E-music Performance System

Team #6:
Hans Banerjee and William Karcher
TA: Kevin Bassett

ECE 445 Senior Design
April 26, 2013
Purpose

- Eliminate printing costs for marching bands by making electronic flipfolder at a reasonable price
- Make managing large repertoires of music easier by making music easier to add, delete, and organize
- Facilitate conductor-performer communication by enhancing visual cues
- Cut down on time between switching songs
Features

- TFT screen displays electronic sheet music
- MicroSD card memory to store electronic music files
- Wireless remote to allow conductor to transmit visual cues and/or sheet music to performers
- Push-button interface for page turning in-performance
- LED Metronome for practicing
- AA Rechargeable Battery powered
- Central controller interface with PC
Top Level Block Diagram

- Laptop and Wireless Transmitter
- SD Memory
- User Input
- LED Metronome
- Power Supply
- Receiver
- TFT Display
- PSoC
Display Hardware

• Original Plan: Use E-Ink Display
 – Sunlight Readable
 – Low Power Usage
 – Holds state when powered off

• Problems
 – Expensive ($100+)
 – Displays and Development Tools not made available to students
Display Hardware

• Solution: TFT Display
 – Hantronix HDA700L-2S ($55)
 – 7” diagonal, comparable to flipfolder
 – Sufficient Resolution (800 x 480)
 – Simple 40 pin TTL interface

• Display software still programmed as if slower E-ink display was used
Display Hardware

• Drawbacks of TFT display
 – Loss of Sunlight Readability
 – Consumes more power
 – Backlighting is essential, requires higher voltage than digital components
 – 18-bit RGB Color Display is unnecessary, only used grayscale
Memory Hardware

- 4GB MicroSD card and surface mount PCB connector ($7)
 - 1 page of music = 1-bit 800 x 480 bitmap = 47 KB
 - Easily connected to computer to load music
 - Simple interfacing to microcontroller via SPI interface
Wireless TX/RX

- Receiver: XB24 ($19)
- Transmitter: XBP24 ($32) connected to PC via FTDI
- Transmitter has listed range of 1 mile
- Transmitter can send packets of up to 100 bytes at a time to receiver via UART
User Input and LED Metronome

- **User Input**
 - 6 tactile switches located on left side of device, plus main power switch on back
 - Used to change pages, bring up music selection menu, and toggle metronome

- **LED metronome**
 - LED on right side of device flashes at adjustable number of beats per minute
 - Operated in current sink mode, tied to high current pin on microprocessor
Power Supply

- 4 AA batteries and 3.3 V linear regulator supply power to all digital components
- Boost Converter provides 10 V to display backlight
Power Budget

<table>
<thead>
<tr>
<th>3.3 V Component</th>
<th>Typical Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>200 mA</td>
</tr>
<tr>
<td>Receiver</td>
<td>50 mA</td>
</tr>
<tr>
<td>Memory</td>
<td>30 mA</td>
</tr>
<tr>
<td>Processor</td>
<td>10 mA</td>
</tr>
<tr>
<td>User Input and LED</td>
<td>20 mA</td>
</tr>
<tr>
<td>Total</td>
<td>310 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 V Component</th>
<th>Typical Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backlight</td>
<td>160 mA</td>
</tr>
</tbody>
</table>

Energy Input = 1.2 V * 2500 mAh
= 3000 mWh per battery
= 12000 mWh

Power Usage = 2623 mW

Battery Life = 4.57 hours
Cypress PSoC

- Expensive as a microprocessor, cheap as system ($10)
- Capable microprocessor
- Digital blocks
 - Fast hardware prototyping
 - Adaptable to different display methodologies
Display Blocks
Display Blocks
Display Blocks
Software

- **Init**
 - **Menu idle**
 - **Receive data**
 - **Display Interrupt**
 - **Handle DMA For display**
 - **Handle button/received cmd**
 - **Display music**
 - **SD card**
Cypress DevBoard Interface

- Simple PCB to connect display, SD card, and Xbee to PSoC 5 Development kit
- Kit provides power to components, user I/O, and can be programmed via USB input
- Provided a way to test display and memory software before migration to final hardware

Source: cypress.com
Cypress DevBoard Interface

Port E Schematic

Hardware Interface Schematic

Picture
Dev Board Testing

- Easy debugging with LCD character display
- Character display made menu easier to make
- Platform usable for spring football game
Sample Sheet Music
Hardware Design Decisions

