Service Animal GPS

Design Review

Chris Stoddard, Harrison Rose, Richard Lew TA: Tom Galvin Team # 27

Objectives:

The goal of this project is to create a device for service animals to wear that would enable them to guide people to various locations. The device will utilize a GPS receiver to determine the location of the animal and person, and will use two vibrating motors to give directions. The device will also be equipped with safety features such an ultrasonic range finder to detect curbs, so that the user can be prevented from walking into a busy intersection. The device will support pre-programmed and user recordable routes.

Benefits:

- Allows service animals to direct people to locations
- Gives disabled people the freedom to explore on their own
- Provides greater safety to the disabled
- Faster and more reliable than other methods

Features:

- Turn by turn directions for up to five locations can be stored
- Load directions from GPS software or record route
- Two vibrating motors for executing route instruction
- Adjustable collar

Performance Requirements:

- Location accuracy within five meters
- Two and half meter precision turning
- Control the motors together and independently to give instructions
- Record routes so that they can be navigated without making errors
- GPS chip communicates with microcontroller using UART to send NMEA messages
- Can generate return route at any point during route
- Full charged battery yields a minimum of two hours of device use

Block Diagram:

Schematics:

GPS and Microcontroller

Switches (S1-S8)

LEDs (L1-L8)

Either: HLMP3301 (red) HLMP3507 (green) HLMP3401 (yellow)

Descriptions:

Module	Description				
Power Supply	Responsible for providing power to all necessary elements of the unit.				
GPS Receiver	Will interface with satellites and the microcontroller to output the				
	user's position.				
Main Controller	Responsible processing data. It will read in data from the GPS receiver;				
	which in turn will be processed so that output directional data can be				
	sent to the two motors. The main controller also contains the memory				
	of the unit, which will store the preprogrammed and user recorded				
	routes.				
РС	The user will employ his/her personal computer to configure the unit so				
	that pertinent data such as routes, waypoints, and points of interest can				
	be added to the device.				
Animal Control Collar	Control collar will consist of motors that will be used to create				
	vibrations in order to guide the service animal. The main controller will				
	send the directional data into the motors. The physical collar will be				
	adjustable so that it can comfortably fit a variety of different size and				
	breed service animals.				
User Interface	The user will be able to interact with the unit directly (so as to select				
	destinations from memory or record a route) and with his/her personal				
	computer to program routes onto the unit.				

Software Interface:

Sample Code (Simulation):

%% Generate a vector that list all of the turn waypoints on the route waypoints = [0 0; 100 0; 100 100; 200 100; 200 20; 340 20; 340 160];

