

Solar Powered Beach Chair

Andrew Gazdziak
Emily Mazzola
Damen Toomey

Introduction

- Uses the power of the sun to provide the user with a USB ready charging station
- The Solar Powered Beach Chair powers your phone, your tablet, and keeps your drink cool all without you having to worry about sand and water interfering with your electronics!

Features and Benefits

Features

- On/Off switch
- Three USB charging ports
- Drink Cooler
- 50 W solar panel integrated on the chairs canopy
- Durable, water resistant, and sandproof to ensure longevity

Benefits

- Charge devices while soaking up the sun
- Solar canopy provides the user with shade
- Backpackable for easy transport
- Environmentally friendly

How it Works

Solar Source

Requirement

• To ensure maximum power from the solar panel, there must be $\frac{1kw}{m^2}$ of insolation available from a solar source

Verification

• Use isws.illinois.edu to ensure that the insolation present is at least $\frac{1kw}{m^2}$

Weather Information from the Illinois State Water Survey

Temperature: 54° F
Wind Speed: 9 mph (Gusts to 17 mph)
Wind Direction: 290° (From the W)
Precipitation: 0 in.
Relative Humidity: 36%
Dew Point: 27° F
Barometric Pressure: 30.17 in. sea level pressure
Solar Radiation: 363 Watts / m²
4" Soil Temperature: 58° F
8" Soil Temperature: 53° F
Visibility: 10 mi.

Source: http://www.isws.illinois.edu/data/wxinfo.asp

Solar Panel

Requirement

 Solar Panel must produce an output voltage of 5 V -21.6 V and an output power of at least 50W

Source: bing.com/fluke+meter

Verification

 Use a Fluke meter to measure the output power and output voltage.

Source: http://www.sunshineworks.com/small-solar-panels-for-sale.htm

Safety Switch

Requirement

 When switch is off, no current reaches the load, and when switch is on, current reaches the load

Source: bing.com/rocker+switch

Verification

 Ensure phone does not charge when switch is in off position and does charge when switch is on

Converter

Requirement

 Output voltage must be between 4.75 V-5.25 V

Verification

 Use a voltage probe on the output capacitor and use an oscilloscope to verify that the voltage ripple is within 4.75 V-5.25 V

Determining Inductor Size

Input Voltage Range	5V - 21.6V
Output Voltage Range	4.75V - 5.25V
Output Load Range	0W - 50W

- $V_{in} = 12V$, $P_{in} = 50W$, $V_{out} = 5V$, $f_{sw} = 10 \text{ kHz}$
- Duty Ratio = $D = \frac{V_{out}}{V_{in}} = \frac{5V}{12V} = 0.417$
- Change in the Inductor Current = $\Delta I_{Lp-p} = 2 * I_{out}$
- $\Delta I_L = \frac{V_{in} V_{out}}{L} * DT = \frac{V_{in}(1-D)}{L} * DT$

•
$$L_{crit} = \frac{V_{in}(1-D)D}{2f_{sw}} * \frac{V_{out}}{P_{out}} = \frac{12(1-0.417)0.417}{2*10,000} * \frac{5}{50} = 14.59 \mu H$$

Current Waveforms

- $I_{c_{out}}$: Average current through a capacitor is zero
- I_{SW} : Switch on: $I_{SW} = I_L$
- $I_{c_{in}}$: Switch off: $I_{c_{in}} = I_{in} = 4.17A$

Switch on: $I_{c_{in}} = I_{in} - I_{sw}$

Determining Capacitor Sizes

Input Capacitor Calculation

- To extract the maximum power from the photovoltaic panel, it is desired to have the input voltage ripple below 1.00V_{p-p}.
- $\Delta V_{in_{p-p}} = \frac{\Delta Q}{Cin}$
- $\Delta Q = (1-D)T * 4.17A + 0.5 * 4.17A * \frac{1}{20}T$
- $C_{in} = \frac{\Delta Q}{\Delta V_{in_{n-n}}} = \frac{1.268 * 10^{-5}}{1} = 12.68 \ \mu F$

Time (μs)

Output Capacitor Calculation

- For proper USB operation, it is required to have the output voltage ripple of the converter to be below 0.5V_{p-p}.
- $\Delta Q = \frac{1}{2} * \frac{T}{2} * 10A = 1.25 * 10^{-5} C$
- $C_{out} = \frac{\Delta Q}{\Delta V_{out_{p-p}}} = \frac{1.25*10^{-5}}{0.5} = 25 \ \mu F$

Efficiency Data

Vin [V]	lin [A]	Pin [W]	D	Vout [V]	lout [A]	Pout [W]	Efficiency [%]
10.01	0.73	7.31	0.49	4.42	1.44	6.34	86.76
12.02	0.73	8.77	0.42	4.89	1.59	7.70	87.75
10.01	0.89	8.91	0.54	4.89	1.60	7.77	87.22
10.09	0.91	9.18	0.42	5.01	1.64	8.20	89.31
17.02	0.60	10.21	0.33	5.26	1.72	9.00	88.13
10.10	1.08	10.91	0.40	5.47	1.79	9.70	88.93
12.76	0.97	12.38	0.49	5.70	1.86	10.51	84.91

Controller

Requirement

 Control circuit produces the desired PWM switching signal with the correct duty ratio

Verification

 Connect the switching signal and gate driver signals to an oscilloscope.
 Vary the input voltage from 10-20V and ensure the duty cycle of the signals are correct.

