

OTTER GPS IMPLANT

By

Andy Beugelsdijk

Nicholas Gruebnau

Sugato Ray

Final Report for ECE 445, Senior Design, Spring 2012

TA: Justine Fortier

May 2 2012

Project No. 19

`

ii

Abstract

Our group’s project this semester was to design a sub-dermal GPS implant for use under a North
American River Otter’s skin to allow local biologists to track their locational data as they continued
about their regular behavior. While there are a number of special devices available to biologists for use
to track animals, none of them are specialized enough to cater to what is required when it comes to
tracking otters. Our device uses small parts like the Arduino Pro Mini and a helical antenna GPS module
to ensure the smallest possible size and weight.

Our project’s circuitry ended up being completely functional with the exception of a damaged trace on
the PCB. Nicholas has plans to continue work on the project to refine the PCB and produce a field ready
module next semester.

`

iii

Contents
1. Introduction .. 1

1.1 Specifications ... 1

1.1.1 Tracking Unit .. 1

1.1.2 Base Station ... 1

2. Design ... 2

2.1 Block Diagram .. 2

2.1.1 Description of Block Diagram ... 3

2.2 Choice of Major Components .. 4

2.3 Equations and Calculations .. 5

2.4 Schematic ... 7

2.5 Programming ... 7

2.6 Design Alternatives .. 8

3. Design Verification .. 8

3.1 Tracking Unit .. 8

3.1.1 GPS Chip ... 8

3.1.2 Arduino Mini Pro .. 9

3.1.3 Battery .. 9

3.2 Base Station ... 9

3.2.1 Arduino Uno ... 9

3.2.2 Data Logger .. 9

3.2.3 Linx LT Series Pair ... 9

4. Costs ... 10

4.1 Parts ... 10

4.2 Labor .. 11

5. Conclusion... 11

5.1 Accomplishments ... 11

5.2 Uncertainties .. 11

5.3 Ethical considerations .. 11

5.4 Future work .. 12

References .. 13

Appendix A Requirement and Verification Table .. 14

Appendix B GPS Implant PCB Design .. 17

Appendix C GPS Satellite Fix ... 17

Appendix D Implant Arduino Code .. 18

Appendix E Base Station Arduino Code .. 24

`

1

1. Introduction
Wildlife biologists have recently started using advanced technology to monitor the behavior of animals
in their natural habitat. In particular, the return of the North American river otter population in Illinois
has piqued the interest of many local biologists. The otter was nearly considered extinct in Illinois
around the 1800s due to human interactions. After a recent reintroduction of the otter to Illinois the
animal seems to be doing well and populations are increasing. Scientists are now seeking the use of
technology in order to learn why they are thriving and what effects they will have on the environment.

Scientists frequently use collar mounted GPS tracking systems in order to record the traveling habits of
larger mammals. While these have proven useful for larger animals, animals such as the otter pose an
interesting problem in that their heads are smaller than their necks. Any sort of collared device would
simply slip off of the animal due to their active lifestyle. Similarly, harnesses or other exterior devices
run the risk of getting caught underwater and potentially suffocating the animal. Biologists studying the
otter are in need of sub-dermal tracking methods in order to safely monitor the animal without altering
its usual behavior.

The goal of our group was to develop a sub-dermal GPS implant for use with the North American River
Otter, per our biologist contact Samantha Carpenter’s request. The project was designed as small
possible and as power efficient as possible, with an emphasis on longevity of the device and the ease of
retrieval of data. Taking this into account, our group decided that, along with the implant, we would
create a “station” which would be located on a strip of land that the otter’s frequented (called a leyline).
The station would be able to wirelessly collect the data and write it to a USB device which the biologist
could collect when they came to visit the leyline for research performed roughly twice a week.

1.1 Specifications
Our project was split into two parts, the GPS implant which was to be inserted under the otter’s skin,
and the station which was to be placed in the center of the otter’s leyline.

1.1.1 Tracking Unit
The GPS Implant consists of a GPS chip which communicates with satellites and triangulates its current
position by pinging a minimum of four satellites. This data is passed along to a microcontroller which
saves it until the unit is within range of the base station. Finally, once the otter is in range of the base
station, the microcontroller sends the data to the wireless transceiver which uses an antenna to
transmit the data to another transceiver located at the base station.

1.1.2 Base Station
The Base Station consists of a large microcontroller which receives the location data from its connected
transceiver. It then sends this information to a data logger which writes the latitudes, longitudes,
altitudes, times, and dates to the USB flash drive.

`

2

2. Design
The main focus of our design procedure was the implantable tracking unit, and it was a fairly
complicated one. Two things were of utmost importance- the physical size of the implantable device,
and its power consumption. The implanted device is meant to be surgically implanted into an otter at a
field location, and hence the surgery has to as non-intrusive as possible. To accommodate this, the
device has to be extremely small. Moreover, the device is in no way meant to cause the animal to divert
in any manner from its natural habitual behaviors, as this would completely defeat its major purpose of
studying the behavior of otters. Concurrently, the tracking unit has to consume very little power as it
would be very illogical and unethical to keep performing surgeries on an animal to replace the batteries
on the device. Keeping these two factors in mind, research was conducted on similar commercially
available products. Following that, a block diagram was made and a conclusion was drawn on the choice
of parts for the implantable unit. Then, parts for the base station were chosen to complement the
components of the implant. The following subsections contain detailed of the entire design procedure.

2.1 Block Diagram

Figure 1: Project Block Diagram

`

3

2.1.1 Description of Block Diagram

Satellites:
There are a minimum of 24 GPS satellites orbiting the globe at all times. These are utilized by the GPS
implant to obtain positional information on the otters as well the UTC time at which these positional
data points are obtained.

Implant GPS Receiver:
The GPS unit consists of a programmable GPS chip with onboard storage and read/write capability. It
will receive positional coordinates and timestamps from the available satellites at periodic intervals.
Then, the information will be conveyed implant microcontroller.

Implant Microcontroller:
The implant microcontroller parses the GPS data and stores the relevant information (location and
timestamps) onto its onboard memory. The microcontroller also receives signals from the transceiver in
order to determine if it is within a transmittable range from the base station. If it is, the microcontroller
will transmit the data to the base station via the transceiver and wipe its memory for future use.

RF transceiver pair:
The implant and base station transceivers act as intermediaries between the implant and base
station microcontrollers. They, along with the antennas attached to them, govern the wireless
communication between the base station and implant, and the maximum transmission range.

Base Microcontroller and Data Logger:
The microcontroller controls the RF transceiver to extract data from the implant when the otter is within
an acceptable range, and finally stores it in the data logger. The data logger is basically a USB flash drive
connected to a USB-to-RS232 converter which is connected to the base station microcontroller.
Software simulated serial communication is used to write relevant data to the USB flash drive. The
microcontroller will also send out a signal via the transceiver signaling that data transfer is complete.

