

Service Animal GPS
Design Review

Chris Stoddard, Harrison Rose, Richard Lew

TA: Tom Galvin

Team # 27

 2

Objectives:

 The goal of this project is to create a device for service animals to wear that would enable

them to guide people to various locations. The device will utilize a GPS receiver to determine the

location of the animal and person, and will use two vibrating motors to give directions. The

device will also be equipped with safety features such an ultrasonic range finder to detect curbs,

so that the user can be prevented from walking into a busy intersection. The device will support

pre-programmed and user recordable routes.

Benefits:

• Allows service animals to direct people to locations
• Gives disabled people the freedom to explore on their own
• Provides greater safety to the disabled
• Faster and more reliable than other methods

Features:

• Turn by turn directions for up to five locations can be stored
• Load directions from GPS software or record route
• Two vibrating motors for executing route instruction
• Adjustable collar

Performance Requirements:

• Location accuracy within five meters
• Two and half meter precision turning
• Control the motors together and independently to give instructions
• Record routes so that they can be navigated without making errors
• GPS chip communicates with microcontroller using UART to send NMEA messages
• Can generate return route at any point during route
• Full charged battery yields a minimum of two hours of device use

 3

Block Diagram:

Block

 4

Schematics:

GPS and Microcontroller

1uF

 5

Motors (M1 and M2)

Switches (S1-S8)

4.8V 4.8V

 6

LEDs (L1-L8)

Descriptions:

Module Description
Power Supply Responsible for providing power to all necessary elements of the unit.

GPS Receiver Will interface with satellites and the microcontroller to output the

user’s position.

Main Controller Responsible processing data. It will read in data from the GPS receiver;

which in turn will be processed so that output directional data can be

sent to the two motors. The main controller also contains the memory

of the unit, which will store the preprogrammed and user recorded

routes.

PC The user will employ his/her personal computer to configure the unit so

that pertinent data such as routes, waypoints, and points of interest can

be added to the device.

Animal Control Collar Control collar will consist of motors that will be used to create

vibrations in order to guide the service animal. The main controller will

send the directional data into the motors. The physical collar will be

adjustable so that it can comfortably fit a variety of different size and

breed service animals.

User Interface The user will be able to interact with the unit directly (so as to select

destinations from memory or record a route) and with his/her personal

computer to program routes onto the unit.

150Ω

 7

Software Interface:

Sample Code (Simulation):

%% Generate a vector that list all of the turn waypoints on the route
waypoints = [0 0; 100 0; 100 100; 200 100; 200 20; 340 20; 340 160];

%% Generate input vector, based on average walking speed and walking a
% direct path between each turn

 8

step = 4.546; % in ft/s
x_cor = zeros(1,145);
y_cor = zeros(1,145);
cnt = 2;

while x_cor(cnt-1) < (100-step)
 x_cor(cnt) = x_cor(cnt-1) + step;
 y_cor(cnt) = y_cor(cnt-1);
 cnt = cnt+1;
end

increment = 100 - x_cor(cnt-1);

x_cor(cnt) = x_cor(cnt-1) + increment;
y_cor(cnt) = step-increment;
cnt = cnt+1;

while y_cor(cnt-1) < 100-step
 x_cor(cnt) = x_cor(cnt-1);
 y_cor(cnt) = y_cor(cnt-1) + step;
 cnt = cnt+1;
end

increment = 100 - y_cor(cnt-1);

y_cor(cnt) = y_cor(cnt-1) + increment;
x_cor(cnt) = x_cor(cnt-1) + step-increment;
cnt = cnt+1;

while x_cor(cnt-1) < 200-step
 x_cor(cnt) = x_cor(cnt-1)+step;
 y_cor(cnt) = y_cor(cnt-1);
 cnt = cnt+1;
end

increment = 200 - x_cor(cnt-1);

x_cor(cnt) = x_cor(cnt-1) + increment;
y_cor(cnt) = y_cor(cnt-1) - step-increment;
cnt = cnt+1;

while y_cor(cnt-1) > 20+step
 x_cor(cnt) = x_cor(cnt-1);
 y_cor(cnt) = y_cor(cnt-1) - step;