%% Generate input vector, based on average walking speed and walking a % direct path between each turn

```
step = 4.546; % in ft/s
x cor = zeros(1, 145);
y cor = zeros(1,145);
cnt = 2;
while x cor(cnt-1) < (100-step)
   x cor(cnt) = x cor(cnt-1) + step;
   y \text{ cor(cnt)} = y \text{ cor(cnt-1)};
   cnt = cnt+1;
end
increment = 100 - x \operatorname{cor(cnt-1)};
x \operatorname{cor(cnt)} = x \operatorname{cor(cnt-1)} + \operatorname{increment};
y cor(cnt) = step-increment;
cnt = cnt+1;
while y cor(cnt-1) < 100-step
   x cor(cnt) = x cor(cnt-1);
   y \text{ cor(cnt)} = y \text{ cor(cnt-1)} + \text{step};
   cnt = cnt+1;
end
increment = 100 - y \operatorname{cor(cnt-1)};
y_cor(cnt) = y_cor(cnt-1) + increment;
x \text{ cor(cnt)} = x \text{ cor(cnt-1)} + \text{step-increment};
cnt = cnt+1;
while x cor(cnt-1) < 200-step
   x cor(cnt) = x cor(cnt-1)+step;
   y \text{ cor(cnt)} = y \text{ cor(cnt-1)};
   cnt = cnt+1;
end
increment = 200 - x \operatorname{cor(cnt-1)};
x_cor(cnt) = x_cor(cnt-1) + increment;
y \text{ cor(cnt)} = y \text{ cor(cnt-1)} - \text{step-increment};
cnt = cnt+1;
while y cor(cnt-1) > 20+step
   x cor(cnt) = x cor(cnt-1);
   y \text{ cor(cnt)} = y \text{ cor(cnt-1)} - \text{step};
```

```
cnt = cnt+1;
end
increment = y cor(cnt-1)-20;
y cor(cnt) = y cor(cnt-1) - increment;
x cor(cnt) = x cor(cnt-1) + step-increment;
cnt = cnt+1;
while x cor(cnt-1) < 340-step
  x cor(cnt) = x cor(cnt-1)+step;
  y \text{ cor(cnt)} = y \text{ cor(cnt-1)};
  cnt = cnt+1;
end
increment = 340 - x \operatorname{cor(cnt-1)};
x \operatorname{cor(cnt)} = x \operatorname{cor(cnt-1)} + \operatorname{increment};
y cor(cnt) = y cor(cnt-1) + step-increment;
cnt = cnt+1;
while y cor(cnt-1) < 160-step
  x cor(cnt) = x cor(cnt-1);
  y cor(cnt) = y cor(cnt-1) + step;
  cnt = cnt+1;
end
increment = 160 - y \operatorname{cor(cnt-1)};
y cor(cnt) = y cor(cnt-1) + increment;
x cor(cnt) = x cor(cnt-1) + step-increment;
cnt = cnt+1;
%% Add noise to route data using normal distribution in m, then converted to feet.
x cor n = zeros(1, 145);
y_cor_n = zeros(1, 145);
dist ave = 0;
```

```
for i = 1:1000;
for i = 1:length(x_cor)
x_cor_n(i) = x_cor(i) + 3.2808*normrnd(0,2);
y_cor_n(i) = y_cor(i) + 3.2808*normrnd(0,2);
end
```

```
turn range = 3.8208*5;
  turns = zeros(3,7);
  turn dist = zeros(1,7);
  turn cnt = 1;
  waypt cnt = 1;
  % work through each data point and check if there should be a turn
  for x = 1:length(x cor)
    if waypt cnt == 8
       break
     end
     dist = sqrt((waypoints(waypt cnt, 1)-x cor n(x))<sup>2</sup> + (waypoints(waypt cnt,2)-
y cor n(x)^{2};
     if dist < turn range
       turn dist(turn cnt) = dist;
       turns(:,turn cnt) = [x_cor_n(x); y_cor_n(x); x];
       turn cnt = turn cnt+1;
       waypt cnt = waypt cnt+1;
     end
  end
  dist ave = dist ave + sum(turn dist)/length(turn dist)/3.808;
end
dist ave = dist ave/1000
turn cnt = 1;
turn vect x = zeros(1, 145);
turn vect y = zeros(1,145);
for i = 1:145
  if turn cnt == 8
     break
  end
  if turns(3, turn cnt) == i
     turn vect x(i) = turns(1,turn cnt);
     turn vect y(i) = turns(2,turn cnt);
     turn cnt = turn cnt+1;
  else
     turn vect x(i) = 0;
    turn vect y(i) = 0;
  end
```

end

x = 1:145; %plot(x,x_cor_n,x,turn_vect_x,'.', x, x_cor); %xlabel('Sample index'), ylabel('x-coordinate (ft)'), title('Turn Performace vs. Noise: xcoordinates'), legend('Input coordinates', 'Turn Location', 'Optimal Path');

plot(x,y_cor_n,x,turn_vect_y,'.', x, y_cor); xlabel('Sample index'), ylabel('y-coordinate (ft)'), title('Turn Performace vs. Noise: ycoordinates'), legend('Input coordinates', 'Turn Location', 'Optimal Path');

Results:

User Interface:

