Smart Cart An Enhanced Shopping Experience

Team 41 Kartik Sanghi Nikhil Raman Rohan Singh

0

Introduction

- The Smart Cart provides an efficient shopping checkout system cutting down waiting times at the counters
- The system combines commonly available hardware to provide a cost effective solution for our sponsors Wal-Mart

Features

- Compatibility with various barcode systems
- Real time weight monitoring to detect pre-payment theft
- Robust communication system between cart and store to detect non-payment theft
- PC/LCD Serial Interface
- Modular and expandable design

The Smart Cart

System Overview

- Hardware
 - Alarm buzzer circuitry
 - PC/LCD Interface
 - FlexiForce weight sensor circuitry
 - ZigBee wireless modules
- Software
 - Arduino control for barcode reading and matching
 - Arduino program for weight monitoring
 - Alarm triggers

Block Diagram

Hardware Overview

- FlexiForce circuitry
 - Takes non linear sensor output and converts it to a linear input at the Arduino
- Alarm buzzer
 - Sets of an alarm upon receiving a defined signal from the Arduino
- ZigBee modules
 - Take certain data from the Arduino microcontroller serial output and communicate the data wirelessly

FlexiForce Sensor Circuitry

- FlexiForce Sensor
- LM324N Single Rail Op-Amp
- Sends output to Arduino

FlexiForce Sensor Circuit Schematic

ZigBee (Xbee) Wireless Modules

- Takes serial output from Arduino
- Establishes serial wireless communication with second module
- Sends output to Arduino

ZigBee Module Schematic

Factors Affecting ZigBee Communication

- Background noise
- Other ZigBee networks
- Wi-Fi and Bluetooth

Antenna Comparison (Xbee)

Xbee Testing Results (Error)

Line Status	Assert		Close	Assemble	Clear	Show
CTS CD DSR	DTR 🔽 RTS I	✓ Break □	Com Port	Packet	Screen	Hex
tetesting						
testing						
testing						
testing						
testing						
testing						
testing						
tetesting						
testing						
testing						
testing						
tetesting						
testing						
testing						
testing						
testing						
testing						
testing						
tetesting						
testing.						
testing						
testing						
testing						
testing						
testing						
tetesting						
testing.						
testing						
testing.						
Contraction of the second						

Xbee Testing Results (Error-Free)

Line Status	Assert	S 🔽 Break 🕅	Close Com Port	Assemble Packet	Clear Screen	Shov Hex
.testing						-
.testing						
.testing	e					
.testing						
.testing						
.testing						
.testing	- C					
.testing						
.testing	87 - C					
.testing						
.testing	· · · · · · · · · · · · · · · · · · ·					
.testing						
.testing						
.testing						
.testing						
.testing						
.testing	- C					
.testing						
.testing						
. testing						
testing						
testing						
testing						
testing						
tocting						
testing						
testing						
testing						
. lesting						

FlexiForce Sensor Operation

Force (lbs)

Factors Affecting Sensor Sensitivity

- Conditioning
- Feedback resistor
- Object placement

Sensor Recommendations

- Condition sensor with 110% of rated weight
- Place sensor on flat surface
- Object must be on sensitive area
- Place object on a puck to concentrate weight

Why Condition the Sensor?

- Linearity errors
- Greater hysteresis
- Greater response

time

TYPICAL PERFORMANCE			
Linearity Error	<±3%		
Repeatability	<±2.5% of full scale		
Hysteresis	<4.5% of full scale		
Drift	<5% per logarithmic time scale		
Response Time	<5 microseconds		

Software Description

- Arduino Software
 - Barcode read
 - Product Info Retrieval
 - Weight monitoring
 - Xbee module control
 - Alarm triggers

Barcode Read

- Scanner connected to Arduino through USB host Shield
- USB host shield uses SPI interface which requires digital I/O pins 8, 10, 11 and 12 of Arduino
- Arduino receives data from the scanner through a UART serial communication port
- The UART transmits the bits in a sequential fashion