 9

 cnt = cnt+1;
end

increment = y_cor(cnt-1)-20;

y_cor(cnt) = y_cor(cnt-1) - increment;
x_cor(cnt) = x_cor(cnt-1) + step-increment;
cnt = cnt+1;

while x_cor(cnt-1) < 340-step
 x_cor(cnt) = x_cor(cnt-1)+step;
 y_cor(cnt) = y_cor(cnt-1);
 cnt = cnt+1;
end

increment = 340 - x_cor(cnt-1);

x_cor(cnt) = x_cor(cnt-1) + increment;
y_cor(cnt) = y_cor(cnt-1) + step-increment;
cnt = cnt+1;

while y_cor(cnt-1) < 160-step
 x_cor(cnt) = x_cor(cnt-1);
 y_cor(cnt) = y_cor(cnt-1) + step;
 cnt = cnt+1;
end

increment = 160 - y_cor(cnt-1);

y_cor(cnt) = y_cor(cnt-1) + increment;
x_cor(cnt) = x_cor(cnt-1) + step-increment;
cnt = cnt+1;

%% Add noise to route data using normal distribution in m, then converted to feet.

x_cor_n = zeros(1,145);
y_cor_n = zeros(1,145);
dist_ave = 0;

for i = 1:1000;
 for i = 1:length(x_cor)
 x_cor_n(i) = x_cor(i) + 3.2808*normrnd(0,2);
 y_cor_n(i) = y_cor(i) + 3.2808*normrnd(0,2);
 end

 10

 turn_range = 3.8208*5;

 turns = zeros(3,7);
 turn_dist = zeros(1,7);
 turn_cnt = 1;
 waypt_cnt = 1;

 % work through each data point and check if there should be a turn
 for x = 1:length(x_cor)
 if waypt_cnt == 8
 break
 end
 dist = sqrt((waypoints(waypt_cnt, 1)-x_cor_n(x))^2 + (waypoints(waypt_cnt,2)-
y_cor_n(x))^2);
 if dist < turn_range
 turn_dist(turn_cnt) = dist;
 turns(:,turn_cnt) = [x_cor_n(x) ; y_cor_n(x) ; x];
 turn_cnt = turn_cnt+1;
 waypt_cnt = waypt_cnt+1;
 end
 end

 dist_ave = dist_ave + sum(turn_dist)/length(turn_dist)/3.808;

end

dist_ave = dist_ave/1000

turn_cnt = 1;
turn_vect_x = zeros(1,145);
turn_vect_y = zeros(1,145);

for i = 1:145
 if turn_cnt == 8
 break
 end
 if turns(3, turn_cnt) == i
 turn_vect_x(i) = turns(1,turn_cnt);
 turn_vect_y(i) = turns(2,turn_cnt);
 turn_cnt = turn_cnt+1;
 else
 turn_vect_x(i) = 0;
 turn_vect_y(i) = 0;
 end

 11

end

x = 1:145;
%plot(x,x_cor_n,x,turn_vect_x,'.', x, x_cor);
%xlabel('Sample index'), ylabel('x-coordinate (ft)'), title('Turn Performace vs. Noise: x-
coordinates'), legend('Input coordinates', 'Turn Location', 'Optimal Path');

plot(x,y_cor_n,x,turn_vect_y,'.', x, y_cor);
xlabel('Sample index'), ylabel('y-coordinate (ft)'), title('Turn Performace vs. Noise: y-
coordinates'), legend('Input coordinates', 'Turn Location', 'Optimal Path');

Results:

 12

User Interface:

 The user interface for our devices is as follows. There are eight switches to control the

device, and eight LEDs that we will be using for debugging. To select a route, the user switches

one of the route switches 1-5. This instructs the device that you want to be guided to destination

indicated by the switch, one being far left and five being far right. After the destination is

reached, the switch must be lowered before a new route can be activated. If, during the course of

the route, the user decides they would like to go back to their original location, the back track

switch can be toggled. This instructs the device to reverse the routing information and direct the

user back home. With all of the switches in the off position, if backtrack is switched on and then

a route is selected, the device will guide your along the route backwards (starting at the

destination and terminating at the start point). To record routes, the user will flip the record

switch, and then flip the route that they wish to record. As the user walks through the route, at

 13

every waypoint (turn) the user will depress the waypoint button to record that location as a

waypoint. When the user has completed the route, turning the record switch off will save the

current location as the end of the route. Below is an idea of what the user panel will look like on

the device.

 When this interface was designed, care was taken to ensure that users with vision

impairments would be able to operate the device. To achieve this, tactile switches were used for

almost all of the functions. This is nice because it allows the user to feel whether the switch is on

or off, unlike simple push buttons or LCD menu based inputs. To input waypoints, a push button

was used instead of a switch because on – off doesn’t make sense for this function.

 To load routes into the device, the user will need to create a text file the latitude,

longitude, and direction of each waypoint along the route. The latitude and longitude must be in

the format DDDMM.MMM, where D is a degree digit, and M is a minute digit. The direction,

either left or right, should be stored as either ‘l’ or ‘r’. For example, to create a waypoint at 79⁰

40.325’ N, 52⁰ 25.154’ W, Left, the user should type on a single line 07940.325,05225.154,l.