The user interface for our devices is as follows. There are eight switches to control the device, and eight LEDs that we will be using for debugging. To select a route, the user switches one of the route switches 1-5. This instructs the device that you want to be guided to destination indicated by the switch, one being far left and five being far right. After the destination is reached, the switch must be lowered before a new route can be activated. If, during the course of the route, the user decides they would like to go back to their original location, the back track switch can be toggled. This instructs the device to reverse the routing information and direct the user back home. With all of the switches in the off position, if backtrack is switched on and then a route is selected, the device will guide your along the route backwards (starting at the destination and terminating at the start point). To record routes, the user will flip the route, at

every waypoint (turn) the user will depress the waypoint button to record that location as a waypoint. When the user has completed the route, turning the record switch off will save the current location as the end of the route. Below is an idea of what the user panel will look like on the device.

When this interface was designed, care was taken to ensure that users with vision impairments would be able to operate the device. To achieve this, tactile switches were used for almost all of the functions. This is nice because it allows the user to feel whether the switch is on or off, unlike simple push buttons or LCD menu based inputs. To input waypoints, a push button was used instead of a switch because on – off doesn't make sense for this function.

To load routes into the device, the user will need to create a text file the latitude, longitude, and direction of each waypoint along the route. The latitude and longitude must be in the format DDDMM.MMM, where D is a degree digit, and M is a minute digit. The direction, either left or right, should be stored as either 'l' or 'r'. For example, to create a waypoint at 79° 40.325' N, 52° 25.154' W, Left, the user should type on a single line 07940.325,05225.154,l. Once each waypoint is listed in a text file, the data will be loaded when the code is compiled and loaded onto the board.

Power Analysis:

The GPS unit and the microcontroller use 30 milliAmp hours (mAh) combined and so for two hours, it would take 60 [mAh]. The motors use 80 [mA/h] when they are active. If we are to vibrate the motors for three seconds for every turn, we need to calculate the amount of current used for during each turn.

Motor turn:

13

80 [mAh] / 3600 [sec] * 3 [sec] = 0.067 [mAh/turn]

We also want to vibrate both motors for 3 seconds when we want the person to stop. The person only needs to stop when the destination has been reached, therefore, only one stop will be needed.

Motor Stop:

80 [mAh] * 2 / 3600 [sec] * 3 [sec] = 0.133 [mAh]

The average walking speed of a person is 4.5466 feet per second. Looking at Google Maps, we determined that the average distance of one block is 500 feet. If the person makes an average of one turn every two blocks and waits at stoplights for an average of ten seconds, the person would make a turn every four minutes. This would result in a total of 30 turns.

Average:

500 [ft] * 2 / 4.5466 [ft/s] = 219.94 [sec] + 20 [sec] = 239.94 [sec]

0.067 [cmAh/turn] * 30 [turns] = 2.01 [mAh]

Total = 2.01 [mAh] + 0.133 [mAh] + 60 [mAh] = 62.143 [mAh]

For 2500 [mAh] batteries the lifetime would be

Lifetime = 2500 [mAh] / 62.143 [mAh] = 40.23 two hour trips

The worse case scenario would be if the person were to make a turn at every block. If we include the average of ten seconds wait at stoplights, the person would make one turn every two minutes. This would result in a total of 60 turns.

Worst Case:

500 [ft] / 4.5466 [ft/s] = 109.97 [sec] + 10 [sec] = 119.97 [sec]

0.067 [mAh/turn] * 60 [turns] = 4.02 [mAh]

Total = 4.02 [mAh] + 0.133 [mAh] + 60 [mAh] = 64.153 [mAh]

Lifetime = 2500 [mAh] / 64.153 [mAh] = 38.97 two hour trips

Module	Requirement	Test	Verification
GPS unit	GPS must report	Choose ten locations	I. Using Google Maps, record
	location accurate	outside; five in open	the coordinates of five locations
	to within five	areas and five close to	near buildings and five open-
	meters.	buildings. The error in	areas. Take the device to these
		location should no	places and measure the position
		more than five meters.	using the GPS receiver.
			Compare the measured
			coordinates with the actual
			coordinates, and ensure that
			they differ by no more than five
			meters.
	The GPS unit	Connect oscilloscope to	Verify that the GPS receiver is
	must send	the output of the UART	sending NMEA messages on
	standard NMEA	pins on the GPS	the UART transmit pin. Also
	messages via	receiver, and observe	verify that it starts sending one
	UART to the	the output.	message every second.
	microcontroller.		

