
1

Behavioral Otter Tracking

By

Jared Lesicko

Kenji Nanto

Miceal Rooney

Final Report for ECE 445, Senior Design, Spring 2012

TA: Mustafa Mir

2 May 2012

Project No. 16

2

Abstract
When studying wildlife, it is difficult for biologists to track when and where an animal leaves or
enters a specific area. This system will identify individual otter movement across a
predetermined boundary, while recording time and ambient temperature. It will include passive
RFID tags on the otter, an antenna-receiver, a microcontroller and a temperature sensor, all
powered by changeable batteries. It will then store the data for later reading by the user. This
project will cost much less commercial RFID systems and be tailored to user needs.

3

Contents
1. Introduction ... 4

1.1 RFID Tag/Receiver ... 4

1.2 Power .. 5

1.3 Control and Data Storage .. 5

2. Design ... 5

2.1 Block Descriptions .. 5

2.1.1 RFID Tag/Receiver .. 5

2.1.2 12 Volt Power Supply and Voltage Regulator .. 8

2.1.3 9V Battery .. 9

2.1.4 Control Unit ... 9

2.1.5 Temperature Sensor .. 10

3. Verification .. 10

3.1 Receiver .. 10

3.2 12V Power Supply and Voltage Regulator...11

3.3 9V Battery ... 12

3.4 Control Unit .. 12

3.5 Temperature Sensor ... 14

4. Costs .. 15

Cost Analysis: ... 15

5. Conclusion .. 16

5.1 Accomplishments and Challenges .. 16

5.2 Ethical Considerations .. 16

5.3 Future Work .. 16

References ... 17

Appendix A Requirements and Verification Table .. 18

Appendix B Schematics and Tables .. 20

Appendix C Interfacing With the RFM/CTL .. 23

Installation and Setup .. 23

Operation... 24

Appendix D Final Coding for Arduino Mega 2560 .. 26

4

1. Introduction
The motivation of this project is to give The Prairie Research Institute a system that can
determine the time and ambient temperature when individual otters get in and out of a local
pond. Very little behavioral research has been done on the North American River Otter in
Illinois, and many commercially available tracking systems are extremely expensive. This system
will provide a low cost alternative.

Due to their physiological aspects and environment, otters present an interesting challenge to
monitor their behavior. Otters’ heads are smaller than their necks; therefore, the most popular
tracking device, a collar, is impractical. In addition, they spend significant time both in water and
on land. This causes significant attenuation to a signal generated by a transmitter. In addition,
otters will chew off devices attached to their paws or tails.

After extensively looking into the topic, we have found no other researchers who utilize RFID
tags with otters. This project also has a unique goal in tracking specific behavior, rather than
tracking real time location, such as by using GPS, which is also very expensive.

The goal of this project is to sense and record the time and ambient temperature when an otter
enters or exits the pond. An antenna will sense the tag inside the otter and communicate the
tag ID to a central control unit. When the control unit receives this data, it will record the ID
number, temperature, and time. The user can then extract the data via an SD card.

Benefits:

 Can track otter movement without requiring user presence

 Approximately one fifth the price of a commercial RFID reader sytem

 Assists biologists' understanding of otter behavior

 Temperature dependent behavior tracking

Features:

 Recognition of RFID tag in outdoor environment

 Simultaneously records tag ID, time, and ambient temperature.

 Provides adequate onboard storage for tracking multiple individuals for 3 days

 Low power design for continuous use for up to 3 days

 Provides easy access through SD card

There were two different design routes used in this project. Each design will be mentioned, yet
only the one, which had far more success, will be concentrated on more.

1.1 RFID Tag/Receiver
The project is composed of two different receiver designs. The first design, which failed to work,
consists of single chip Read/Write base station, external circuitry, self-built antenna and a FDX-B
PIT (Passive Integrated Transponder) tag. The second receiver is commercially bought and
includes an antenna, driver/RFM (Radio Frequency Module), a control unit and HDX TIRIS PIT
tag.

5

1.2 Power
The main power supplies are a 12V car battery and 2 9V batteries. The 12V car battery includes
a voltage regulator.

1.3 Control and Data Storage
The main processing unit of the project is an Arduino Mega 2560. Attached to the top of the
Arduino Mega is the Adafruit Data Logging Shield. The Data Logging Shield has a SD card port
for easy data access.