Implant Power Source:
The implant power source is a 9V, 1200mAh battery as this would ensure that the device remains fully
functional for at least 2 weeks. IC voltage regulators are used to regulate the voltage in order to achieve
the required input voltage of 3.3V. Biologists are interested in accurate location data that can only be
provided by an actively powered unit. They assured us that they have no concerns with the inevitability
of the unit requiring a battery replacement.

Base Station Power Source:
For the base station, there is no strict requirement when it comes to the power source, as long as the
battery life of the base station is longer than that of the implantable unit. To achieve this, a logical
option would be to use a two 3.7V, 6000mAH Lithium Polymer batteries, and regulate the voltage
through IC regulators to achieve an input voltage of 5V.

`

4

2.2 Choice of Major Components

Component Part Chosen Description and Reasoning

Implant GPS Receiver µblox D2523T

• Has helical antenna
which reduces its
dependence on
orientation as the RF
waves would be
circularly polarized

• Low power consumption
• Highly programmable
• Serially communicates

with microcontroller

Implant Microcontroller Arduino Pro Mini

• Very small and has
numerous software
libraries to work with

• 3.3V TTL level making it
compatible with GPS and
Transceiver

• Can power GPS and
transceiver

RF transceiver pair
Linx TRM-433-LT

(433MHz)

• Meant to be used in
pairs and designed to
communicate with each
other serially at various
baud rates

• Low power consumption

Antenna for RF transceivers
“The Splatch” - Grounded Line ¼-
Wave Monopole Antenna - 433
MHz

• Matched to the
frequency and output
line impedance (50 Ω) of
the transceivers

• PCB embeddable and
small

• Omnidirectional
• Identical antennas were

chosen for both
transceivers to avoid
polarization mismatch.

Base Microcontroller Arduino Uno SMD Edition
• Large flash memory
• Identical programming

environment as implant
microcontroller

Data Logger Parallax Datalogger
• Arduino compatible
• Large set of firmware

commands

`

5

2.3 Equations and Calculations
The main calculations that had to be performed for this project were the power calculations as the
power budget for the implantable device is fairly small. These calculations for the implantable device
were done to determine how long the device should run at its full capacity, and also to determine how
long the device would run once the proper scheduling mechanism was programmed into it. The battery
used was a 9V, 1200mAH Lithium battery. All our devices ran at an operating voltage of 3.3V. Their
procedures and results are shown next. These results were used to engineer our verification procedures
for the battery life.

Full Capacity Operation:

First fifteen minutes for startup during satellite signal acquisition,
 𝐼𝐺𝑃𝑆,𝑇𝑐𝑞𝑢𝑖𝑠𝑖𝑇𝑖𝑇𝑛 = 47𝑚𝑚

𝐼𝐺𝑃𝑆,𝑇𝑟𝑇𝑐𝑘𝑖𝑛𝑔 = 11𝑚𝑚

𝐼𝑚𝑖𝑐𝑟𝑇𝑐𝑇𝑛𝑇𝑟𝑇𝑇𝑇𝑒𝑟 = 40𝑚𝑚

𝐼𝑇𝑟𝑇𝑛𝑠𝑐𝑒𝑖𝑣𝑒𝑟 = 7𝑚𝑚

Subsequent operation,
𝐼𝐺𝑃𝑆,𝑇𝑟𝑇𝑐𝑘𝑖𝑛𝑔 = 11𝑚𝑚

𝐼𝑚𝑖𝑐𝑟𝑇𝑐𝑇𝑛𝑇𝑟𝑇𝑇𝑇𝑒𝑟 = 40𝑚𝑚

𝐼𝑇𝑟𝑇𝑛𝑠𝑐𝑒𝑖𝑣𝑒𝑟 = 7𝑚𝑚

Let t be the operation time of the devices running at Vin=3.3V after the initial 15 minutes,

𝟏.𝟐𝟏�𝑰𝑻𝒐𝒕𝒅𝒅,𝟏� + 𝑰𝑻𝒐𝒕𝒅𝒅,𝟐 × 𝒕 = 𝑴𝒅𝒅𝒅𝒅𝒎𝒎𝒑𝒎𝒐𝒖𝒓 𝒄𝒅𝒑𝒅𝒄𝒅𝒕𝒅 𝒐𝒇 𝒃𝒅𝒕𝒕𝒆𝒓𝒅 @ 𝟑.𝟑𝑽

0.25(105𝑚𝑚ℎ) + 58𝑚𝑚 × 𝑇 ℎ𝑇𝑜𝑜𝑜 = 1200𝑚𝑚ℎ ×
9

3.3

𝑇 =
1200 × 9

3.3 − 0.25(105)
58

 ℎ𝑇𝑜𝑜𝑜

∴ 𝒕 = 𝟏𝟔 𝒎𝒐𝒖𝒓𝒔

So, based on the above calculations, the battery should last about 56 hours when the implant is being
run at full capacity. However, this number should drastically increase once the scheduling mechanism
had been programmed into the implantable unit. Firstly, under clear weather conditions, the GPS

𝐼𝑇𝑇𝑇𝑇𝑇,1 = 47 + 11 + 40 + 7
𝐼𝑇𝑇𝑇𝑇𝑇,1 = 105 𝑚𝑚

𝐼𝑇𝑇𝑇𝑇𝑇,2 = 11 + 40 + 7
𝐼𝑇𝑇𝑇𝑇𝑇,2 = 58 𝑚𝑚

`

6

receiver is able to acquire a signal from the satellites within 90 seconds to 3 minutes depending on how
attenuated the signal is due to the surroundings. Furthermore, the entire implantable unit “sleeps” for
most of the day, and runs for a total of only 60 minutes a day. Considering these factors, the following
set of calculations were done, while keeping the satellite signal acquisition time at 15 minutes to
account for bad weather.

During 60 minutes of full capacity operation during the day,
 𝐼𝐺𝑃𝑆,𝑇𝑐𝑞𝑢𝑖𝑠𝑖𝑇𝑖𝑇𝑛 = 47𝑚𝑚

𝐼𝐺𝑃𝑆,𝑇𝑟𝑇𝑐𝑘𝑖𝑛𝑔 = 11𝑚𝑚

𝐼𝑚𝑖𝑐𝑟𝑇𝑐𝑇𝑛𝑇𝑟𝑇𝑇𝑇𝑒𝑟 = 40𝑚𝑚

𝐼𝑇𝑟𝑇𝑛𝑠𝑐𝑒𝑖𝑣𝑒𝑟 = 7𝑚𝑚

For the rest for the 23 hours of the day while device is in sleep mode,
𝐼𝐺𝑃𝑆,𝑇𝑟𝑇𝑐𝑘𝑖𝑛𝑔 = 0𝑚𝑚

𝐼𝑚𝑖𝑐𝑟𝑇𝑐𝑇𝑛𝑇𝑟𝑇𝑇𝑇𝑒𝑟 = 0.33𝑚𝑚

𝐼𝑇𝑟𝑇𝑛𝑠𝑐𝑒𝑖𝑣𝑒𝑟 = 0𝑚𝑚

Let d be the number of days the device should operate (battery life of device),

(105𝑚𝑚ℎ + 7.59𝑚𝑚ℎ)𝑑 = 1200 ×
9

3.3

𝑑 =
1200 × 9

3.3
105 + 7.59

 ℎ𝑇𝑜𝑜𝑜

𝑑 = 29.06 𝑑𝑇𝑦𝑜 → 𝒅 ≈ 𝟐𝟓 𝒅𝒅𝒅𝒔 𝒐𝒇 𝒐𝒑𝒆𝒓𝒅𝒕𝒅𝒐𝒏

Therefore, from the calculations shown above, it was deduced that the device would run for about 4
weeks under moderate weather conditions. When it comes to the 60 minutes it operates at full capacity
a day, the device should be able to acquire at least 4 data points given the skeptically estimated satellite
signal acquisition time of 15 minutes. Realistically, higher expectations can be set as the signal
acquisition time is usually much shorter as hostile weather conditions are not that frequent.

