

SMART CART – AN ENHANCED
SHOPPING EXPERIENCE

By

Nikhil Raman

Kartik Sanghi

Rohan Singh

Final Report for ECE 445, Senior Design, Spring 2012

TA: Justine Fortier

01May 2012

Project No. 41

ii

Abstract

This report explains in detail the functional design for the Smart Cart device prototype built to

make the shopping experience time efficient from the shopper’s point of view and cost efficient

from Wal-Mart’s point of view.

The device essentially maintains a real time list of details of cart contents and provides a

convenient payment solution when shopping is finished which eliminates the long waiting

periods at the checkout counters. Our calculations have shown that the overall shopping time is

considerably reduced through the use of the Smart Cart device.

iii

Contents
1. Introduction ... 1

1.1 Project Motivation .. 1

1.2 Project Objectives ... 1

1.3 Project Modules .. 2

1.3.1 Arduino Uno .. 2

1.3.2 Arduino ZigBee Shield with ZigBee Module .. 2

1.3.3 Alarm System ... 3

1.3.4 USB Host Shield .. 3

1.3.5 FlexiForce Sensor .. 3

1.3.6 Barcode Scanner .. 3

1.3.7 TFT Touch Shield .. 3

2. Design ... 4

2.1 Design Procedure .. 4

2.1.1 Microprocessor .. 4

2.1.2 FlexiForce Sensor Circuitry ... 4

2.1.3 Alarm Buzzer Circuitry .. 5

2.1.4 ZigBee Network Setup ... 5

2.1.5 Software Design for Barcode and LCD Control .. 6

2.2 Design Details ... 6

2.2.1 FlexiForce Sensor Circuitry ... 6

2.2.2 Alarm Buzzer Circuitry .. 7

2.2.3 ZigBee Network Setup ... 8

2.2.4 Software Design and Algorithms ... 9

3. Design Verification ... 10

3.1 Testing Procedure and Results .. 10

3.1.1 Power Supply ... 10

3.1.2 FlexiForce Sensor .. 11

3.1.3 ZigBee Module Performance ... 11

3.1.4 Software Testing .. 12

3.1.5 System Latency .. 13

3.2 Testing Conclusions .. 13

4. Costs and Benefits ... 14

iv

4.1 Parts .. 14

4.2 Labor ... 14

4.3 Wal-Mart Budget per Store ... 15

4.4 Time Saving Estimate per Shopper ... 16

5. Conclusion .. 17

5.1 Accomplishments .. 17

5.2 Challenges ... 17

5.3 Ethical considerations ... 17

5.4 Future work ... 17

6. References ... 18

Appendix A Requirement and Verification Table ... 19

Appendix B Arduino Code .. 21

B1 Barcode Scanning .. 21

B2 Barcode Compare .. 23

B3 ZigBee and Buzzer Control ... 26

1

1. Introduction
We designed and built a device which maintains a real time list of contents in a shopping cart. The

barcodes of the items placed in the cart were scanned and the corresponding data was then made available

to the shopper. In order to prevent theft, we included a weight monitoring system based on FlexiForce

weight sensors to compare weights between the product database and weight on cart. Although we were

unable to implement a payment system due to time constraints, it can be added on later since the wireless

communication setup already present can easily be leveraged.

1.1 Project Motivation
The smart cart will be an all in one cart. It will allow the user to keep track of the total cost as and when

items are added to the cart. It will also communicate wirelessly with an in store component to make easy

payments on the go. In the case of any ambiguity, the shopper will also have the option of going up to the

checkout counters. This new system would reduce the long wait times at the checkout counters, increase

the efficiency of the checkout procedure, and would provide the shopper with up to date cost and total

information which makes the whole experience more convenient.

1.2 Project Objectives
This project aims to design a system which reads the barcode on each item that is placed in the cart and

updates the product information which is available to the shopper. Pressure/Weight sensors will be used

to detect the presence of new items in the cart.

The barcode scanner extracts the barcode which is transmitted to the microcontroller through an USB

connection. The microcontroller reads information from a SD card inserted into the microcontroller. This

SD card has all the information about the product. This data is then formatted and presented to the user

for review and confirmation on a LCD screen.

New items in the cart will be detected by tracking the change in the output of pressure sensors. The same

sensors will be used to detect when items are removed from the cart. A program will be implemented to

confirm the removal from the shopper’s shopping cart. Another program will be implemented to work as

an anti-theft mechanism to prevent the shopper from leaving without a successful payment.

2

1.3 Project Modules
Figure 1 shows the functional block diagram for our device:

Figure 1: Block Diagram

We approached our design in a modular fashion. The various modules with their purpose and

functionality are as follows:

1.3.1 Arduino Uno

Arduino Uno is the primary microcontroller of the whole system. It is based on the Atmel ATMega328

microprocessor. The Uno will be used for data processing, controlling the ZigBee shield, LCD shield,

reading data from the alarm system and for reading data from the FlexiForce sensor.