2. Design

Receiver
RS232

Converter
Control Unit

12V Power Supply

Temperature
Sensor

9V Battery

Figure 1: Block Diagram

2.1 Block Descriptions

2.1.1 RFID Tag/Receiver

After the commercial receiver was bought, we changed from the BIOMARK HPT22 Passive
Integrated Transponder (PIT) to a TIRIS RI-TRP-DR2B made by Texas Instruments. Physically, the
TIRIS transponder works the same as the BIOMARK transponder. Both are sensed by inductive
coupling at 134.2 KHz, both are encapsulated by glass and both are Read Only. The main
difference is the TIRIS transponder has 64 read only bits and utilizes the HDX protocol instead of
the FDX-B. HDX protocol uses FSK (Frequency Shift Key) modulation. The most beneficial aspect
of using a commercial receiver is the receiver demodulates and decodes. Therefore, the
demodulating/decoding process never had to be researched.

The first receiver included the antenna to sense the RFID tag, an Atmel U2270B Read/Write
Base Station, and complementing circuitry. The antenna is a resonant loop designed to operate
at 134.2 kHz. Because of the extremely long wavelength, it utilizes inductive coupling to sense a
load (PIT tag). When the tag passes over, the antenna’s signal is ASK modulated. The receiver

6

circuit then demodulates the signal and routes it to the U2270B. The base station then digitizes
the signal and sends the encoded data to the microcontroller. Using a capacitance of 1nF and a
frequency of 134.2 kHz, the required inductance, L, can be calculated:

(Eq. 1)

𝐿 =
1

(2𝜋𝑓)2𝐶
=

1

(2𝜋 × 134.2𝑘𝐻𝑧)2 × 1𝑛𝐹
= 1.406𝑚𝐻

The number of turns is then calculated using the inductance and a radius of 8 cm

(Eq. 2)

𝑁 = √
𝐿

𝜋𝜇0𝑟
= √

1.406𝑚𝐻

𝜋𝜇0 × 8𝑐𝑚
= 66.7 𝑡𝑢𝑟𝑛𝑠

Figure 2: Original Receiver Circuit, envelope detector shown in blue [1]

𝐿 = 1.406𝑚𝐻

𝐶𝑎𝑛𝑡 = 1𝑛𝐹

𝐶𝐼𝑁 = 680𝑝𝐹

𝐶𝐻𝑃 = 100𝑛𝐹
(Eq. 3)

𝑅𝑡[𝑘Ω] =
14375

𝑓[𝑘𝐻𝑧]
− 5 =

14375

134.2𝑘𝐻𝑧
− 5 = 102𝑘Ω

7

The second receiver design system included a commercially bought 27uH antenna, a RI- RFM-
007b (Radio Frequency Module), a RI-CTL-MB2B controller and a MAX232N RS-232 to TTL
converter. All previous mentioned products, except for the RS-232-to-TTL converter, were
purchased from Texas Instruments. The signal path of this receiver can be traced as follows.
The Antenna is driven by the RFM at 134.2 KHz. Once the PIT tag is placed over the antenna, the
64 bit ID is read into RFM, where it is amplified and demodulated. The demodulated signal is
then sent to CTL controller, where it is decoded and converted into ASCII characters. These
ASCII characters are serially output at a baud rate of 9600 bps from the RS-232 output into the
MAX232N, which converts them to TTL and inputs the ASCII data into the controller for
processing [2].

Figure 5: RFM Schematic [3]

Figure 3: 27 uH Antenna Figure 4: RFM (top) and CTL (bottom)

8

2.1.2 12 Volt Power Supply and Voltage Regulator
This power supply will provide more power than the one powering the main controller. It will
need to power multiple antennas and withstand a large current draw. The rating needed can be
determined by calculating the power consumption of the receiver, microcontroller, and the
temperature sensor. The following calculations are based on maximum current draw.

(Eq. 4)
𝑀𝑖𝑐𝑟𝑜𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 [𝑊] = 𝑀𝑎𝑥 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑟𝑎𝑤 [𝑚𝐴] × 12𝑉 = 200𝑚𝐴 × 12𝑉 = 2.4𝑊

(Eq. 5)

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑛𝑠𝑜𝑟 𝑃𝑜𝑤𝑒𝑟 [𝑊] = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑛𝑠𝑜𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑟𝑎𝑤 [𝑚𝐴] × 3.3𝑉
= 0.05𝑚𝐴 × 3.3𝑉 = 1.65 × 10−4𝑊

(Eq. 6)

𝑅𝐹𝑀 𝑎𝑛𝑑 𝐶𝑇𝐿 𝑃𝑜𝑤𝑒𝑟 [𝑊] = 𝑀𝑎𝑥 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑟𝑎𝑤 [𝑚𝐴] × 12𝑉 = 300𝑚𝐴 × 12𝑉 = 3.6𝑊

(Eq. 7)

12𝑉 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑅𝑎𝑡𝑖𝑛𝑔 [𝐴ℎ] =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝑈𝑠𝑒𝑑 [𝑊] × 72 ℎ𝑟𝑠