𝐼𝑇𝑇𝑇𝑇𝑇,1 = 47 + 11 + 40 + 7
𝐼𝑇𝑇𝑇𝑇𝑇,1 = 105 𝑚𝑚
𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑇𝑇𝑚𝑇𝑚𝑚 ℎ𝑇𝑜𝑜𝑜 𝑑𝑜𝑇𝑑𝑑 = 105𝑚𝑚 × 1ℎ𝑇𝑜𝑜

= 𝟏𝟏𝟏𝒎𝒎𝒎 𝒅𝒅𝒅𝒅𝒅

𝐼𝑇𝑇𝑇𝑇𝑇,2 = 0.33 𝑚𝑚
𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑇𝑇𝑚𝑇𝑚𝑚 ℎ𝑇𝑜𝑜𝑜 𝑑𝑜𝑇𝑑𝑑 = 0.33𝑚𝑚 × 23ℎ𝑇𝑜𝑜𝑜

= 𝟕.𝟏𝟓𝒎𝒎𝒎 𝒅𝒅𝒅𝒅𝒅

`

7

2.4 Schematic

Figure 2: Schematic

2.5 Programming
The design of the code began with first listing the necessary tasks that needed to be accomplished by
the overall system. For the Implant, it needs to successfully obtain GPS data several times a day and
store this data temporarily until it can be transferred to the Base Station. For the Base Station, it needs
to take the wirelessly transferred data from the Implant and store it onto a USB drive. For both the
Implant and the Base Station, they both need to have a way of listening for and detecting each other.
The code for the Implant ended up having three main sections: GPS parsing, time monitoring, and Base
Station communication. Similarly, the code for the Base Station was also made up of three main
functions: detection signal broadcasting, Implant communication, and data transfer to the USB stick. The
final codes for both the Implant and Base Station can be found in Appendix D and Appendix E,
respectively.

`

8

2.6 Design Alternatives
There were a few other things that our group was considering regarding the design of our project.
Initially, we thought of using a long, high gain, linearly polarized antenna for the GPS to improve our
signal strength and have it stick out of the otter. However, the only problem with that was the
orientation of the antenna would greatly affect the functionality of the device. So, this idea was
discarded.

Another alternative that was being considered was the use of two 3.7V, 2000mAh Lithium Polymer
batteries instead of a single 9V, 1200mAh battery for the implant. These Lithium Polymer batteries are
much thinner, and lighter than the 9V, 1200mAh battery. However, they are about 1.5 times wider.
Therefore, we went with the 9V battery instead.

We were also thinking of having a dedicated receiver and a transmitter on both the implantable unit and
the base station so that both devices could transmit and receive data simultaneously. However, due to
our small power budget regarding the implant, we had to discard this idea.

3. Design Verification
Our project met all of the verifications that the group had set for itself. While the functionality of the
Linx LT Series Pair was not able to be demonstrated, the parts successfully transmitted the data in a lab
setting.

3.1 Tracking Unit
The tracking unit was successful in its acquisition of data and transferring of said data to the base
station.

3.1.1 GPS Chip
The GPS chip successfully acquired data that was accurate to our true location. This was verified using
the Google location API through Google Earth against a GPS fix given by the chip. As shown in the table
below, the GPS receiver’s data was more than 99% accurate.

Test Vs. Google
Location API

Implant GPS Unit
[From 169EL]

Actual [From Google
Location API]

Percentage Error
[%]

Latitude [o] -88.227829 -88.27945 0.05847454

Longitude [o] 40.110867 40.110926 0.00014709

Time [UTC] 20:03:38 20:03:38 0

Elevation [m] 213.00 212.00 -0.47169811

Date [M/D/Y] 3 / 27 / 2012 3 / 27 / 2012 0

`

9

3.1.2 Arduino Mini Pro
The Mini Pro successfully stored data on to its onboard memory and once the data was sent it deleted
the old data to make room for the new. This was verified by sending data in one of its RxI pins and then
trying to access it through its TxO pin. The memory was then checked through Arduino’s serial monitor;
the memory locations were deleted once the data was sent.

3.1.3 Battery
By stress testing the unit under different conditions (bad weather, through skin, various media) we were
able to get an idea of the power the implantable unit would consume. When we performed the stress
test, our 9V, 1200mAh battery lasted for 48 hours while running at full capacity under moderate
weather conditions.

3.2 Base Station
The Base Station was successful in collected the data from the implant and writing the data to a data
logger.

3.2.1 Arduino Uno
The Arduino Uno successfully parsed the data from the station transceiver to the data logger so that it
could be written.

3.2.2 Data Logger
The Data Logger successfully wrote the data to a USB. The group then opened the file on the USB and
ensured that it had been written in a manner that was clear and concise.

3.2.3 Linx LT Series Pair
The Linx LT Series Pair was able to transmit messages back and forth in the lab over the small distances
(5ft) that we required. They were not shown, however, on the PCB. Below is a screenshot captured on
the oscilloscope of the output of one of the transceivers that was receiving a signal from the other a
small distance away. Signal strength pin [RSSI] was probed and the measured voltage was shown to
correspond to a signal strength of -5dB, as per our verifications.

Figure 3: Linx Transceiver RSSI

`

10

4. Costs
4.1 Parts

Part Manufacturer Retail Cost
($)

Bulk Purchase Cost
($)

of
Units

Bought

Actual
Cost
($)

50 Channel D2523T
Helical GPS Receiver

ADH Technology
Co. Ltd.

79.95/unit 71.96/unit for 10-
99

1 79.95

Linx LT Series
433MHz RF

Transceiver Module

Linx Technologies
Inc.

15.47/unit 13.43/unit for 100 2 30.94

Linx 433MHz SP
Series “The Splatch”

Antenna

Linx Technologies
Inc.

2.41/unit 2.03/unit for 100 2 4.82

Arduino Pro Mini
328-3.3V/8MHz

Arduino 18.95/unit 17.06/unit for 10-
99

1 18.95

FTDI Basic Breakout-
3.3V

Future Technology
Devices

International Ltd.

14.95/unit 13.46/unit for 10-
99

1 14.95

FTDI Cable 5V VCC-
3.3V I/O

Future Technology
Devices

International Ltd.