1.3.2 Arduino ZigBee Shield with ZigBee Module

ZigBee shield provides an easy technique to interface the ZigBee module with the Uno. It allows easy

access to well-known wireless libraries that come with the Arduino.

3

The ZigBee module provides the device with the wireless communication capabilities that will be used as

part of the anti-theft mechanism and payment process. The module will constantly transmit a pre-defined

pulse as long as no payment is processed. The pulse changes to hold different information once the

payment is processed. Both these pulses are received by the same module present in-store.

The Uno connected to the in-store component decodes the data and transmits a pre-defined pulse in

response. Based on the information encoded in the in-store transmission, the on-cart Uno sends

information which would help trigger the alarm system.

1.3.3 Alarm System

When the cart reaches a certain distance to the in store component and if there is any discrepancy between

the weight of the cart and the weight of the scanned items, the alarm system would trigger. There would

be a sound something like a buzzer which would indicate a theft.

1.3.4 USB Host Shield

Since there is only one USB-B port available on the Uno, a USB Host Shield will be used in order to

fulfill barcode scanning requirements for the component that is not connected directly to the Uno. The

barcode scanner could be easily connected to the Arduino through this host shield.

1.3.5 FlexiForce Sensor

The sensor will be used to detect the presence of new items and also notify the shopper if certain items

have not been scanned. Therefore, if the sensor shows a weight change of 10lbs. and the products scanned

only total up to 8lbs., the shopper will be notified immediately about the discrepancy. Similarly, if items

are removed, the sensor will show a negative change which the Uno will interpret and notify the shopper.

1.3.6 Barcode Scanner

The barcode scanner is the source of all the product data that will be available to the Uno. It is a normal

scanner which transmits the data through USB port to the Uno. The Uno will in turn look up the code on

the database and put out this data on the LCD screen.

1.3.7 TFT Touch Shield

The touch shield integrates with the Uno seamlessly. It comprises of a 2.8” TFT LCD touch screen and

micro SD slot for additional data. The card will be used to hold the product database. The shield comes

standard with LCD driver libraries that will work easily with the Uno. The data to the screen will come

from the Uno over which the shield connects. The user will interact with the device through the touch

screen. The user will be able to perform actions such as delete items, view the items already in the cart,

etc.

4

2. Design

2.1 Design Procedure
This section intends to provide insight into how we chose the circuits and components that we used in the

final device prototype.

2.1.1 Microprocessor

At the initial design stage, we considered the microcontrollers listed in Table 1.

Table 1: Microcontroller Trade-Offs

Microcontroller Benefits Drawbacks

Arduino ATMega328 Familiar environment, simple

coding, minimal pin mapping,

strong support ecosystem

Very few pins available for

general use, not very robust

TI MSP430 Greater flexibility, multiple pins to

allow same functions to occur

simultaneously

TI Assembly language

coding is difficult,

inefficient support system

PIC Easy to code Very rigid in usability,

suited to far simpler

applications

We chose to go with the Arduino development environment because the support ecosystem for the

Arduino is very strong, the IDE uses a C-programming based structure with which all us team members

were very comfortable and Arduino development did not require soldering any microprocessor packages

as we received a ready to use development board with defined pin mapping and easy to use libraries.

2.1.2 FlexiForce Sensor Circuitry

Figure 2 shows the FlexiForce sensor’s resistance with respect to the force applied to it

Figure 2: FlexiForce Resistance Variation

5

In order for the weight monitoring system to be accurate, it was crucial that the non-linearity in the sensor

output be suppressed or even better, removed. The purpose of the sensor circuitry that we built was to

eliminate this non-linearity.

We started the design by using the suggested MCP6004 single supply rail op-amp as our linearizing

device. The benefits of using the MCP6004 were that it was cheaper, provided good noise immunity and a

full 0 to +Vcc voltage swing at the output.

When we tested out our design using various feedback resistances, we noticed that the response time of

the overall system was considerably degraded in comparison to how the sensor worked individually.

Therefore, we concluded that the MCP6004 had poor mid to high frequency characteristics. To counter

this issue, we replaced the MCP6004 with the LM324N op-amp which had all the MCP6004 benefits and

also the added benefit of better high frequency characteristics.

2.1.3 Alarm Buzzer Circuitry

We started designing the alarm buzzer circuitry from scratch using in-lab components and a simple

speaker system that would amplify the sound signals that it receives. Some way into the design, we faced

multiple design challenges that included greater and more sophisticated filtering requirements and a far

greater PCB footprint than we had budgeted for. Therefore, we moved to a more simplistic design which

included a buzzer from the ECE parts shop.