12𝑉

=
(𝑀𝑖𝑐𝑟𝑜𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 + 𝑇𝑒𝑚𝑝 𝑆𝑒𝑛𝑠𝑜𝑟 + 𝑅𝐹𝑀 𝑎𝑛𝑑 𝐶𝑇𝐿) × 72ℎ𝑟𝑠

12𝑉

=
(2.4𝑊 + 1.65 × 10−4𝑊 + 3.6𝑊) × 72ℎ𝑟𝑠

12𝑉
= 36𝐴ℎ

In order to satisfy this requirement, a car battery is used. The Prairie Research Institute has
provided Everstart Marine batteries rated at 75 Ah. During regular use, the system should not
normally use the maximum values noted; therefore, this battery will last for far longer than the
required three days.

The voltage regulator is necessary for the RFM-007B. The RFM requires the RMS voltage to be
less than 50mV. Additionally, the regulator must be able to handle large amounts of current
(0.5A) while providing low dropout in order to maintain the 12V supply. For these reasons, the
Fairchild Semiconductor KA378R12CTU is used. The regulator can supply 3A, and at max current
draw it drops 0.5V [4].

9

KA378R12CTU

Vin Vout

GND
Vdis

12V

C1=1uF C2=90uF

Vout

Figure 6 Voltage Regulator Circuit

C1 is only necessary if the regulator is far from the source, and C2 improves stability []. 𝑉𝑑𝑖𝑠
disables the device when low; therefore, it is connected to 𝑉𝑖𝑛 (there is no need to disable the
regulator).

2.1.3 9V Battery
The Max-232 chip requires two voltage sources to implement the logic level change. There is an
allowed range of 4.7V to 15V for the positive supply and -0.3V to -15V for the negative supply
[2]. We use standard 9V batteries due to their cost and availability.

(Eq. 8)
9𝑉 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑅𝑎𝑡𝑖𝑛𝑔 [𝑚𝐴ℎ] = 1𝑚𝐴 × 72ℎ𝑟𝑠 = 72𝑚𝐴ℎ

The Energizer Industrial battery has a 600mAh rating at 25mA, so the batteries should last for
more than a month [5].

2.1.4 Control Unit
The control unit consists of the microcontroller, the data logger, and the SD card. The
microcontroller is an Arduino Mega 2560 board based on the ATmega2560. It has 56 digital I/O,
16 analog inputs, 4 serial ports, a 16 MHz oscillator, and operates at 12 VDC which is supplied
from the car battery. This the central control unit that processes the data from the receiver, the
temperature sensor, and the real time clock on the data logger. When the receiver senses a tag,
the microcontroller will decode, process, and send the data to the data logger for recording.

When starting with the first design, the control unit was expected to be able to demodulate the
ASK signal but with the new receiver unit, this is not needed. With the Texas Instrument
receivers, the control module will only receive bit ASCII letters. In the application of this project,
the receiver uses the line command which will consistently send an “L” or an “LI”, telling the
control module that it is reading while sending these letters. When a tag is sensed the receiver

10

will send a “LR” to the control unit followed by 22 ASCII numbers, giving us the ID number.
When waiting for the “LR,” the control unit will just wait for incoming “R,” since that letter is
never used for any other command and will not be used in an ID number. Once the “R” is
sensed, the control module then takes the voltage reading of the temperature sensor, calculates
the Fahrenheit temperature, reads the time stamp on the DS1307 real-time chip, mounted on
the Adafruit data logger shield and then stores it into a .csv. The .csv file is a file easily used in
Microsoft Excel and can help the user manipulate the data being stored. Once this data is stored
the control unit waits for the next incoming “R.”

The code in Appendix D requires specific libraries. These two libraries help the software serial
access work with the DS1307. Most of the code that is used to read the time stamp was taken
from the example “SoftDS1307” on the Adafruit forums. [6]

2.1.5 Temperature Sensor
The temperature sensor is an Analog Devices TMP36 Temperature Sensor. At -50°C, it outputs
0V, and at 125 °C it outputs 1.75V. This signal will be processed by the microcontroller and
recorded by the data logger when needed. To determine the temperature in Celsius, the
following equation is used [7]:

(Eq.9)

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [°𝐶] =
𝑉𝑜𝑢𝑡[𝑚𝑉] − 500𝑚𝑉

10𝑚𝑉/℃

The 𝑉𝑜𝑢𝑡 can be determined by using the 10 bit value of the Analog to Digital Converter (ADC)
on the microcontroller and the supply voltage:

(Eq.10)

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑡 𝑃𝑖𝑛 [𝑚𝑉] =
𝐴𝐷𝐶 𝑅𝑒𝑎𝑑𝑖𝑛𝑔

1024
× 3300𝑚𝑉

3. Verification

3.1 Receiver
In order to verify that the receiver is properly working, one must confirm that the antenna
inductance is properly tuned, the RS-232 port has the proper output voltage levels and ASCII
waveforms and the MAX232N chip properly converts from RS-232 to TTL voltage levels.