17.95/unit 16.16/unit for 10-
99

1 17.95

Arduino Uno SMD Arduino 29.95/unit 26.96/unit for 10-
99

1 29.95

Memory Stick
Datalogger

Parallax Inc. 39.99/unit 35.99/unit for 10 1 39.99

Ultralife 9V Lithium
Battery-1200mAh

Ultralife 7.95/unit 7.50/unit for 12-71 1 7.95

Polymer Lithium Ion
Battery-6Ah

Union Battery
Corp.

39.95/unit 35.96/unit for 10-
99

1 39.95

USB 2.0 A Male to B
Male Cable (1m)

Cables to Go 7.99/unit ------- 1 7.99

USB 2.0 A Male to
Mini-B Male Cable

(1m)

Cables to Go 11.99/unit ------- 1 11.99

Total Cost 305.38

`

11

4.2 Labor

Engineers Rate ($) Hours/Week Total # of Weeks Multiplier Total ($)
Sugato Ray 40/hr 10 13 2.5 13,000
Nick Gruebnau 40/hr 10 13 2.5 13,000
Andrew Beugelsdijk 40/hr 10 13 2.5 13,000

Total Cost 39,000

5. Conclusion

Our group was very pleased with the outcome of our project and the reception with which it was
received. The demonstration proved that the circuitry was completely functional baring the damaged
wireless transceiver. Having proven the transceiver’s functionality prior to the demonstration, however,
the group is confident that the parts can be replaced with ease and be installed on a new PCB for a field-
ready project.

5.1 Accomplishments
Our project succeeded in our goal of obtaining accurate location information while providing long
battery life. Conservative estimates of the Tracking System’s battery life were roughly twenty one days,
or a week longer than we had initially intended. While it is possible that this lifetime may change once
the device is properly housed, we believe that the time span provided will be sufficient for the biologists
needs.

The device was also capable of getting location data (time, latitude, longitude) accurately; to within less
than one percent error of that provided by Google Maps when provided with an address.
Finally, and perhaps most importantly, the biologists were satisfied with the size of the device which was
shown both as its PCB footprint and with all of the parts attached. Given proper functionality, good life
span, and acceptable size, our group believes we accomplished our major goals for this project.

5.2 Uncertainties
Some uncertainties do remain with the housing for the implant and base station. At the time of this
writing, we are considering using a silicon based coating so as to ensure an ergonomic design for the
implant. Any weather proof casing for the base station will suffice. The entire system’s functionality will
need to be retested once proper housing has been found for both units.

5.3 Ethical considerations
Given that this project is to be inserted under the skin of a living animal, the group had many ethical
issues to consider. Comfort of the animal was a primary concern, and the implant portion was designed
to be as small as possible so as not to cause discomfort during the otter’s daily activities. It was also
constructed to weight no more than 3 pounds, or 10% of the otter’s total body weight.

`

12

5.4 Future work
One group member, Nicholas Gruebnau, will be taking an independent study next semester to finalize
the PCB design, add the transceivers to the circuit, and find suitable housing so as to create a field ready
product that the biologists can begin using.

New PCB designs are being constructed to further reduce the size of the implantable device. One of our
Group members, Sugato Ray, is currently corresponding with his old employers about helping the group
make new PCBs on flexible substrates to make it easier for the biologists to surgically implant this
device.

Furthermore, new PCB designs for the base station are also being made to reduce the noise floor that
the Transceiver would have to deal with in order to increase the fidelity of received signals. This would
also help increase the range at which the base station as implantable unit can communicate with each
other as it would make it possible for the Transceiver to accurately decipher weaker signals.

Our Group is also looking into a new device to be added onto the base station, name the Linx HP series
RF module. This device has the capability of working on different frequencies. This will allow one to
differentiate one otter from another through the use of frequency signatures.

`

13

References

[1] Linx Technologies LT Series, web page. Available at: http://www.linxtechnologies.com/products/rf-
modules/lt-series-transceiver-modules/. Accessed April 2012.

[2] Arduino CC, web page. Available at : http://arduino.cc/en/Tutorial/HomePage. Accessed April 2012.

[3] Parallax, web page. Available at : http://www.parallax.com/tabid/768/ProductID/434/Default.aspx.
Accessed April 2012.

[4] Misra, Pratap, and Per Enge. Global Positioning System: Signals, Measurements, and Performance.
Lincoln: Ganga-Jamuna Press, 2006. Print.

http://www.linxtechnologies.com/products/rf-modules/lt-series-transceiver-modules/
http://www.linxtechnologies.com/products/rf-modules/lt-series-transceiver-modules/

`

14

Appendix A Requirement and Verification Table

Requirement Verification Verification
Status

1.GPS Unit

-Acquires signals from 4 satellites
to gain positional information.

a. Gets accurate information
of location. Error : location
<10m; timestamp within <
1s of time taken.

b. Must be able to run on
power saving mode and
ping satellites defined by
user programing.

c. Must be able to
communicate with
microcontroller.

1. The GPS unit is connected to the
Arduino Mini. It receives instructions
from the unit as well as parses data to
the microcontroller. To test it, we can
use a user interface provided by the
manufacturer and monitor its outputs
using a bread board.

a. GPS unit will be turned on,
connected to bread board
and then to PC. Data will be
obtained using NMEA parsing
software. This will ensure
accuracy and precision of
data.

b. User defined program will be
uploaded using ublox-6
software to determine ping
intervals and minimize power
consumption.

c. Serial input/output port (Tx,
Rx) will be connected to
Arduino Mini to test
communication between then
and data transfer rate.

Verified

2. Arduino Mini (Implant
Microcontroller)

-Arduino mini will receive location
data and time stamp from GPS and
store it onto onboard memory.
Then it will convey the information
to RF transceiver when it is in
range of the base station.

a. Has to parse NHEA data
received and store only
relevant information,
namely timestamp and
location.

b. Has to receive signal from
Linx module confirming
range and pass data to it
for transmission. Then it

2. The Arduino Mini will be attached
to a bread board and connected to an
Arduino Uno (already owned). The
Uno is recommended by Arduino as a
solid debugging/programing tool as it
can connect to the Mini and use its
USB port to connect to a computer for
a user interface.

a. Will use bread board and
upload NMEA parsing
program and collect test data
to see if accurate location and
time information is stored
onto memory without using
too much memory space.

b. Connect Linx module to
microcontroller and see if it
can recognize its input signal

Verified

`

15

must wipe the transmitted
data from memory.

c. Has to run in power save
mode to minimize power
consumption.

to confirm transmittable
range and then send out the
information back to it at a
matched data transfer rate.
We will also ensure that the
data that has been
transferred will be wiped
from memory once stop
signal is received from RF
transceiver.

c. Will upload program that puts
the microcontroller to sleep
mode and verify that it turns
on only when the GPS module
is about to ping the satellites
by making use of the start bit
sent out by the GPS module.