The buzzer from the parts shop worked straight out of the box, but needed protection from high currents

to prevent its diaphragm from burning out. It also needed additional capacitive delays to be included if

we needed an intermittently beeping buzzer rather than a single non-stop tone. Therefore, based on the

delays included in the code that controlled the buzzer, we placed the appropriate resistors and capacitors

to provide a more robust RC circuit setup that would limit current and fulfill the capacitive requirements

of the alarm buzzer.

2.1.4 ZigBee Network Setup

A typical star type ZigBee network looks as shown in Figure 3.

Figure 3: ZigBee Star Network

We started with a set up where we had only routers and no end devices or coordinators. The issue with

this set up was that we could have point to point half duplex communication as long as all of the

6

parameters such as serial number, network ID and network channels had to be predefined. For a device

that might end up in production, such a setup is hugely inefficient as each device would have to be paired

with one other device leading to a multitude of devices and poor coordination.

To counter the problem, we set up the network with a coordinator and router. This setup works better

since only a network ID parameter needs to be defined and the coordinator handles the rest of the network

setup overheads.

2.1.5 Software Design for Barcode and LCD Control

The software requirements for the course were integrating the barcode scanner with the Arduino and

retrieving product information from database stored in SD card for the barcode scanned. The

corresponding product information is then displayed on the LCD screen. The barcode scanner was

connected to the Arduino through a USB host shield which provided the serial communication link

between the scanner and Arduino. The TFT LCD shield was chosen because it had a micro SD card

reader through which information from the card could be read by the Arduino and could also be written

back.

2.2 Design Details
This section serves to detail component choices for the circuit and the equations involved in calculation of

component values.

2.2.1 FlexiForce Sensor Circuitry

Figure 4 shows the circuit schematic that we used for the FlexiForce sensor.

Figure 4: FlexiForce Circuit Schematic

As we mentioned earlier, the resistance output is highly non-linear and the LM324N op-amp serves as the

linearizing device. Even as resistance is non-linear, the conductance of the sensor is highly linear. Using

an inverting op-amp configuration, we use the following equation:

VOUT = -VT * (RF/RS) (1)

7

From equation 1, we see that the op-amp configuration translates the non-linear resistance to the more

linear conductance. The feedback resistance was chosen so that the amplifier would provide unity gain at

the point where the sensor is fully loaded.

The specifications are listed below:

RS (unloaded) = 5MΩ (2)

RS (full stress) = 200kΩ (3)

We want Gain = 1 at full stress. Therefore, RF= 200kΩ (4)

The resultant output of the circuit is as shown in Figure 5.

Figure 5: FlexiForce Sensor Circuit Output

2.2.2 Alarm Buzzer Circuitry

Our code states that the buzzer has a certain intermittent delay between buzzes. Based on the buzzer

ratings, we chose to use an x ohm resistance.

The time constant of the RC circuit used to set up the delay. The RC circuit is set up as follows:

RBLEED = 110Ω (5)

1/RBLEEDCDELAY = Delay (6)

From Eq. (6), we get CDELAY = 1/ (RBLEED*Delay) F (7)

The alarm buzzer schematic is shown in Figure 6.

8

Figure 6: Alarm Buzzer Circuit Schematic

2.2.3 ZigBee Network Setup

Table 2 lists the criteria to set up a reliable point to point ZigBee network between two modules:

Table 2: ZigBee Coordination Criteria

Parameter Coordinator Router

PAN ID Arbitrary Same as coordinator

Destination High Byte Router Serial Number High Byte Coordinator Serial Number High

Byte

Destination Low Byte Router Serial Number Low Byte Coordinator Serial Number Low

Byte

The results of the configuration are shown in Figure 7.

Figure 7: Configuration Results for ZigBee Modules

9

2.2.4 Software Design and Algorithms

The Arduino UNO receives data from the barcode scanner through a UART serial communication port.

The UART takes bytes of data and transmits the individual bits in a sequential fashion. At the

microcontroller a second UART reassembles the bits into complete bytes.

Algorithm for Barcode scanning:

The barcode scanning algorithm is similar to a PS/2 style keyboard. As soon as the barcode is scanned,

the host shield reads every bit sequentially and the necessary ASCII conversion to each bit is performed.

As the read is completed the content is displayed on the Serial monitor. Considerable time delay between

each successive read and write is given so that any possibility of a bit being incorrectly read is eliminated.

As this procedure is completed for a particular barcode, the barcode is stored in the Arduino’s EEPROM

to help identify the product with our database. Various libraries for USB support were given in the

Arduino development center that helped to include the functionality of read and write by both the host

shield and the Arduino.

Algorithm for Barcode compare and display

Initially the barcode information from the Arduino’s EEPROM is retrieved and stored in an array. The

database is stored in the SD card in a .CSV format. The database contains all product information such as

name, price, barcode and weight. The file when read by an Arduino displays the information separated by

commas.

The Read() function of Arduino reads all characters up to the first comma and stores them in an array.