Once each waypoint is listed in a text file, the data will be loaded when the code is compiled and

loaded onto the board.

Power Analysis:

 The GPS unit and the microcontroller use 30 milliAmp hours (mAh) combined and so for

two hours, it would take 60 [mAh]. The motors use 80 [mA/h] when they are active. If we are to

vibrate the motors for three seconds for every turn, we need to calculate the amount of current

used for during each turn.

Motor turn:

BKTRK 2 3 4 5 REC WYPT

 14

80 [mAh] / 3600 [sec] * 3 [sec] = 0.067 [mAh/turn]

 We also want to vibrate both motors for 3 seconds when we want the person to stop. The

person only needs to stop when the destination has been reached, therefore, only one stop will be

needed.

Motor Stop:

80 [mAh] * 2 / 3600 [sec] * 3 [sec] = 0.133 [mAh]

 The average walking speed of a person is 4.5466 feet per second. Looking at Google

Maps, we determined that the average distance of one block is 500 feet. If the person makes an

average of one turn every two blocks and waits at stoplights for an average of ten seconds, the

person would make a turn every four minutes. This would result in a total of 30 turns.

Average:

500 [ft] * 2 / 4.5466 [ft/s] = 219.94 [sec] + 20 [sec] = 239.94 [sec]

0.067 [cmAh/turn] * 30 [turns] = 2.01 [mAh]

Total = 2.01 [mAh] + 0.133 [mAh] + 60 [mAh] = 62.143 [mAh]

For 2500 [mAh] batteries the lifetime would be

Lifetime = 2500 [mAh] / 62.143 [mAh] = 40.23 two hour trips

 The worse case scenario would be if the person were to make a turn at every block. If we

include the average of ten seconds wait at stoplights, the person would make one turn every two

minutes. This would result in a total of 60 turns.

Worst Case:

500 [ft] / 4.5466 [ft/s] = 109.97 [sec] + 10 [sec] = 119.97 [sec]

 0.067 [mAh/turn] * 60 [turns] = 4.02 [mAh]

 15

Total = 4.02 [mAh] + 0.133 [mAh] + 60 [mAh] = 64.153 [mAh]

Lifetime = 2500 [mAh] / 64.153 [mAh] = 38.97 two hour trips

Test Plan and Verification:

Module Requirement Test Verification
GPS must report

location accurate

to within five

meters.

Choose ten locations

outside; five in open

areas and five close to

buildings. The error in

location should no

more than five meters.

I. Using Google Maps, record

the coordinates of five locations

near buildings and five open-

areas. Take the device to these

places and measure the position

using the GPS receiver.

Compare the measured

coordinates with the actual

coordinates, and ensure that

they differ by no more than five

meters.

GPS unit

The GPS unit

must send

standard NMEA

messages via

UART to the

microcontroller.

Connect oscilloscope to

the output of the UART

pins on the GPS

receiver, and observe

the output.

Verify that the GPS receiver is

sending NMEA messages on

the UART transmit pin. Also

verify that it starts sending one

message every second.

 16

Control the

motors together

and

independently to

give instructions

Have the

microcontroller run

through each possible

vibration command

combination to

demonstrate the

control.

I. Create a test program that

cycles each motor

independently using .25, .5, and

1 second pulses with 50% duty

cycle. Use an oscilloscope to

view the PWM signal from the

transistor to ensure that the

period and duty cycle of each

wave is correct.

III. Connect the motors directly

to the power source and verify

that the motors run.

The

microprocessor

must be able to

output .25, .5, and

1 second pulses

with 50% duty

cycle

independently on

two outputs

Connect an

oscilloscope to each

motor output of the

microprocessor and

view the signals.

Using the oscilloscope, view the

output waveforms directly at the

output of the microprocessor.

Verify that the PWM waves are

correct as listed in the

requirement.

Motors

The motors must

run continuously

when connected

directly to a

power source.

Connect each of the

vibrating motors

directly to the power

supply in the lab.

Verify that the motors

continuously vibrate when

provided with power.

 17

Record routes so

they can be

successfully

navigated

Hit the record button,

walk a route through

the city, then hit stop.

Return to the original

location and select that

route, and verify that

the directions sent to

the motors are correct.

Using the record feature, walk a

route and save each turn by

pressing the waypoint button.

Look at the recorded waypoints

in memory using the PC, and

verify the coordinates using

Google maps.