3. RF Transceiver Pair
-The transceiver pair must be able
to communicate with each other
and transfer data accurately. The
Linx patch and standard monopole
antennas must be able to
communicate within a reasonable
range of at approximately 5ft so
that we can get the data from the
otter.

a. Range of transmission
should be about 5ft.

b. Sends data between each
pair and convey the data
received to their
respective
microcontrollers.

3. The transceivers can be wired to
the Arduino Mini/Uno on a bread
board and the inputs/outputs
monitored to ensure it will send or
receive the correct data. We also will
have a manufacturer made evaluation
kit to ensure our antenna’s
transmission range will be correct.

a. Put the transceivers 5ft apart
and adjust the output power
level of the transceiver using
the LADJ pin to see if a
minimum of -5dBm signal is
obtained.

b. Will send arbitrary data
trough microcontroller and
see if it can be received and
transferred to the
microcontroller.

Verified in lab,
but not

successfully
implemented

onto PCB

4. Station Microcontroller
(Arduino Uno)
-Must receive data from implant
and store send it to the Data
Logger protocol to be written to
the USB drive.

a. Must be able to
communicate with
transceiver in order to
receive information and
change

4. The microcontroller can be
powered and analyzed using a simple
bread board. It has a USB port so that
it can be easily programmed using
manufacturer provided user interface.

a. Will serially upload
information to Linx and see if
the microcontroller can
receive the data. We will also
monitor the Linx transceiver
and make sure that the Uno is

Verified

`

16

transmitting/receiving
mode.

b. Must be able to send data
to Data Logger block.

correct managing the
transceiver’s send/receive
protocols.

b. Will send data to Data Logger
and ensure that the correct
data appears on that end.

5. Data Logger
-Must receive data from Arduino
Uno and write data to the USB.

a. Will write data the USB in
an easy to understand
format for use by the
biologists.

5. The Data Logger block is within the
microcontroller. It is programmed the
same way the Uno will be.

a. Will send arbitrary data to the
microcontroller’s writing
protocol and ensure that it
records the data properly.

Verified

6. GPS Power Source

- Implant must record location
data at a high enough frequency
that it will provide an accurate
representation of the traveling
habits of the otter. At the same
time, the more often the chip
pings satellites, the faster we will
drain the battery.

a. Must provide at least 2
locations per day and will
last approximately 2
weeks.

6. Unit will be “stress tested” using
different satellite pinging rates. We
can then use voltmeter to see how
long the required voltage can be
maintained.

a. Will test battery life
starting with at least
2 data collections
each day, and slowly
increase until we find
a reasonable balance.

Verified

`

17

Appendix B GPS Implant PCB Design

Appendix C GPS Satellite Fix

`

18

Appendix D Implant Arduino Code
#include <SoftwareSerial.h>

//GPS PARSING VARIABLES
int rxPin = 1; //gps serial rx pin
int txPin = 0; //gps serial tx pin
int powerGPS = 4; //gps power pin //CHECK IMPLANT PCB AND FIX ACCORDINGLY
int byteGPS = -1; //used for storing an incoming gps byte
char NMEA_code[7] = "$GPRMC"; //used for specifying gps output to be parsed
boolean code_match = true; //will determine if NMEA_code is matched
boolean ping_successful = false; //will determine when gps data has successfully been obtained
char buffer[300]; //used for storing incoming gps bytes
int buffer_length = 0; //gives the length of buffer being used
int indices[13]; //used for storing the indices of the buffer that correspond to a ',' or '*' character
int indices_length = 0; //gives the length of indices being used

//TIME MONITORING VARIABLES
boolean StartUp = true; //shows that the implant has just been started (or restarted)
int theTime = 0; //keeps track of the hr of the day in min (1 hr = 1,440 min)
unsigned long duration = 0; //keeps track of the # of min passed since theTime was last updated
unsigned long prev_millis = 0; //stores the millisecond count from when theTime was last updated
unsigned long curr_millis = 0; //stores the current millisecond count while updating theTime

//TRANSCEIVER INTERFACE & BASE STATION COMMUNICATION VARIABLES
SoftwareSerial transSerial_R(12, 13); //transceiver serial receive, rx is pin 12 (pin 13 is dummy tx)
SoftwareSerial transSerial_T(13, 12); //transceiver serial transmit, tx is pin 12 (pin 13 is dummy rx)
int TR_Pin = 10; //transceiver transmit/receive select pin (HIGH = transmit, LOW = receive)
int PDN_Pin = 9; //transceiver power down pin (HIGH = power on, LOW = power down) this pin should always be HIGH
boolean transmit_successful = false;
int transmit_time = -1;
char byteIn = 0; //used for storing an incoming transceiver byte
char base_signal = 63; //detection byte that the base station is broadcasting (decimal 63 equals a '?' character)
char implant_response = 33; //response byte that the base station listens for (decimal 33 equals a '!' character)

//DATA STORAGE & MESSAGE STRUCTURE VARIABLES
const int max_length = 100;
char lat[max_length]; //buffer for storing latitude values
char lon[max_length]; //buffer for storing longitude values
char time[max_length]; //buffer for storing time-stamp values
char date[max_length]; //buffer for storing date-stamp values
int lat_length = 0; //gives the length of lat being used
int lon_length = 0; //gives the length of lon being used
int time_length = 0; //gives the length of time being used
int date_length = 0; //gives the length of date being used
char byteStart = 1; //the start byte is a "start of heading" character
char byteEnd = 10; //the end byte is a "new line" character
char byteStop = 4; //the stop byte is a "end of transmission" character
char end_of_instance = 13; //used to separate instances of gps data (decimal 13 = 'carriage return')
//MESSAGE FORMAT: byteStart, (latitudes, byteEnd, longitudes, byteEnd, times, byteEnd, dates, byteEnd, byteStop)x3, byteStart

void setup(){
 pinMode(rxPin, INPUT);
 pinMode(txPin, OUTPUT);
 pinMode(TR_Pin, OUTPUT);
 pinMode(PDN_Pin, OUTPUT);
 digitalWrite(PDN_Pin, HIGH); //power up transceiver
 digitalWrite(TR_Pin, LOW); //set transceiver to receive
 pinMode(12, INPUT); //set transSerial_R rx pin as digital input
 Serial.begin(9600);
 transSerial_R.begin(9600);
 transSerial_T.begin(9600);
 //initialize all buffers to have null values (decimal 0 = null character)