These characters are the barcode of the product. Then in a separate function the barcode read is compared

to the barcode scanned and if a match is found, the successive characters after the comma which include

the name and price corresponding to that barcode are displayed on the serial monitor.

Algorithm for Weight monitoring

The FlexiForce sensors on the cart give a particular voltage rating as and when any item is placed on

them. This voltage is then calibrated to a corresponding weight and is stored to provide the total actual

weight. This keeps updating as and when a new item is added. The weight of the item scanned is retrieved

from the database and is maintained separately to provide the total scanned weight. This keeps updating

as and when a new item is scanned.

The theft detection criteria is- Total actual weight > Total scanned weight. Thus upon the exit of the cart

if this criteria is met then a signal from the Arduino on the cart is transmitted through a TRX component

on the cart to an in-store component which triggers the buzzer to set off as a theft has been detected.

10

3. Design Verification
Since we designed our device in a modular manner, it was important that each module work individually

before integration. We therefore tested each module individually and this section contains a summary of

all the important test results.

3.1 Testing Procedure and Results
The following sections give a detailed explanation of the testing procedures and quantitative results for

each of the modules that were tested.

3.1.1 Power Supply

The operating voltage for the Arduino is 5V. The required input voltage is 7-12V which is provided to the

Arduino by two batteries of 3.7V each placed in series. Going below 5V will not shut off the Arduino

instantly but could make the entire design unstable. To get a good estimate for the battery life of the

operation the Arduino was connected to the scanner and TFT LCD shield. The current consumption of

these three devices is listed in Table 3.

Table 3: Power consumption of various components

Device
Active Current consumed

(mA)

Total power (W) (current *

5V)

Arduino 200 1

Barcode Scanner 100 .5

LCD screen 60 0.30

After adjusting the operating voltage to 5.2V, a set was data was recorded that showed the real operating

voltage available to the Arduino as time progressed. The data is tabulated in Table 4.

Table 4: Operation voltage of Arduino

Voltage (V) Time (Min)

5.2 0

5.2 16

5.2 34

5.1985 52

5.198 86

5.18 101

5.17 125

5.168 140

5.165 170

5.150 200

5.1492 230

Based on this data and assuming that adding more devices to the Arduino like XBee module will use up

more power, the operating voltage would go down below 5V in approximately 9-10 hours. Based on the

assumption that the cart will be used for 4 hours a day, the anticipated battery life came out to be 2-2.5

days. During the final stages of the testing when the entire design was integrated and the battery had to

11

support all the devices at once the design became very unstable after continuous use. Due to which we

concluded that the battery could last for 5-6 hours rather than 9-10 hours when using all the components

at once. Thus the battery would last for only around 1-1.25 days if the cart is still used for 4 hours a day.

If the cart usage is reduced per day then the battery can survive for 2-3 days.

3.1.2 FlexiForce Sensor

Since the sensors formed a part of the anti-theft mechanism, significant testing was performed on the

sensor circuitry to test response under various stresses. It was also important to ensure that all measured

weights were within a predefined 7-10% tolerance built in to the software.

Table 5 summarizes the data collected for various weights using the sensor circuitry.

Table 5: Measurement Results for FlexiForce Sensor

Actual Weight (lbs.) Measured Weight (lbs.) Percentage Error (%)

10 9.3 7

20 19 5

30 27 10

40 36 10

50 48 4

60 59 1.67

100 100 0

3.1.3 ZigBee Module Performance

Wireless communication capabilities of our device can be leveraged in the future for far greater

applications than the simplistic ones we have right now. However, it is imperative that the wireless

network be robust and efficient. In order to ensure this, we require low packet error rates and efficient

radiation patterns around the module antenna.

The packet error rates were tested using simple payload data consisting of “ABCD01234&%”. We ran the

same test 10 times and the packet error rates are summarized in Table 6.

Table 6: Error Rate Measurements for ZigBee

Test Number Error Rate (%)

1 6.7

2 6.7

3 7.9

4 10

5 10

6 2.2

7 3

8 6

9 6

10 10

From the above data, the average error rate comes out to 6.85%.

12

The antenna was tested on the basis of its radiation patterns in comparison to an ideal dipole antenna. The

results are shown in Figure 8.

3.1.4 Software Testing

These are the following results of the barcode scan and product identification.

Figure 9: Barcode scanned

Figure 8: Antenna Radiation Pattern for XBee Antenna

13

Figure 10: Product information

3.1.5 System Latency

System latency was measured using a stopwatch and the time came out to 3.78 seconds from scan to

display. We are happy with these results since this is how much we anticipate the shopper to take between

multiple product additions to the cart.

3.2 Testing Conclusions
Overall, our system performed admirably under various stress conditions. Our ZigBee modules showed

higher error rates at a 270
0
 orientation because of the weaker radiation field at this orientation. However,

this is not a major issue since it is possible to align the various modules to be in the 270
0
 orientation for a

minimal amount of time.