- Make 2-bit grayscale possible
 - Improves image quality, especially with scanned music
- Remove boost converter
 - Small, hard to solder, leads underneath IC
 - Inefficient conversion
 - Display backlight tolerates 8-12 Volts
 - Solution: Use 9 V battery
New Power Budget

3.3 V Component

<table>
<thead>
<tr>
<th>Component</th>
<th>Typical Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>200 mA</td>
</tr>
<tr>
<td>Receiver</td>
<td>50 mA</td>
</tr>
<tr>
<td>Memory</td>
<td>30 mA</td>
</tr>
<tr>
<td>Processor</td>
<td>10 mA</td>
</tr>
<tr>
<td>User Input and LED</td>
<td>20 mA</td>
</tr>
<tr>
<td>Total</td>
<td>310 mA</td>
</tr>
</tbody>
</table>

Energy Input = $1.2 \text{ V} \times 2500 \text{ mAh}
= 3000 \text{ mWh per battery}
= 12000 \text{ mWh}

Power Usage = 1023 mW

Battery Life = 11.7 hours

9 V Component

<table>
<thead>
<tr>
<th>Component</th>
<th>Typical Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backlight</td>
<td>160 mA</td>
</tr>
</tbody>
</table>

Energy Input = $9 \text{ V} \times 600 \text{ mAh}
= 5400 \text{ mWh}

Power Usage = 1440 mW

Battery Life = 3.75 hours
Hardware Design Decisions

- Send Final PCB to Sunstone for fabrication
 - Lots of fine pitch components (PSoC, display connector, JTAG connector)
 - Plated vias and through holes

- Casing is necessary
 - Added protection and neatness worth the extra time
Casing

- Serpac Clear Case: 6.88” x 4.88” x 1.40”
- Display mounted on front panel, batteries and PCB on back
- 5 panel mount buttons and 1 toggle switch (backlight) on left
- 1 red LED on right
Final Schematic
Final Board
Finished Reader Device
Final Unit Cost

<table>
<thead>
<tr>
<th>Reader Components</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFT Display, ribbon cable, and board connector</td>
<td>$60.00</td>
</tr>
<tr>
<td>MicroSD card and socket</td>
<td>$7.00</td>
</tr>
<tr>
<td>XB24</td>
<td>$19.00</td>
</tr>
<tr>
<td>PSoC 5 and programming conn.</td>
<td>$12.00</td>
</tr>
<tr>
<td>PCB</td>
<td>$35.00</td>
</tr>
<tr>
<td>Case</td>
<td>$10.00</td>
</tr>
<tr>
<td>Batteries, holders, and voltage reg.</td>
<td>$8.00</td>
</tr>
<tr>
<td>Buttons, LED, resistors, capacitors</td>
<td>$5.00</td>
</tr>
<tr>
<td>Total</td>
<td>$160.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmitter Components</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>XBP24</td>
<td>$32.00</td>
</tr>
<tr>
<td>FTDI cable</td>
<td>$20.00</td>
</tr>
<tr>
<td>Voltage regulator and capacitors</td>
<td>$2.00</td>
</tr>
<tr>
<td>Total</td>
<td>$54.00</td>
</tr>
</tbody>
</table>
Testing the Final Device

• Successes
 – Clear Stable Image on Display
 – Memory Read/Write functions as intended
 – Menu displays on screen, and is navigable by buttons
 – Metronome blinks correctly, and rate can be changed

• Failures
 – Wireless capability

• Possible Explanations
 – PC communicates with transmitter and transmits correct signal
 – Receiver and transmitter hardware/firmware functional
 – Probable Cause: Software interface with microprocessor
Summary

• E-Reader device successfully built, with some modification to original design
• Transmitter hardware successfully built
• Core software functions properly
 – Music display, menu navigation
• Wireless not functioning, due to software interface with PSoC
Future Work

• Improve Battery Life
 – Implement Boost Converter
 – Add variable resistor, so backlight can be dimmed
 – Get E-Ink display

• Improve Case
 – Lighter, thinner casing
 – Make battery easier to replace
 – Anti-reflective coating

• Include music education tools (e.g. tuner)
Acknowledgements

• ECE Parts Shop Staff
• ECE Machine Shop Staff
• IEEE and HKN
• Joseph Shim
• Professor Carney
• Kevin Bassett, and all the ECE 445 TA’s
Questions?