Test Plan and Verification:

Motors	Control the	Have the	I. Create a test program that
	motors together	microcontroller run	cycles each motor
	and	through each possible	independently using .25, .5, and
	independently to	vibration command	1 second pulses with 50% duty
	give instructions	combination to	cycle. Use an oscilloscope to
		demonstrate the	view the PWM signal from the
		control.	transistor to ensure that the
			period and duty cycle of each
			wave is correct.
			III. Connect the motors directly
			to the power source and verify
			that the motors run.
	The	Connect an	Using the oscilloscope, view the
	microprocessor	oscilloscope to each	output waveforms directly at the
	must be able to	motor output of the	output of the microprocessor.
	output .25, .5, and	microprocessor and	Verify that the PWM waves are
	1 second pulses	view the signals.	correct as listed in the
	with 50% duty		requirement.
	cycle		
	independently on		
	two outputs		
	The motors must	Connect each of the	Verify that the motors
	run continuously	vibrating motors	continuously vibrate when
	when connected	directly to the power	provided with power.
	directly to a	supply in the lab.	
	power source.		

Microcontroller	Record routes so	Hit the record button,	Using the record feature, walk a
(Memory)	they can be	walk a route through	route and save each turn by
	successfully	the city, then hit stop.	pressing the waypoint button.
	navigated	Return to the original	Look at the recorded waypoints
		location and select that	in memory using the PC, and
		route, and verify that	verify the coordinates using
		the directions sent to	Google maps.
		the motors are correct.	
	Microcontroller	Write a test program	Using the programming
	must be able to	that writes a known	interface, verify that the
	store generated	sequence to memory.	sequence written to memory is
	data to memory		found in the correct location.
Microcontroller	The	Develop a testing	Run the test function and then
Whereeontroner	mierecentreller	function on the	view the stored data in the
	microcontroller	iunction on the	view the stored data in the
	must receive	microprocessor to	microprocessor memory. Ensure
	NMEA messages	implement only the	that the data is in the correct
	sent to it by the	UART interface and	format according to the NMEA
	GPS receiver.	store the data to	standard defined in the Skytraq
	UART interface.	memory.	datasheet.
	The device must	Choose ten turns	Walk towards each of the turns,
	not indicate a turn	outside; five in open	and stop as soon as the turn
	more than 2.5 m	areas and five close to	command is issued. Measure the
	-		
	away from the	buildings. The device	distance between where the
	away from the turn location	buildings. The device should not initiate a	distance between where the person has stopped and the
	away from the turn location	buildings. The device should not initiate a vibration for a turn	distance between where the person has stopped and the actual turn location. Verify that
	away from the turn location	buildings. The device should not initiate a vibration for a turn further than a two and	distance between where the person has stopped and the actual turn location. Verify that this distance is less than 2.5m.

		around the turn.	
	Can generate	Start walking a route	When walking the route
	raturn route at	than hit the backtrock	backwards, varify that the
	any point during	switch. Verify that the	directions are correct by
	route.	directions are correct	verifying that the turns on the
		on the return route.	return route are generated at the
			same locations as on the
			original route.
Power Supply	Full charged	Fully power on the	While the device is fully
	battery yields a	device, and record the	powered, connect a digital
	minimum of two	current and voltage	multimeter and verify that the
	hours of device	being drawn from the	output is 4.8V and 60 mA.
	use.	battery pack with the	
		motors off.	
	Full charged	Fully power on the	Connect a digital multimeter to
	battery yields a	device, and configure	the battery pack and measure
	minimum of two	the microprocessor to	the change in current between
	hours of device	run the motors	the case when the motors are
	use.	continuously. Record	running and when the motors
		the current and voltage	are off. Verify that the
		output from the battery	difference in current draw is 6
		pack.	mA.