`

19

 for (int i=0; i<300; i++){
 buffer[i] = 0;
 }
 for(int i=0; i<max_length; i++) {
 lat[i] = 0;
 lon[i] = 0;
 time[i] = 0;
 date[i] = 0;
 }
 Serial.println("Setup Complete");
} //end "setup"

void loop(){

 //GPS PARSING CODE
 //if the implant is just starting, the time needs to be determined (via gps)
 //if theTime is 8pm, 12am, or 4am, gps data needs to be logged //CHECK WITH GROUP AND CHANGE AS NECESSARY
 if (StartUp == true || (theTime == 790 && ping_successful == false) || (theTime == 0 && ping_successful == false) || (theTime == 240 &&
ping_successful == false)){
 ping_successful = false; //show that correct gps data has not yet been successfully received
 //digitalWrite(powerGPS,); //power up gps
 prev_millis = millis(); //used for seeing how long it takes to successfully ping the satellites

 if (StartUp == true){
 Serial.println("'StartUp' Mode: Attempting contact with GPS satellites for time-of-day initialization");
 }
 else{
 Serial.println("'Ping' Mode: Attempting contact with GPS satellites to obtain location data");
 }
 Serial.println("");
 Serial.println("Waiting for valid GPS data...");

 while (ping_successful != true){
 //check how much time has passed since beginning this loop for pinging the satellites
 curr_millis = millis();
 if (prev_millis > curr_millis){ //check for millis() overflow and adjust if necessary
 //millis() has range of 0 to 4294967295, so it overflows after reaching 4294967295
 //overall, duration in minutes needs to equal ((4294967295 + 1) - (prev_millis - curr_millis))/60000
 //because of overflow issues, the above computation needs to be carried out in the following order of steps:
 duration = 4294967295;
 duration -= (prev_millis - curr_millis);
 duration += 1;
 duration /= 60000;
 }
 else{
 duration = (curr_millis - prev_millis)/60000; //duration equals the # of min since last time calculation
 }

 //if implant is no longer in start-up mode and duration is greater than 15 min,
 //then the implant is in bad location for acquiring satellite signals, so this attempt should be terminated
 if (StartUp == false && duration > 15){
 Serial.println("");
 Serial.println("Satellite communication cannot be established. Quitting attempt.");
 break; //this will exit the while loop and skip down to the line of code that powers down the gps
 }
 //if the implant is in start-up mode, the duration to successfully acquire gps data may be > than 20 min
 //thus the while loop should continue until valid gps data has been obtained

 byteGPS=Serial.read(); //read a byte from the gps serial port
 //Serial.print(char(byteGPS));
 if (byteGPS == -1){ //check if the serial port is empty
 delay(100); //if so, wait 0.1 seconds
 }
 else{
 buffer[buffer_length] = byteGPS; //if there is serial port data, it is put in the buffer

`

20

 buffer_length++;
 if (byteGPS == 13){ //if the received byte is equal to 13, there is no more data to be received
 //buffer is now ready for parsing
 code_match = true;
 //Serial.println("");

 for (int i=1; i<7; i++){ //verify if the received command starts with $GPRMC
 if (buffer[i] != NMEA_code[i-1]){
 code_match = false; //if there is a mismatch, code_match is false
 }
 }

 indices_length = 0;
 if (code_match == true){ //if the NMEA_code is matched, continue parsing data
 //need to fill in the indices array for efficient data parsing
 for (int i=0; i<300; i++){
 if (buffer[i]==','){ //check for the position of the "," separator
 indices[indices_length]=i;
 indices_length++;
 }
 if (buffer[i]=='*'){ //check for the position of the "*" character
 indices[12]=i;
 indices_length++;
 }
 }
 //indices array now updated
 //Serial.println("No reception yet. GPS Status is V");
 if (buffer[indices[1]+1] == 'A'){ //check if the "status" is 'A' OK. If so, then store info into buffer
 Serial.print("Total Wait Time (in Minutes): ");
 Serial.println(duration);
 Serial.println("");
 Serial.println("GPS Status is 'A': Valid GPS data obtained");
 Serial.println("");
 for (int i=0; i<12; i++){
 //CASE 0 : Time in UTC (HhMmSs)
 //CASE 1 : Status (A=OK,V=KO)
 //CASE 2 : Latitude
 //CASE 3 : Direction (N/S)
 //CASE 4 : Longitude
 //CASE 5 : Direction (E/W)
 //CASE 6 : Velocity in knots
 //CASE 7 : Heading in degrees
 //CASE 8 : Date UTC (DdMmAa)
 //CASE 9 : Magnetic degrees
 //CASE 10 : (E/W)
 //CASE 11 : Mode
 //CASE 12 : Checksum

 //store time data
 if (i == 0 && time_length < max_length){
 Serial.print("Time Data: ");
 for (int j=(indices[i]+1); j<indices[i+1]; j++){
 Serial.print(char(buffer[j]));
 time[time_length] = buffer[j];
 time_length++;
 }
 time[time_length] = end_of_instance;
 time_length++;

 //update theTime according to GPS time
 prev_millis = millis();
 int k = indices[i]+1;
 //ascii character '0' is equal to decimal value 48
 theTime = int(buffer[k+1] - 48); //buffer[k+1] is the 'h' of 'Hh'
 theTime += (int(buffer[k] - 48))*10; //buffer[k] is the 'H' of 'Hh' which explains the multiplicand of 10
 //theTime now equals the hour of the day in Coordinated Universal Time (UTC)

`

21

 //DANGEROUS ASSUMPTION: currently assuming that implant will remain in Central Time Zone
 theTime -= 5; //converts theTime to Central Time Zone
 if (theTime < 0){
 theTime += 24;
 }
 theTime *= 60; //converts theTime to minutes
 theTime += int(buffer[k+3] - 48); //buffer[k+3] is the 'm' of 'Mm'
 theTime += (int(buffer[k+2] - 48))*10; //buffer[k+2] is the 'M' of 'Mm'
 //theTime is now updated (assuming gps time is correct)
 }

 //store latitude data
 if (i == 2 && lat_length < max_length){
 Serial.println("");
 Serial.print("Latitude Data: ");
 for (int j=(indices[i]+1); j<indices[i+1]; j++){
 Serial.print(char(buffer[j]));
 lat[lat_length] = buffer[j];
 lat_length++;
 }
 lat[lat_length] = end_of_instance;
 lat_length++;
 }

 //store longitude data
 if (i == 4 && lon_length < max_length){
 Serial.println("");
 Serial.print("Longitude Data: ");
 for (int j=(indices[i]+1); j<indices[i+1]; j++){
 Serial.print(char(buffer[j]));
 lon[lon_length] = buffer[j];
 lon_length++;
 }
 lon[lon_length] = end_of_instance;
 lon_length++;
 }

 //store date data
 if (i == 8 && date_length < max_length){
 Serial.println("");
 Serial.print("Date Data: ");
 for (int j=(indices[i]+1); j<indices[i+1]; j++){
 Serial.print(char(buffer[j]));
 date[date_length] = buffer[j];
 date_length++;
 }
 date[date_length] = end_of_instance;
 date_length++;
 }
 } //end "for (int i=0;i<12;i++)"

 Serial.println("");
 Serial.print("GPS Time: ");
 Serial.print(theTime);
 Serial.print(" min. = ");
 int tt = theTime/60;
 int mm = theTime - (tt*60);
 Serial.print(tt);
 Serial.print(":");
 if (mm <= 9){
 Serial.print(0);
 }
 Serial.print(mm);
 Serial.println(" CST");

 ping_successful = true; //confirm that gps data was successfully received

`

22

 if (StartUp == true){
 StartUp = false; //start-up time has been determined, implant is no longer in start-up mode
 }

 } //end "if (buffer[indices[1]+1] == 'A')"
 } //end "if (code_match == true)"