Control Circuitry

- MSP 430
 Microcontroller
 - Ultra low power consumption
- Synchronous Rectification
- ~10.5kHz operation

Source: http://ph-elec.com/wp-content/uploads/2012/08/MSP-EXP30G21.jpg

Control Circuitry

PWM Switching Signal

Logic Flowchart

USB Ports 1 and 2

Requirement

Referring to the figure, when
Pin 1 has a voltage of 4.75 V 5.25 V, and Pin 4 is connected
to GND it is able to
successfully charge an iPod
and iPad

Pin		Description	
1	VBUS	Red	
2	D-	White	
3	D+	Green	
4	GND	Black	
Shell	Shield	Drain	

Source: USB.org

Verification

 Implemented USB on the chair and verified that it could charge a USB device

Apple Device Compatibility

Source: pinout.net

- Required for charging
- Non-Apple devices still compatible
- High power charging (10W)

Drink Cooler

Requirement

 Keep 12 oz. of water with a starting temperature of 40°-60° F within 5° F of its starting temperature for fifteen minutes when the ambient temperature is 70° F

Verification

 Use a waterproof digital food thermometer to measure the starting and final temperature of the water to verify that the change in temperature is within
 5° F after fifteen minutes

Source: coolitsystems.com

Drink Cooler (The Peltier Effect)

Source: http://www.tellurex.com/technology/peltier-faq.php

- Current flows between two conducting plates through a semiconductor pellet.
- The charge carries transfer the heat from one plate to the other.

Drink Cooler

T _{amb} =74°F				
$T_{START}(^{\circ}F)$	$T_{15}(^{\circ}F)$	ΔT (°F)		
40.1	44.6	4.5		
45.0	48.2	3.2		
50.9	53.2	2.3		
55.0	56.4	1.4		
56.4	57.6	1.2		
57.6	58.5	0.9		
58.5	59.3	0.8		
59.9	60.4	0.5		

Beach Chair

Requirement

 Can support the weight of the panel, does not exceed 35 lbs, is at rated water resistance and sandproofing of IP62

Verification

 Perform water and sand test to verify that the IP62 rating is achieved. Weigh the chair to confirm its weight does not exceed 35 lbs

Beach Chair

Mounted Solar Panel

Mounted Circuit Box

Mounted Drink Cooler

Added Backpack

Straps

Final Weight

- 28.6 lbs.

Weatherproofing

 Modified waterproof case while maintaining water and dust resistance.

Source: homedepot.com

Future Work

- Flexible Solar Panel
- Bus USB Configuration
- Built in Speaker and Fan
- Adjustable Canopy
- Improve efficiency through better heat sinks

Source: http://www.powerfilmsolar.com/sitevizenterprise/website/

Wholesale Parts Cost

	Unit Price	Quantity	Cost
Beach Chair	\$15.00	1	\$15.00
Solar Panel	\$41.59	1	\$41.59
Waterproof Case	\$7.80	1	\$7.80
Resistors	\$0.04	18	\$0.70
Ceramic Capacitor	\$0.00	1	\$0.00
Metal Film Capacitor	\$0.05	2	\$0.11
Electrolytic Capacitor	\$0.20	5	\$1.02
Mosfet	\$1.48	2	\$2.97
Inductor	\$5.65	1	\$5.65
USB Connectors	\$0.71	3	\$2.12
High Side Gate Driver	\$1.37	1	\$1.37
USB Extention Cord	\$1.80	3	\$5.39
3.3 V DC/DC	\$3.75	1	\$3.75
MSP430 Launchpad	\$4.30	1	\$4.30
MSP430 Chip	\$0.25	1	\$0.25
Diode	\$0.08	3	\$0.25
Lowside Gate Driver	\$0.55	1	\$0.55
PCB	\$0.10	12	\$1.16
Total:			\$93.97

Total Cost of Materials: \$93.97

Labor/Chair: \$30.00

Overhead/Chair: \$30.00

• Total: \$153.97

 Customers willing to pay \$150.00

 Profitability reached selling 1000 chairs per year

Questions?