Curb Detection:

Originally it was intended for the device to have a curb detection feature implemented using an ultrasonic sensor. After further consideration, it was evident that the data we could collect with the sensor was not going to be enough. Using the average walking speed of a human and the maximum sampling frequency of the sensor we determined the maximum sampling frequency in linear feet.

3.1 [miles/hr] x 5280 [ft/mile] x 1/3600 [hr/s] x 1/2.28 [s/sample] = 1.99 [ft/sample]

Curb detection with such a large distance between samples is impractical. The sampling points were so far apart that there was no reliable way to detect curbs. Additionally, the sensor can only be tilted a maximum of 15°.

$$\tan^{-1}(X/Y) = 15^{\circ} \rightarrow Y = 2 \text{ [ft]} / \tan^{-1}(15^{\circ}) = 7.4641 \text{ [ft]}$$

Thus, the sensor would have to be seven feet above the ground in order to see two feet in front of itself. We then found that the average height of a dog was 60 to 65 centimeters.

65 [inches]/2.54 [cm/inch] = 25.59 [inches] \rightarrow 25.59*tan (15°) = 6.8585 [inches] in front of the sensor.

Based on the average height of a dog, the sensor would have only been able to see seven inches in front of the dog, thus putting the dog and its owner at an extreme risk. Therefore, given these unrealistic parameters including a curb detection sensor on our device would be useless and unethical.

Tolerance Analysis:

The most important aspect of this device is the position and direction accuracy. The accuracy of a GPS receiver is depends on the various types of interference the signal undergoes on its path between the receiver and the satellite. The six most common forms of signal degradation include:

1) *Ephemeris data*-- Errors in the transmitted location of the satellite (3 meters on average)

2) *Satellite clock*--Errors in the transmitted clock of the satellite (2 meters on average)

3) *Ionosphere*--Errors in the corrections of pseudorange due to ionospheric effects (5 meters on average)

4) *Troposphere*--Errors in the corrections of pseudorange due to tropospheric effects (1 meters on average)

5) *Multipath*--Errors caused by reflected signals entering the receiver antenna (1 meter on average)

6) *Receiver*—Errors associated with the receiver such as noise, software, and biases. (1 meter on average)

In this case with averages values, there is an error of thirteen meters. The sum of the average errors associated with each facet of hindrance yields an overall position error of about thirteen meters. Therefore, we will ensure that our device will have an average positional accuracy of thirteen meters. To test this tolerance we will measure the user's physical distance from the GPS receiver's waypoints. For instance, if the receiver indicates that the destination has been reached, we will then measure how far off the user is from that destination. This tolerance test will be conducted during each of the "GPS Unit", "Route Recording", and "Memory" testing procedures.

Item	Make	Quantity	Cost	Total	Status
			per	Cost	
			unit		
GPS Chip	Skytraq venus634flpx	1	\$100	\$100	Posses
GPS antenna	1575R-A	1	\$5	\$5	Posses
Motor	1226A	2	\$1.95	\$3.90	Ordered
LEDs	HLMP3301	8	\$0.50	\$4	Readily-
	(red)				available
	HLMP3507				

Cost:

	(green)				
	HLMP3401				
	(yellow)				
Switches	MTS 75	0	¢0.95	\$6.90	Need to
Switches	M15-75	8	\$0.85	\$0.80	ineed to
					order
Circuit board		1	\$5	\$5	Posses
Microcontroller	ТІ	1	\$20	\$20	Need to
	MSP430F2274				order. Have
					development
					chip.
Circuit				\$10	Readily-
components					available
D. () .	D 11.1 AV			¢10	D
Batteries	Duracell 1.2V			\$10	Posses
	Rechargeable				
	AA				
Collar		1	\$10	\$10	Need to
Collai		1	\$10	\$10	
					order
Total Cost				\$174.70	