 //reset buffer
 buffer_length = 0;
 for (int i=0; i<300; i++){
 buffer[i] = 0;
 }

 } //end "if (byteGPS == 13)"
 } //end "if (byteGPS == -1) else"
 } //end "while (ping_successful != true)"

 //digitalWrite(powerGPS,); //power down gps
 Serial.println("");
 Serial.println("Waiting for next GPS ping or Base Station data transfer...");
 } //end "if (StartUp == true || theTime == 1200 || theTime == 0 || theTime == 240)"

 //TIME MONITORING CODE
 curr_millis = millis();
 if (prev_millis > curr_millis){ //check for millis() overflow and adjust if necessary
 //millis() has range of 0 to 4294967295, so it overflows after reaching 4294967295
 //overall, duration in minutes needs to equal ((4294967295 + 1) - (prev_millis - curr_millis))/60000
 //because of overflow issues, the above computation needs to be carried out in the following order of steps:
 duration = 4294967295;
 duration -= (prev_millis - curr_millis);
 duration += 1;
 duration /= 60000;
 }
 else{
 duration = (curr_millis - prev_millis)/60000; //duration equals the # of min since last time calculation
 }
 if (duration > 0){
 theTime += duration;
 theTime = theTime % 1440; //cycle through the 1440 minutes in 1 day
 //theTime is now updated
 //if theTime == 0, this means the time is 12am
 prev_millis = curr_millis;
 //Serial.println(duration);
 //Serial.println(theTime);
 ping_successful = false;
 }

 //BASE STATION COMMUNICATION CODE
 if (transmit_successful == true){
 if (transmit_time <= theTime){
 if ((transmit_time + 60) == theTime){
 transmit_successful = false;
 }
 }
 if (transmit_time > theTime){
 if ((transmit_time + 60) == (theTime + 1440)){
 transmit_successful = false;
 }
 }
 }

 byteIn = transSerial_R.read(); //read a byte from the transceiver
 if (byteIn == base_signal && transmit_successful == false){ //check if the base station has been found. if so, send response and all data
 Serial.println("Base Station found. Preparing for data transfer");

`

23

 digitalWrite(TR_Pin, HIGH); //set transceiver to transmit
 pinMode(12, OUTPUT); //set transSerial_T tx pin as digital output

 //send response 6 times so the base station will not accidentally miss it
 for(int i=0; i<6; i++){
 transSerial_T.write(implant_response);
 }

 Serial.println("Sending data...");
 //send all stored data (in the message format) 3 times for ensured data transmission
 transSerial_T.write(byteStart);
 for(int i=0; i<3; i++){
 for(int i=0; i<lat_length; i++){
 transSerial_T.write(lat[i]);
 }
 transSerial_T.write(byteEnd);
 for(int i=0; i<lon_length; i++){
 transSerial_T.write(lon[i]);
 }
 transSerial_T.write(byteEnd);
 for(int i=0; i<time_length; i++){
 transSerial_T.write(time[i]);
 }
 transSerial_T.write(byteEnd);
 for(int i=0; i<date_length; i++){
 transSerial_T.write(date[i]);
 }
 transSerial_T.write(byteEnd);
 transSerial_T.write(byteStop);
 } //end "for(int i=0; i<3; i++)"
 transSerial_T.write(byteStart);
 Serial.println("Data transfer complete");
 //reset lat, lon, time, and date buffers
 lat_length = 0;
 lon_length = 0;
 time_length = 0;
 date_length = 0;
 for (int i=0; i<max_length; i++){
 lat[i] = 0;
 lon[i] = 0;
 time[i] = 0;
 date[i] = 0;
 }
 digitalWrite(TR_Pin, LOW); //set transceiver back to receive
 pinMode(12, INPUT); //set transSerial_R rx pin as digital input
 transmit_successful = true;
 transmit_time = theTime;

 Serial.println("");
 Serial.println("Waiting for next GPS ping or Base Station data transfer...");
 } //end "if (byteIn == base_signal)

} //end "loop"

`

24

Appendix E Base Station Arduino Code
#include <SoftwareSerial.h>
#include <string.h>
#include <ctype.h> //are these first 2 lines necessary? (I saw them in sample code online for GPS parsing)

int rxPin = 0; //serial input pin
int txPin = 1; //serial output pin
int trPin = 2; //digital output pin that connects to transceiver’s T/R SEL pin
SoftwareSerial dlSerial(3, 4); //3 is rx, 4 is tx
int count = 0; //used for loading indexing buffer
char byteIn = 0; //variable for temporarily storing incoming byte
char buff[300]; //input buffer for storing received bytes from implant (the size is arbitrarily 300, can be changed)

const int max_length = 100;
char lat[max_length]; //buffer for storing latitude values
char lon[max_length]; //buffer for storing longitude values
char time[max_length]; //buffer for storing time-stamp values
char date[max_length]; //buffer for storing date-stamp values
int lat_length = 0; //gives the length of lat being used
int lon_length = 0; //gives the length of lon being used
int time_length = 0; //gives the length of time being used
int date_length = 0; //gives the length of date being used

char byteStart = 1; //the start byte is a "start of heading" character
char byteEnd = 10; //the end byte is a "new line" character
char byteStop = 4; //the stop byte is a "end of transmission" character
char end_of_instance = 13; //used to separate instances of gps data (decimal 13 = 'carriage return')
//MESSAGE FORMAT: byteStart, (latitudes, byteEnd, longitudes, byteEnd, times, byteEnd, dates, byteEnd, byteStop)x3, byteStart

boolean tansfer_successful = false;
unsigned long curr_millis = 0;
unsigned long prev_millis = 0;
unsigned long duration = 0;

void setup() {
 pinMode(rxPin, INPUT);
 pinMode(txPin, OUTPUT);
 pinMode(trPin, OUTPUT);
 Serial.begin(9600); //set baud rate to 9600 (transceiver data sheet says it can handle up to 10,000 baud rate)
 for(int i=0; i<300; i++) {
 buff[i] = 0; //initialize all buffer characters to NULL value
 } //end "for"
 for(int i=0; i<max_length; i++) {
 lat[i] = 0;
 lon[i] = 0;
 time[i] = 0;
 date[i] = 0;
 }
} //end "setup"

void loop() {

`

25

 digitalWrite(trPin, HIGH); //set transceiver to transmit mode
 for(int i=0; i<5; i++) {
 Serial.write(63); //send detection signal 5 times
 } // end “for”

 if (transfer_successful == true){
 curr_millis = millis();
 if (prev_millis > curr_millis){ //check for millis() overflow and adjust if necessary
 //millis() has range of 0 to 4294967295, so it overflows after reaching 4294967295
 //overall, duration in minutes needs to equal ((4294967295 + 1) - (prev_millis - curr_millis))/60000
 //because of overflow issues, the above computation needs to be carried out in the following order of steps:
 duration = 4294967295;
 duration -= (prev_millis - curr_millis);
 duration += 1;
 duration /= 60000;
 }
 else{
 duration = (curr_millis - prev_millis)/60000; //duration equals the # of min since last time calculation
 }
 if(duration > 60){
 transfer_successful = false;
 }
 }

 digitalWrite(trPin, LOW); //set transceiver to receive mode
 for(int i=0; i<7; i++) {
 if(transfer_successful == false){
 byteIn = Serial.read();
 Serial.println(byteIn);
 if(byteIn == 33) { //check if the received byte equals the response signal