Microcontroller

(Memory)

Microcontroller

must be able to

store generated

data to memory

Write a test program

that writes a known

sequence to memory.

Using the programming

interface, verify that the

sequence written to memory is

found in the correct location.

The

microcontroller

must receive

NMEA messages

sent to it by the

GPS receiver.

UART interface.

Develop a testing

function on the

microprocessor to

implement only the

UART interface and

store the data to

memory.

Run the test function and then

view the stored data in the

microprocessor memory. Ensure

that the data is in the correct

format according to the NMEA

standard defined in the Skytraq

datasheet.

Microcontroller

The device must

not indicate a turn

more than 2.5 m

away from the

turn location

Choose ten turns

outside; five in open

areas and five close to

buildings. The device

should not initiate a

vibration for a turn

further than a two and

half meter radius prior

Walk towards each of the turns,

and stop as soon as the turn

command is issued. Measure the

distance between where the

person has stopped and the

actual turn location. Verify that

this distance is less than 2.5m.

 18

around the turn.

Can generate

return route at

any point during

route.

Start walking a route,

then hit the backtrack

switch. Verify that the

directions are correct

on the return route.

When walking the route

backwards, verify that the

directions are correct by

verifying that the turns on the

return route are generated at the

same locations as on the

original route.

Full charged

battery yields a

minimum of two

hours of device

use.

Fully power on the

device, and record the

current and voltage

being drawn from the

battery pack with the

motors off.

While the device is fully

powered, connect a digital

multimeter and verify that the

output is 4.8V and 60 mA.

Power Supply

Full charged

battery yields a

minimum of two

hours of device

use.

Fully power on the

device, and configure

the microprocessor to

run the motors

continuously. Record

the current and voltage

output from the battery

pack.

Connect a digital multimeter to

the battery pack and measure

the change in current between

the case when the motors are

running and when the motors

are off. Verify that the

difference in current draw is 6

mA.

Curb Detection:

Originally it was intended for the device to have a curb detection feature implemented

using an ultrasonic sensor. After further consideration, it was evident that the data we could

collect with the sensor was not going to be enough. Using the average walking speed of a human

 19

and the maximum sampling frequency of the sensor we determined the maximum sampling

frequency in linear feet.

3.1 [miles/hr] x 5280 [ft/mile] x 1/3600 [hr/s] x 1/2.28 [s/sample] = 1.99 [ft/sample]

 Curb detection with such a large distance between samples is impractical. The sampling

points were so far apart that there was no reliable way to detect curbs. Additionally, the sensor

can only be tilted a maximum of 15°.

tan-1(X/Y) = 15° Y = 2 [ft]/ tan-1(15°) = 7.4641 [ft]

 Thus, the sensor would have to be seven feet above the ground in order to see two feet in

front of itself. We then found that the average height of a dog was 60 to 65 centimeters.

65 [inches]/2.54 [cm/inch] = 25.59 [inches] 25.59*tan (15°) = 6.8585 [inches] in front of the

sensor.

 Based on the average height of a dog, the sensor would have only been able to see seven

inches in front of the dog, thus putting the dog and its owner at an extreme risk. Therefore, given

these unrealistic parameters including a curb detection sensor on our device would be useless and

unethical.

Tolerance Analysis:

 The most important aspect of this device is the position and direction accuracy. The

accuracy of a GPS receiver is depends on the various types of interference the signal undergoes

on its path between the receiver and the satellite. The six most common forms of signal

degradation include:

1) Ephemeris data-- Errors in the transmitted location of the satellite (3 meters on average)

2) Satellite clock--Errors in the transmitted clock of the satellite (2 meters on average)

3) Ionosphere--Errors in the corrections of pseudorange due to ionospheric effects (5 meters on

average)

 20

4) Troposphere--Errors in the corrections of pseudorange due to tropospheric effects (1 meters

on average)

5) Multipath--Errors caused by reflected signals entering the receiver antenna (1 meter on

average)

6) Receiver—Errors associated with the receiver such as noise, software, and biases. (1 meter on

average)

 In this case with averages values, there is an error of thirteen meters. The sum of the

average errors associated with each facet of hindrance yields an overall position error of about

thirteen meters. Therefore, we will ensure that our device will have an average positional

accuracy of thirteen meters. To test this tolerance we will measure the user’s physical distance

from the GPS receiver’s waypoints. For instance, if the receiver indicates that the destination has

been reached, we will then measure how far off the user is from that destination. This tolerance

test will be conducted during each of the “GPS Unit”, “Route Recording”, and “Memory” testing

procedures.