The other major challenge faced by us was during integration. While all our modules worked

satisfactorily individually, some of the modules could not be integrated together due to issues with the

Arduino development board. We were unable to integrate the TFT LCD user interface with the rest of the

device since the USB host controller for the barcode scanner and the LCD shield both used common pins

on the Arduino resulting in a pin clash. As a result, we had to leave out the LCD shield from our final

design prototype.

We also noticed that the FlexiForce sensor had issues with high frequency characteristics since it takes

about 15 to 20 seconds to stabilize when new weights are placed. Therefore, a shopper must wait for this

time period before placing new items on the cart. We believe that this is not a major issue as items are

added to a shopping cart at far greater time intervals than 15 seconds.

In conclusion, we believe these tests helped us ensure that all the critical components of the design

worked to specifications.

14

4. Costs and Benefits

4.1 Parts
Table 7 lists the cost of the parts used in our device.

Table 7: Cost of parts

Description Manufacturer Retail Price ($) Wholesale

Price ($)*

Quantity Retail

Total ($)

Arduino Uno Adafruit 29.95 25.00 2 59.9

TFT touch Shield Adafruit 59.00 50.00 1 59

XBee Shield with radio

module

Liquid Ware 59.37 48.00 2 118.74

Barcode scanner Amazon 29.97 20.00 1 29.97

Go between shield sparkfun 13.95 7.00 1 13.95

USB Adapter Arduino 14.98 10.00 1 14.98

Alarm Buzzer sparkfun 2.00 1.50 1 2.00

Battery Tenergy 41.99 30.00 2 83.98

Flexi Force Sensor (Pack

of 4)

Tekscan 65.00 53.00 1 65

*Wholesale prices are product prices if purchased in quantities greater than 1000.

4.2 Labor
Table 8 lists the labor cost involved in our project

Table 8: Labor costs

Employee Name Hourly Rate Estimated No. of Hours Total = Rate*Hours*2.5

Rohan Singh $40 160 $16,000

Kartik Sanghi $40 160 $16,000

Nikhil Raman $40 160 $16,000

Grand total = Parts needed + Labor cost Production total = Parts needed + Labor cost

= $447.52 + $48,000 = $347.50 + $48,000

 = $48,447.52 = $48,347.50

Production costs are lower than the prototyping costs as with wholesale prices, Wal-Mart can save a

minimum of $100 on every single Smart Cart device.

15

4.3 Wal-Mart Budget per Store
When preparing an implementation budget for Wal-Mart, it is critical that the following issues be

considered:

Implementation consultants: The cost incurred by Wal-Mart in paying their engineering team who will

coordinate the transition

Materials: The actual device cost

Manpower Usage: The actual labor (number of people) involved in modifying the carts

Cost towards disruption (if any): Many carts may be out of commission when they are being modified

Any utilities used: Electricity and water used

Consultants:

The engineering department at Wal-Mart and any consultants that are used are the largest component of

the budget. Using an estimated number of 15 such employees for this project and an hourly wage of $40

per employee, the total cost (using a 3 day approximation for the implementation timeframe) comes out to

$14,400.00

Material Cost:

The final value for materials comes out to $467.18

Manpower usage:

As explained above, this section includes the wages of the employees physically placing this device on

the carts. It is not necessary for these employees to be technically capable. Estimating the hourly wage for

such employees to be around $15 (considerable rounding up) and the time taken to physically place a

device on the cart to be a maximum of 1 hour, the labor cost per cart would be $15. Approximating that

250 carts will be equipped, the total cost is $3750.

Cost towards disruption:

When the carts are being modified, they cannot be used for shopping. Therefore, it is essential that the

modification process be taken up during the relatively lean hours of operation. Estimating (based on the

fact that hundreds of carts are available at any given point at a single Wal-Mart store) that around 5 carts

that would normally be used for shopping are actually being modified and using an estimated income per

cart to Wal-Mart of $150, the cost of disruption per day would be $750.

The whole process must not take more than 3 days to be successfully implemented on all carts and this

yields total cost of disruption of $2250.

Utilities used:

The cost of utilities used would be negligible compared to the typical total daily utilities bill of a Wal-

Mart store.

Total Cost = Consultants + Materials + Labor + Cost toward disruption

 = $14,400 + $447.52 + $3,750 + $2,250

 = $20,847.52

16

4.4 Time Saving Estimate per Shopper
 Checkout Procedure (Without Smart Cart)

Assume that there are 5 people ahead of the person whose shopping time is being computed and every

person holds 20 items in his cart.

Time required to scan and bag a product = 4-5 seconds

Total time for 20 products = 80-100 seconds

Total time for all 5 people = 400 – 500 seconds (6.66 min – 8.33 min)

Time required for payment by one person = 1 minute

Total Time for Payment by all = 5 minutes

Total wait time = 11.66 min – 13.33 min

Approximately the total wait time is 12-14 minutes, so on an average the person has to wait 13 minutes.