 //look for the start byte (some of the bytes being read may still be the response signal, 45)
 while(byteIn != byteStart || byteIn != byteStop) {
 byteIn = Serial.read();
 Serial.print(byteIn);
 } //end “while"
 Serial.println("");

 byteIn = Serial.read();
 //look for the end byte and store all previous bytes in the latitude buffer, lat[]
 while(byteIn != byteEnd && lat_length < 150) {
 Serial.print(char(byteIn));
 lat[lat_length] = byteIn;
 lat_length++;
 byteIn = Serial.read();
 } //end “while”
 Serial.println("");

 byteIn = Serial.read();
 //look for the end byte and store all previous bytes in the longitude buffer, lon[]
 while(byteIn != byteEnd && lon_length < 150) {
 Serial.print(char(byteIn));
 lon[lon_length] = byteIn;
 lon_length++;
 byteIn = Serial.read();
 } //end “while”
 Serial.println("");

 byteIn = Serial.read();
 //look for the end byte and store all previous bytes in the time buffer, time[]
 while(byteIn != byteEnd && time_length < 150) {
 Serial.print(char(byteIn));
 time[time_length] = byteIn;
 time_length++;
 byteIn = Serial.read();

`

26

 } //end “while”
 Serial.println("");

 byteIn = Serial.read();
 //look for the end byte and store all previous bytes in the date buffer, date[]
 while(byteIn != byteEnd && date_length < 150) {
 Serial.print(char(byteIn));
 date[date_length] = byteIn;
 date_length++;
 byteIn = Serial.read();
 } //end “while”
 Serial.println("");

 transfer_successful = true;
 prev_millis = millis();

 Serial.println("Writing data to USB stick");

 //open file
 dlSerial.write("OPW ");
 dlSerial.write("GPSdata.txt");
 dlSerial.write(13);

 //write time data to file
 dlSerial.write("WRF ");
 dlSerial.write(6);
 dlSerial.write(13);
 dlSerial.write("Time: ");
 dlSerial.write(13);
 delay(1000);
 for (int i = 0; i < time_length; i++){
 dlSerial.write("WRF ");
 dlSerial.write(1);
 dlSerial.write(13);
 dlSerial.write(char(time[i]));
 dlSerial.write(13);
 delay(1000);
 }

 //write date data to file
 dlSerial.write("WRF ");
 dlSerial.write(6);
 dlSerial.write(13);
 dlSerial.write("Date: ");
 dlSerial.write(13);
 delay(1000);
 for (int i = 2; i < 4; i++){
 dlSerial.write("WRF ");
 dlSerial.write(1);
 dlSerial.write(13);
 dlSerial.write(char(date[i]));
 dlSerial.write(13);
 delay(1000);
 }
 dlSerial.write("WRF ");
 dlSerial.write(1);
 dlSerial.write(13);
 dlSerial.write("/");
 dlSerial.write(13);
 delay(1000);
 for (int i = 0; i < 2; i++){
 dlSerial.write("WRF ");
 dlSerial.write(1);
 dlSerial.write(13);
 dlSerial.write(char(date[i]));
 dlSerial.write(13);

`

27

 delay(1000);
 }
 dlSerial.write("WRF ");
 dlSerial.write(1);
 dlSerial.write(13);
 dlSerial.write("/");
 dlSerial.write(13);
 delay(1000);
 for (int i = 4; i < (date_length-1); i++){
 dlSerial.write("WRF ");
 dlSerial.write(1);
 dlSerial.write(13);
 dlSerial.write(char(date[i]));
 dlSerial.write(13);
 delay(1000);
 }
 dlSerial.write("WRF ");
 dlSerial.write(1);
 dlSerial.write(13);
 dlSerial.write(10);
 dlSerial.write(13);
 delay(1000);

 //write lat and lon data in hyperlink
 dlSerial.write("WRF ");
 dlSerial.write(11);
 dlSerial.write(13);
 dlSerial.write("http://www.");
 dlSerial.write(13);
 delay(1000);
 dlSerial.write("WRF ");
 dlSerial.write(11);
 dlSerial.write(13);
 dlSerial.write("maps.google");
 dlSerial.write(13);
 delay(1000);
 dlSerial.write("WRF ");
 dlSerial.write(12);
 dlSerial.write(13);
 dlSerial.write(".com/maps?q=");
 dlSerial.write(13);
 delay(1000);
 for(int i=0; i<(lat_length-1); i++){
 dlSerial.write("WRF ");
 dlSerial.write(1);
 dlSerial.write(13);
 dlSerial.write(char(lat[i]));
 dlSerial.write(13);
 delay(1000);
 }
 dlSerial.write("WRF ");
 dlSerial.write(1);
 dlSerial.write(13);
 dlSerial.write(",");
 dlSerial.write(13);
 delay(1000);
 for(int i=0; i<(lon_length-1); i++){
 dlSerial.write("WRF ");
 dlSerial.write(1);
 dlSerial.write(13);
 dlSerial.write(char(lon[i]));
 dlSerial.write(13);
 delay(1000);
 }
 dlSerial.write("WRF ");
 dlSerial.write(1);

`

28

 dlSerial.write(13);
 dlSerial.write(10);
 dlSerial.write(13);
 delay(1000);

 //close file
 dlSerial.write("CLF ");
 dlSerial.write("GPSdata.txt");
 dlSerial.write(13);

 Serial.println("Done writing to USB stick");

 lat_length = 0;
 lon_length = 0;
 time_length = 0;
 date_length = 0;
 for (int i=0; i<max_length; i++){
 lat[i] = 0;
 lon[i] = 0;
 time[i] = 0;
 date[i] = 0;
 }

 } //end “if”
 } //end "if"
 } //end “for”

} //end “loop”

	1. Introduction
	1.1 Specifications
	1.1.1 Tracking Unit
	1.1.2 Base Station

	2. Design
	2.1 Block Diagram
	2.1.1 Description of Block Diagram

	2.2 Choice of Major Components
	2.3 Equations and Calculations
	2.4 Schematic
	2.5 Programming
	2.6 Design Alternatives

	3. Design Verification
	3.1 Tracking Unit
	3.1.1 GPS Chip
	3.1.2 Arduino Mini Pro
	3.1.3 Battery

	3.2 Base Station
	3.2.1 Arduino Uno
	3.2.2 Data Logger
	3.2.3 Linx LT Series Pair

	4. Costs
	4.1 Parts
	4.2 Labor

	5. Conclusion
	5.1 Accomplishments
	5.2 Uncertainties
	5.3 Ethical considerations
	5.4 Future work

	References
	Appendix A Requirement and Verification Table
	Appendix B GPS Implant PCB Design

