For Less. (2009, 11 21). Roving networks bluetooth product

user manual. Retrieved from

https://www.sparkfun.com/datasheets/Wireless/Bluetooth/rn-bluetooth-um.pdf

6. Arduino. (n.d.). Arduino pro mini. Retrieved from

http://arduino.cc/en/Main/ArduinoBoardProMini

7. Microchip. (n.d.). 256k i2c cmos serial eeprom. Retrieved from

http://ww1.microchip.com/downloads/en/DeviceDoc/20001203T.pdf

8. Sparkfun Electronics. (n.d.). Led current limiting resistors. Retrieved from

https://www.sparkfun.com/tutorials/219

9. Electronics Club. (n.d.). Light emitting diodes (leds). Retrieved from

http://electronicsclub.info/leds.htm

10. MicroBatteryClub. (n.d.). Lithium manganese dioxide battery cr2477 data sheet.

Retrieved from http://www.sony.net/Products/MicroBattery/cr/pdf/cr2477.pdf

11. Institute of Electrical and Electronics Engineers, Inc. (2012). IEEE Policies. Retrieved

from http://www.ieee.org/documents/ieee_policies.pdf

A1

Appendices

A. Requirements & Verifications

REQUIREMENTS VERIFICATIONS MET?

Power Supply

1. The button cell batteries need to

provide a stable voltage of to the

Arduino board

a) The batteries must provide

the Arduino RAW input pin

with a voltage between 3.5-

12V, which it can regulate to

3.3V.

2. The Arduino’s on-board voltage

regulator needs to output a stable

voltage from its VCC pin

a) A regulated 3.3V must be

output from the Arduino VCC

pin to the other circuit

components

1. Measure the voltage across the

battery using a multimeter.

a) We expect the power supply

to input 6 ± 0.5V when the

batteries are fully charged.

2. Measure the voltage out of the

Arduino VCC pin using a

multimeter.

a) We expect the multimeter to

read 3.3 ± 0.2V while the

input voltage on the Arduino

RAW pin is between 3.5-

12V.

NO

YES

Manual Switches

1. Should output a logic LOW (0 ±

0.3V) when not pressed.

2. Should output a logic HIGH of

(3.3 ± 0.5V) when pressed.

1. Connect terminals Vcc and GND

to 3.3V supply and ground

respectively. Using a multimeter,

measure the output voltage when

switch is not pressed.

2. Using a multimeter, measure the

output voltage when switch is

pressed.

YES

YES

A2

Accelerometer

1. Functions properly when

powered by regulated 3.3V

output from Arduino

a) The X and Y accelerometer

outputs should sense the

acceleration due to gravity

when the chip is held

stationary on their respective

axes.

b) The X and Y outputs of the

accelerometer should sense

acceleration due to motion on

their respective axes.

2. Should correctly output data at a

sufficient number of

measurements per second (100

Hz), in order to detect a

handshake from the use

a) The capacitor attached

between the accelerometer’s

XOUT or YOUT and GND

should set the sample

frequency to 100 Hz ± 25%.

[2]

1. Use a multimeter to verify that

the voltage on the

accelerometer’s VCC pin is in the

required range of 1.8-3.6V

a) While powered, connect the

X output to the oscilloscope

and orient the

accelerometer’s X-axis

parallel to gravity. Verify

that the oscilloscope is

reading a set value when the

accelerometer is held

stationary. Do the same for

the Y output.

b) Move the accelerometer in

the X and Y directions while

viewing their outputs on the

oscilloscope. Their outputs

should oscillate around their

offset (from gravity)

corresponding to motion on

their axes.

2. Connect sensor output pin to

A0/A1 on the Arduino and write

software to print the data the

Arduino is receiving from the

accelerometer on the computer

monitor.

a) If the frequency of samples

is too low then decrease the

value of the capacitor

between XOUT or YOUT and

GND until the samples are

being output at 100 Hz ±

25%.

YES

YES

A3

Microcontroller

1. The ATmega328P chip should

function appropriately when the

voltage supply on the Arduino’s

RAW pin is in the range 3.5V –

12V.

a) The logic high output should

be 3.3V ± 0.5V with a logic

low of 0V ± 0.5V.