If miscellaneous time of around 1 minute is included, then the total time is 14 minutes.

 Checkout Procedure (With Smart Cart)

With the smart cart the total payment is wirelessly sent to a central payment station where the person only

has to make the final payment. This reduces any time required to scan the items during checkout. With the

assumption that 5 people with 20 products are already waiting at the payment station, the total shopping

time for any person is computed in the following way:

Time required for payment by one person = 1 minute

Total Time for Payment by all = 5 minutes

Time required to bag a product – 2 seconds

Time required to bag 20 products – 40 seconds

Time required for bagging by all – 200 seconds or 3.33 minutes

Total wait time = 8.33 minutes

Approximately, the total wait time is 8 minutes. If miscellaneous time of 1 minute is included then the

total time is 9 minutes.

Thus the user saves 5 minutes by using the Smart Cart device.

17

5. Conclusion

5.1 Accomplishments
The following is a list of objectives successfully satisfied by the device:

 Accurate and real time weight monitoring

 Accurate barcode reading and database comparison

 Reliable and robust wireless communication

 Efficient anti-theft mechanism

5.2 Challenges
The following is a list of challenges faced during the building of the device:

 Lack of integration of SD card from the LCD TFT shield and USB Host controller shield due to

the use of same pins for the SPI interface

 Sensor challenges –Very small sensing area made it difficult to concentrate weights of bigger

objects correctly

 Non-linear output requiring linearization

5.3 Ethical considerations
Most of the IEEE codes of Ethics have been religiously followed. A few Codes of Ethics are

directly applicable to the projects which are:

 To be honest and realistic in stating claims or estimates based on available data

 To improve the understanding of technology; it’s appropriate application, and potential

consequences

 To seek, accept, and offer honest criticism of technical work, to acknowledge and correct

errors, and to credit properly the contributions of others

These pointers directly relate to this project and it is important to credit Wal-Mart for this idea

and rest of the ethical codes are not directly related to this project but have been taken care of.

5.4 Future work
Given the modular and expandable design of the device, future improvements from both hardware and

software points of view are possible. Here, we list just a few developments that we believe can make our

device more attractive:

 More responsive User Interface – An LCD screen that’s more than just a display

 Smartphone application – Given the growth of the Smartphone industry, designing a Smartphone

application that will make using the barcode scanner and payment terminal redundant will make

the device more cost effective and also more widespread

18

6. References

[1] IEEE Code of Ethics

http://www.ieee.org/about/corporate/governance/p7-8.html

[2] TFTLCD and SD card

http://www.ladyada.net/products/tfttouchshield/

[3] XBEE MODULE

http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-

rfmodules/xbee-series1-module#specs

[4] BARCODE SCANNER

http://www.circuitsathome.com/mcu/connecting-barcode-scanner-arduino-usb-host-shield

[5] FLEXIFORCE SENSOR

http://www.tekscan.com/flexible-force-sensors#specifications

http://www.ieee.org/about/corporate/governance/p7-8.html
http://www.ladyada.net/products/tfttouchshield/
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-series1-module#specs
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-series1-module#specs
http://www.circuitsathome.com/mcu/connecting-barcode-scanner-arduino-usb-host-shield
http://www.tekscan.com/flexible-force-sensors#specifications

19

Appendix A Requirement and Verification Table
Requirement Verification

1. Input voltage provided to each

component is in the range:

a. 7-12V provided to Arduino

b. 1-1.5V provided to sensor

c. Constant 5V provided to Barcode

scanner

1. A potentiometer will be used to divide

the voltage to desired values for the

components placed in parallel

a. Use DMM to check input to

potentiometer is 7-9V

b. Use DMM to check input to

Arduino is 7-9V

c. Use DMM to measure output of the

2 potentiometer branches which

should be 1-1.5V for sensor and 4-

5V for Arduino

2. Sensor senses small variations in

weight from 0 to 1000 lbs.

a. 1-1.5V supply provided to sensor

b. Constant 5V provided as supply

rails to Op-Amp in drive circuit

c. Voltage changes with respect to

change in weight

2. Connect feedback resistance to the

drive circuit to amplify output

a. Increase feedback resistance in

order to achieve voltage change of

5mV

b. Increase weight on sensor to verify

5mV steps

c. Obtain trade-off between resolution

and resistance value to check for

performance degradation

3. ZigBee module transmits enough

power such that received levels fall

within sensitivity for various receiver

distances.