Barcode Read Output

No. A	COM5
l	Start
н	BM Init
	Addr:1
	BM configured
	Poll:6
	Poll:FF
1	Poll:1
	Poll:1
	Poll:FF
٩	Poll:1
	2900471280605 Poll:FF
	Poll:FF
	Poll:1
	Poll:1
-	Poll:1
l	Poll:1
	014633196368 Poll:FF
1	Poll:1
1	Poll:1
1	Poll:1
1	X0009RK5V9 Poll:FF
1	Poll:1
J	Poll:FF
1	Poll:1
1	088110070052 Poll:FF
1	Poll:1
	Poll:FF
1	Poll:1
1	Poll:1
1	Poll:1
I	Poll:1
l	00523800 Poll:FF
J	Poll:FF
I	Poll:1
J	Poll:1
l	Poll:1
I	Poll:1
ļ	Poll:FF

Product Info Retrieval

- Use SD card to store product database
- Store current barcode scanned on Arduino EEPROM
- Compare the scanned barcode with barcodes stored in the database
- If compare successful, display product's attributes

Product Retrieval Output

13026229140709 ainitializing SD cardinitialization done. found Name: Notebook Price:\$1.60	So COM5	-
Name: Notebook Price:\$1.60	13026229140709 ainitializing SD cardinitialization done. found	
	Name: Notebook Price:\$1.60	

Weight Monitoring

- Theft detection Criteria :
 - Weight on cart > Total Scanned Weight
- If unscanned product is placed on the cart, then the sensors detect a weight mismatch which sets of the buzzer
- The buzzer doesn't stop until the weight discrepancy is fixed which requires scanning the product or removing it from the cart

Alarm Trigger

void setup() { pinMode(4, OUTPUT); // set a pin for buzzer output }

```
void loop() {
    buzz(4, 2500, 500); // buzz the buzzer on pin 4 at 2500Hz for 1000 milliseconds
    delay(1000); // wait a bit between buzzes
}
```

```
void buzz(int targetPin, long frequency, long length) {
    long delayValue = 1000000/frequency/2; // calculate the delay value between transitions
```

```
long numCycles = frequency * length/ 1000; // calculate the number of cycles for proper timing
```

```
for (long i=0; i < numCycles; i++){ // for the calculated length of time...
digitalWrite(targetPin,HIGH); // write the buzzer pin high to push out the diaphram
delayMicroseconds(delayValue); // wait for the calculated delay value
digitalWrite(targetPin,LOW); // write the buzzer pin low to pull back the diaphram
delayMicroseconds(delayValue); // wait againf or the calculated delay value
```

Alarm Buzzer Circuit

- Takes an input from Arduino
- Buzzer sets off upon input
- Noise determined by Resistor connected to the buzzer
- Higher resistance gives lesser noise but low resistance can damage buzzer due to high current

Alarm Buzzer Schematic

Future Hardware Developments

- Improved battery life
 - Lower power barcode scanner
 - Set up Xbee on lower power rating
- Alternative sensor
 - Find a sensor with fewer sensing restrictions
 - Better high frequency characteristics

Future Software Developments

- Improved User Interface
 - Responsive to user input
 - More than just a display
- On cart payment Processing
 - Possible smartphone application
 - If possible, a hardware solution

Challenges Faced

- Limited scope of Arduino
 - Lack of interfaces with various protocols
 - Integration made difficult
- FlexiForce sensor
 - Limited sensing area
 - Non-linear output

SWOT Analysis

- Strengths
 - Modular design, expandable
 - Cost effective
 - Real time
- Weaknesses
 - Difficult integration
- Threats
 - RFID tag systems
 - Smartphone applications
- Opportunities
 - Fast lane for checkouts
 - Smart Cart

Credits

- Professor P. Scott Carney
- Justine Fortier, our TA
- Google

Thank you

• Questions???