Cost:

Item Make Quantity Cost

per

unit

Total

Cost

Status

GPS Chip Skytraq

venus634flpx

1 $100 $100 Posses

GPS antenna 1575R‐A 1 $5 $5 Posses

Motor 1226A 2 $1.95 $3.90 Ordered

LEDs HLMP3301

(red)

HLMP3507

8 $0.50 $4 Readily-

available

 21

(green)

HLMP3401

(yellow)

Switches MTS-75 8 $0.85 $6.80 Need to

order

Circuit board 1 $5 $5 Posses

Microcontroller TI

MSP430F2274
1 $20 $20 Need to

order. Have

development

chip.

Circuit

components

 $10 Readily-

available

Batteries Duracell 1.2V

Rechargeable

AA

 $10 Posses

Collar 1 $10 $10 Need to

order

Total Cost $174.70

Labor:

 ($60.00/hr) x (2.5) x (150 hours) = $22,500

Total Cost:

 Parts + Labor = $210 + $22,500 = $22,614.70

 22

Schedule:

Week Task Member
Research motor implementation and power supply requirements Richard

Research sensor integration and vibration systems Chris

2/6

Research direction implementation and GPS receiver capabilities Harrison

Acquire Parts Chris 2/13

Design Review Harrison

Power on and program microcontroller Chris

Power up GPS and verify location Harrison

2/20

Plan motor/microcontroller interface Richard

Control motors using microcontroller Richard

Code vibration system Chris

2/27

Create preprogrammed routes using GPS Harrison

Load vibration system onto microcontroller Richard

Load routes to GPS via PC Harrison

3/5

Interface GPS and microcontroller Chris

Read data from rangefinder with microcontroller Chris

Start on interfacing microcontroller for route recording Richard

3/19 (Spring

Break) Write code for route recording Harrison

Begin route recording test Chris 3/26

Write code for backtracking Harrison

Implement backtracking onto microcontroller Richard 4/2

Finish route recording Chris

4/9 Test and debug entire recorded route and backtrack Harrison

4/16 Full unit test and debug Richard

4/23 Demo Chris

Presentation Harrison 4/30

Final Paper Chris

 23

Ethical Issues:

 There are several ethical issues to consider when designing and implementing our idea.

Most notably, it is imperative that all of our claims and feature precise and accurate. The

intention of our device is to aid visually impaired people, and therefore the slightest

miscalculation in the navigation solution or misdirection could result in serious injury or death to

the service animal and/or the user. For instance, one-meter difference could cause someone to

walk into oncoming traffic. This realization was greatly influenced by IEEE code of ethics

bylaws 1, 3, 8, and 9. Additionally, we originally wanted to implement a curb detection sensor,

however, upon calculating the minimum effective range of the sensor, we discovered that it

would only be able to detect for a distance of six inches ahead of the service animal. We felt that

this was not nearly a large enough range and would put the user and service animal in danger

when approaching an intersection. The decision to ultimately exclude a sensor was made to

adhere to IEEE code of ethics bylaws 1 and 9.

 There are other less conventional ethical issues associated with our unit. For instance,

someone could preprogram a route, attach an explosive, and use the service animal as a weapon.

Using our device for such purposes would be in direct conflict of IEEE code of ethics by laws 1,

5, and 9.

 24

References:

 “Blind people safety project”. Faith Degirmenci, Abdessettar Ibourki, Morad Oumina.

Proposal, Spring 2006

 “GPS Tracking Device with DGPS”. Alex Stezskal, Algirdas Navickas, Vivek

Thyagarajan. Proposal, Spring 2010

 Misra, Pratap, and Per Enge. Global Positioning System: Signals, Measurements, and

Performance. Lincoln, MA: Ganga-Jamuna, 2011. Print.

 "Sam Wormley's GPS Errors & Estimating Your Receiver's Accuracy." Educational

Observatory Institute. Web. 08 Feb. 2012. <http://edu-observatory.org/gps/gps_accuracy.html>.

 Skytraq datasheet for Skytraq Venus634FLPx.

<http://www.sparkfun.com/datasheets/GPS/Modules/Skytraq-Venus634FLPx_DS_v051.pdf>

"Switch Debouncing (Bounce-free Switches) Using NAND Gates - Www.ECELab.com."

Electronics and Communications Engineering. Web. 21 Feb. 2012.

<http://www.ecelab.com/switch-debounce-NAND.htm>.

TI datasheet for MSP430F2274. < http://www.ti.com/product/msp430f2274>.

TI datasheet for SN7400N. <http://www.ti.com/lit/ds/symlink/sn7400.pdf>.