a. Constant 0dBm power output from

transmitter

b. Modulation error rates within IEEE

standards specifications

3. Connect ZigBee module antenna to

spectrum analyzer

a. Check that antenna has very low

S11 value at 2.4GHz to ensure

successful radiation

b. Transmit using one module and

receive with other module

c. Ensure transmit power is 0dBm

using spectrum analyzer

d. Measure received power spectrum

on a spectrum analyzer to verify

prior calculation estimates

e. Check this spectrum for various

receiver distances

f. Compare received and transmitted

spectrum to check for possible

degradation

4. Verify software programs are working

correctly

a. Weight is correctly inferred from

voltage change on the sensor

b. Barcode data is correctly read into

USB

4. The software that will be written for the

device will define the degree of success

achieved.

a. Check the register holding the

weight information using the

Arduino debugger

20

c. Barcode data is correctly correlated

to product database

d. ZigBee module data correctly

demodulated

b. Manually check the register holding

the barcode data to verify that it

translates to a correct value

c. Manually check the database for the

product matching the data and

confirm if the software is pulling

the same data

d. Use ZigBee emulator to transmit a

known pulse (eg. All 1’s) and verify

using the same emulator that the

same pulse is received.

5. Verify latency rates of the system

a. Time taken for barcode data to be

read and deciphered

b. Time taken to run the code to

correlate the data to a product

c. Time taken to transmit data to LCD

5. The success of the device depends on

how quickly the data can be processed

and shown to the user

a. Manual timing will be used to

estimate the system latency (eg.

Using a stopwatch)

21

Appendix B Arduino Code

B1 Barcode Scanning
#include <LiquidCrystal.h>

#include <avr/pgmspace.h>

#include <avrpins.h>

#include <max3421e.h>

#include <usbhost.h>

#include <usb_ch9.h>

#include <Usb.h>

#include <usbhub.h>

#include <avr/pgmspace.h>

#include <address.h>

#include <hidboot.h>

#include <printhex.h>

#include <message.h>

#include <hexdump.h>

#include <parsetools.h>

#include <EEPROM.h>

#define DISPLAY_WIDTH 16

// initialize the LCD library with the numbers of the interface pins

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

USB Usb;

int i;

//USBHub Hub(&Usb);

HIDBoot<HID_PROTOCOL_KEYBOARD> Keyboard(&Usb);

class KbdRptParser : public KeyboardReportParser

{

protected:

virtual void OnKeyDown (uint8_t mod, uint8_t key);

virtual void OnKeyPressed(uint8_t key);

};

void KbdRptParser::OnKeyDown(uint8_t mod, uint8_t key)

{

 uint8_t c = OemToAscii(mod, key);

 if (c)

 OnKeyPressed(c);

}

/* what to do when symbol arrives */

void KbdRptParser::OnKeyPressed(uint8_t key)

{

static uint32_t next_time = 0; //watchdog

static uint8_t current_cursor = 0; //tracks current cursor position

 if(millis() > next_time) {

22

 lcd.clear();

 current_cursor = 0;

 delay(5); //LCD-specific

 lcd.setCursor(0,0);

 }//if(millis() > next_time ...

 next_time = millis() + 200; //reset watchdog

 if(current_cursor++ == (DISPLAY_WIDTH + 1)) { //switch to second line if cursor outside the screen

 lcd.setCursor(0,1);

 }

 EEPROM.write(i, key);

 i++;

 Serial.write(key);

 lcd.print(key);

};

KbdRptParser Prs;

void setup()

{

 i = 0;

 Serial.begin(115200);

 Serial.println("Start");

 if (Usb.Init() == -1) {

 Serial.println("OSC did not start.");

 }

 delay(200);

 Keyboard.SetReportParser(0, (HIDReportParser*)&Prs);

 // set up the LCD's number of columns and rows:

 lcd.begin(DISPLAY_WIDTH, 2);

 lcd.clear();

 lcd.noAutoscroll();

 lcd.print("Ready");

 delay(200);

}

void loop()

{

 Usb.Task();

}

23

B2 Barcode Compare
#include <SD.h>

 #include <SPI.h>

 #include "TFTLCD.h"

 #include <EEPROM.h>

 #if not defined USE_ADAFRUIT_SHIELD_PINOUT

 #error "For use with the shield, make sure to #define USE_ADAFRUiT_SHiELD_PiNOUT in the TFTLCD.h

library file"

 #endif

 // These are the pins as connected in the shield

 #define LCD_CS A3 // Chip Select goes to Analog 3

 #define LCD_CD A2 // Command/Data goes to Analog 2

 #define LCD_WR A1 // LCD Write goes to Analog 1

 #define LCD_RD A0 // LCD Read goes to Analog 0

 // The chip select pin for the SD card on the shield

 #define SD_CS 5

 //#define SD_CS 5

 TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, 0);

 File myFile;

 int8_t saved_spimode;

 void disableSPi(void) {

 saved_spimode = SPCR;

 SPCR = 0;

 }

 void enableSPi(void) {

 SPCR = saved_spimode;

 }

 boolean check_bar(byte scanned_bar[], byte file_bar[], int length)