2. Required to correctly detect

when a handshake has occurred

by using mock data from it’s

Analog Input pins AO and A1

a) The Arduino must not detect

a “false handshake” and

initiate unwanted data

transfer from this mock input

data

3. Microcontroller should complete

communications based on which

manual push button switches are

pressed

a) If the TRANSMIT switch is

pressed then data should be

sent to the serial input of the

Bluetooth

1. Supply RAW pin with a voltage

of 6V. Verify the Arduino chip

with a simple test code setting

one digital output HIGH and

another one LOW.

a) Connect multimeter to the

output of the chip and verify

that the output high is 3.3V ±

0.5V and output low is 0V ±

0.5V.

2. Write a software algorithm to

process the mock data. Hook up

a simple resistor and LED

between an Arduino digital

output pin and GND. Turn the

LED on when the algorithm

detects a handshake from the

user.

a) Test this algorithm by

inputting data created to

simulate the accelerometer

data when a user is wearing

it. Verify the LED only turns

on during a handshake.

3. Tie the switch inputs to the

Arduino to either HIGH or LOW

and have the Arduino detect a

mock handshake to initiate

communication

a) When the TRANSMIT

switch is pressed view the

microcontroller output to the

Bluetooth on the computer

and verify that it matches the

mock data to be sent

YES

YES

YES

A4

b) If the RECEIVE switch is

pressed the microcontroller

should take data input from

the Bluetooth and send it to

the external memory

4. After data transfer between two

devices is finished end

connection between Bluetooth

modules.

b) When the RECEIVE switch

is pressed view the

microcontroller output to the

external memory on the

computer screen and verify

that it matches the mock data

input from the Bluetooth

4. Check that after communication

between devices is over the

blinking LED on board the

Bluetooth module turns off,

signaling the connection is over.

YES

Bluetooth

1. The Bluetooth Mate Silver

should function properly when

supplied with the regulated 3.3V

from the Arduino supply.

2. The Bluetooth modules should

be able to communicate without

error when located within a

range of 0.2-5m.

a) Bluetooth Module can

correctly and efficiently

(<2s) transmit data from

these distances

b) Bluetooth Module can

correctly and efficiently

(<2s) receive data from these

distances

1. Use a multimeter to measure the

voltage on the Bluetooth’s VCC

pin and verify that it is between

3.3-6V.

2. With Bluetooth Module kept

0.2m, 1m, 3m, and 5m away

from the computer’s Bluetooth,

establish connection between the

two modules:

a) Transmit 200 bytes of mock

data from Bluetooth module

to the computer’s Bluetooth.

Verify that the correct data is

transmitted at each distance

by viewing the received data

on the computer screen.

b) Receive 200 bytes of mock

data from the computer’s

Bluetooth to the Bluetooth

Module. Verify that the

correct data is received at

each distance by viewing the

received data on the

computer screen.

YES

YES

A5

External Memory

1. The external memory should

function properly when powered

with regulated 3.3V output from

Arduino.

a) When performing a write

operation the data should be

stored in the correct address

which is specified by the

address byte

b) When reading from a

memory address the correct

data should be printed to the

computer screen

1. Use a multimeter to test that the

input voltage is within the

required range (2.7-5.5V)

a) Testing code will send

known random data to be

written to specified external

memory addresses

b) Will use software to read

data contents from these

addresses and display it on

the computer monitor to

verify that the memory read

and write operations are

functioning properly.

YES

Battery Life Indicator

1. The Battery Life Indicator

should properly detect when the

voltage on its input falls below

the reference threshold

a) The blue LED on the output

of the Battery Life Indicator

should turn on when the

batteries are low (~15%

charge remaining)

1. Provide the Battery Life

Indicator circuit with a range of

sample input voltages and test

the output of the red LED

a) Use a multimeter to sweep

the battery input voltage

from 6V to 2V in increments

of 0.1V. Verify that the red

LED turns on when the input

voltage is about 4.5V.

YES

B1

B. PCB Layouts and Schematics

B.1 Lateral Side PCB

Figure 20: Lateral Side PCB Layout

Figure 21: Lateral Side PCB Schematic

B2

B.2 Medial Side PCB

Figure 22: Medial Side PCB Layout

Figure 23: Medial Side PCB Layout

C1

C. Microcontroller Code

In the interest of space, we uploaded all the necessary code to “.txt” files on our

project page.

C.1 Main Device Code

C.2 Memory Read Code