Labor:

(\$60.00/hr) x (2.5) x (150 hours) = \$22,500

Total Cost:

Parts + Labor = 210 + 22,500 = 22,614.70

Schedule:

Week	Task	Member
2/6	Research motor implementation and power supply requirements	Richard
	Research sensor integration and vibration systems	Chris
	Research direction implementation and GPS receiver capabilities	Harrison
2/13	Acquire Parts	Chris
	Design Review	Harrison
2/20	Power on and program microcontroller	Chris
	Power up GPS and verify location	Harrison
	Plan motor/microcontroller interface	Richard
2/27	Control motors using microcontroller	Richard
	Code vibration system	Chris
	Create preprogrammed routes using GPS	Harrison
3/5	Load vibration system onto microcontroller	Richard
	Load routes to GPS via PC	Harrison
	Interface GPS and microcontroller	Chris
	Read data from rangefinder with microcontroller	Chris
3/19 (Spring	Start on interfacing microcontroller for route recording	Richard
Break)	Write code for route recording	Harrison
3/26	Begin route recording test	Chris
	Write code for backtracking	Harrison
4/2	Implement backtracking onto microcontroller	Richard
	Finish route recording	Chris
4/9	Test and debug entire recorded route and backtrack	Harrison
4/16	Full unit test and debug	Richard
4/23	Demo	Chris
4/30	Presentation	Harrison
	Final Paper	Chris

Ethical Issues:

There are several ethical issues to consider when designing and implementing our idea. Most notably, it is imperative that all of our claims and feature precise and accurate. The intention of our device is to aid visually impaired people, and therefore the slightest miscalculation in the navigation solution or misdirection could result in serious injury or death to the service animal and/or the user. For instance, one-meter difference could cause someone to walk into oncoming traffic. This realization was greatly influenced by IEEE code of ethics bylaws 1, 3, 8, and 9. Additionally, we originally wanted to implement a curb detection sensor, however, upon calculating the minimum effective range of the sensor, we discovered that it would only be able to detect for a distance of six inches ahead of the service animal. We felt that this was not nearly a large enough range and would put the user and service animal in danger when approaching an intersection. The decision to ultimately exclude a sensor was made to adhere to IEEE code of ethics bylaws 1 and 9.

There are other less conventional ethical issues associated with our unit. For instance, someone could preprogram a route, attach an explosive, and use the service animal as a weapon. Using our device for such purposes would be in direct conflict of IEEE code of ethics by laws 1, 5, and 9.

References:

"Blind people safety project". Faith Degirmenci, Abdessettar Ibourki, Morad Oumina. Proposal, Spring 2006

"GPS Tracking Device with DGPS". Alex Stezskal, Algirdas Navickas, Vivek Thyagarajan. Proposal, Spring 2010

Misra, Pratap, and Per Enge. *Global Positioning System: Signals, Measurements, and Performance*. Lincoln, MA: Ganga-Jamuna, 2011. Print.

"Sam Wormley's GPS Errors & Estimating Your Receiver's Accuracy." Educational Observatory Institute. Web. 08 Feb. 2012. http://edu-observatory.org/gps/gps_accuracy.html.

Skytraq datasheet for Skytraq Venus634FLPx. <http://www.sparkfun.com/datasheets/GPS/Modules/Skytraq-Venus634FLPx_DS_v051.pdf>

"Switch Debouncing (Bounce-free Switches) Using NAND Gates - Www.ECELab.com." Electronics and Communications Engineering. Web. 21 Feb. 2012. <http://www.ecelab.com/switch-debounce-NAND.htm>.

TI datasheet for MSP430F2274. < http://www.ti.com/product/msp430f2274>.

TI datasheet for SN7400N. < http://www.ti.com/lit/ds/symlink/sn7400.pdf>.