 {

 int f=0;

 //Serial.println("here");

 while(f<length-1)

 {

 if(scanned_bar[f]!=file_bar[f+1])

 {

 return false;

 }

 else {

 f++;

 //Serial.print(f);

 }

 }

 return true;

 }

 void setup()

24

 {

 Serial.begin(9600);

 tft.reset();

 uint16_t identifier = tft.readRegister(0x0);

 byte value[13];

 int a=0;

 for(int address=0; address<13; address++)

 {

 value[a] = EEPROM.read(address);

 a++;

 }

 Serial.print(a);

 for(int b=0; b<=a; b++)

 {

 Serial.write(value[b]);

 }

 // advance to the next address of the EEPROM

 // there are only 512 bytes of EEPROM, from 0 to 511, so if we're

 // on address 512, wrap around to address 0

 Serial.print("initializing SD card...");

 // On the Ethernet Shield, CS is pin 4. it's set as an output by default.

 // Note that even if it's not used as the CS pin, the hardware SS pin

 // (10 on most Arduino boards, 53 on the Mega) must be left as an output

 // or the SD library functions will not work.

 int i=0,j=0;

 byte barcode[14];

 byte name[40];

 byte price[4];

 //byte barcode[2][12];

 int flag;

 int count =0;

 if (!SD.begin(SD_CS)) {

 Serial.println("initialization failed!");

 return;

 }

 Serial.println("initialization done.");

 // open the file for reading:

 myFile = SD.open("Book5.csv");

 if (myFile) {

 //Serial.println("Book5.csv:");

 int flag = 0;

 int barcode_index=0, name_index=0, price_index=0,name_length=0, price_length=0;

 char c;

 // read from the file until there's nothing else in it:

 while (myFile.available()) {

 c = myFile.read();

 if (c== ',' && count == 0){

 boolean code_check = false;

 code_check = check_bar(value, barcode, a);

 if(code_check == true) {

25

 Serial.write("found");

 flag = 1;

 Serial.print("\nName: ");

 }

 barcode_index = 0;

 count ++;

 continue;

 }

 if (c == ','){

 if (flag == 1){

 Serial.print("\nPrice:");

 }

 continue;

 }

 if (c=='\r' || c=='\n'){

 count = 0;

 if (flag == 1){

 break;

 }

 continue;

 }

 if (count == 0){

 barcode[barcode_index] = c;

 barcode_index++;

 }

 else {

 if (flag == 1){

 Serial.write(c);

 }

 }

 }

 myFile.close();

 } else {

 // if the file didn't open, print an error:

 Serial.println("error openng Book.csv");

 }

 }

 void loop()

 {

 // nothing happens after setup

 }

26

B3 ZigBee and Buzzer Control
const int ledPin = 13; // the pin that the LED is attached to

int incomingByte; // a variable to read incoming serial data into

void setup() {

 // initialize serial communication:

 Serial.begin(9600);

 // initialize the LED pin as an output:

 pinMode(ledPin, OUTPUT);

 pinMode(7, OUTPUT); // set a pin for buzzer output

 int incomingByte;

}

void loop() {

 // see if there's incoming serial data:

 if (Serial.available() > 0) {

 // delay (2000);

 // read the oldest byte in the serial buffer:

 // incomingByte = Serial.read();

 incomingByte = Serial.read();

 Serial.write(incomingByte);

 // if it's a capital H (ASCII 72), turn on the LED:

 if (incomingByte == 'H') {

 digitalWrite(ledPin, LOW);

// Serial.print(incomingByte);

 buzz(7, 2500, 500); // buzz the buzzer on pin 4 at 2500Hz for 1000 milliseconds

 // delay(500); // wait a bit between buzzes

// Serial.println(incomingByte);

 }

 // if it's an L (ASCII 76) turn off the LED:

 else {

 digitalWrite(ledPin, HIGH);

// Serial.write(incomingByte);

 }

 // Serial.print(incomingByte);

 }

// Serial.flush();

}

void buzz(int targetPin, long frequency, long length) {

 long delayValue = 1000000/frequency/2; // calculate the delay value between transitions

 //// 1 second's worth of microseconds, divided by the frequency, then split in half since

 //// there are two phases to each cycle

 long numCycles = frequency * length/ 1000; // calculate the number of cycles for proper timing

 //// multiply frequency, which is really cycles per second, by the number of seconds to

 //// get the total number of cycles to produce

 for (long i=0; i < numCycles; i++){ // for the calculated length of time...

 digitalWrite(targetPin,HIGH); // write the buzzer pin high to push out the diaphram

 delayMicroseconds(delayValue); // wait for the calculated delay value

 digitalWrite(targetPin,LOW); // write the buzzer pin low to pull back the diaphram

 delayMicroseconds(delayValue); // wait againf or the calculated delay value

 }

}