When bought, the antenna inductance is advertised as 27uH. The receiver will properly detect a
tag if the inductance of the antenna is within-26-29uH. When we placed the antenna in the LRC
meter, the inductance readout was 26.6 uH.

If the receiver’s RS-232 port is working properly, while in line mode, one should observe a
waveform with a peak-to-peak voltage greater than 6V but less than 25V with a ASCII ‘L’ bit
pattern of “01001100” inverted. Before any voltage waveforms can be extrapolated, the CTL

11

module must be placed in line mode. The step-by-step process of line mode can be seen in
Appendix C. Once the CTL module is in line mode, an oscilliscope was used to probe pins
3(GND) and 4(RS-232 Data Output) on the ST21 port on the CTL module. The waveform seen
below verifies an ASCII output L.

Figure 7: RS-232 output of ASCII character "L"

Next, pins 12(TTL Output) and 15(GND) of the MAX232N were probed by an oscilloscope. The
waveform below shows a TTL ASCII ‘L’ waveform.

Figure 8: TTL signal after conversion from RS-232

3.2 12V Power Supply and Voltage Regulator
The 12 volt power supply must last for 72 hours and output a ripple voltage of less than 50mV.
The battery and regulator were connected to a DMM, providing a reading of 𝑉𝑟𝑚𝑠 = 0.5𝑚𝑉.
This is well below the required 50mV.

The current draw was determined by connecting the receiver to a power supply, and measuring
the voltage across a 1Ω resistor placed between the power supply and the system. As a result of
Ohm’s Law, 𝑉 = 𝐼𝑅, the voltage across this resistor is equal to the current drawn by the circuit.

12

Figure 9: Receiver Current Draw

As seen in the Figure 9, the maximum current draw by the receiver is 200mA (corresponding to
𝑌2 = 200𝑚𝑉). This is well below the estimated maximum current draw in the Equation 5. The
maximum allowed current draw from the Arduino is 200mA [8].

Figure 10: Total system current draw

The figure above shows that the total current draw is 362.5mA (at a maximum), validating the
lifespan of the battery.

3.3 9V Battery
The 9V battery must also last for 72 hours. As mentioned in section 2.1.3, the estimated current
draw is 1mA. When the terminals of the circuit are connected to a DC source, the measured
output is also 1mA, providing a requirement of 72mAh, well below the battery rating of
600mAh (at 25 mA draw).

3.4 Control Unit
One thing the control unit must be able to do is store at least 150 entries of tag reads. This will
be done by making sure that the SD memory card used for memory storage has to be at least
100 MB. This was verified by purchasing a 2 GB SD card. Another important verification is to

13

show that the control unit can correctly identify the RFID. This was demonstrated by running
the receiver and connecting the RS232 output of the receiver and converting it to the MAX232
converter to change the serial data into TTL logic. Once this was obtained we then connected
that output to the control unit and test the incoming data with the following code.

When running this code with the microcontroller, ASCII characters were read from the receiver
and see it through the serial monitor on the computer connected to the control unit and the
following is what was received.

Figure 11: Serial Monitor for Control Unit connected to Receiver

When trying to manipulate the data being read to store the Tag’s ID number and then store the
Temperature and Time stamp, the final problems are run into. Storage is successful when a tag
is read and input the time and temperature, but the ID data is changed. This can be seen in the
following figure.

14

Figure 12: Final .csv File with current Coding; Coloumn A: time, Column B: ID# Column C: Temp in Fahrenheit

3.5 Temperature Sensor
The temperature can be easily tested independently of the rest of the system. Below is the
circuit diagram showing the test setup.

DC DMM5V TMP36

Figure 13: Temperature sensor test setup

Although the TMP36 will be using the 3.3V supply on the board, it is tested using the 5V bench
supply. This does not affect the performance of the device; the supply range of the TMP36 is
2.7-5.5V. At room temperature, the thermostat in the room reads 77℉, or 25℃. Therefore, the
sensor must read a temperature of 22-28℃ in order to pass the verification. When tested:

𝑉𝑜𝑢𝑡 = 748 𝑚𝑉

(Eq. 11)

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [°𝐶] =
𝑉𝑜𝑢𝑡[𝑚𝑉] − 500𝑚𝑉

10𝑚𝑉
℃

=
748 − 500

10
= 24.8℃

15

4. Costs

Cost Analysis:

Table 1: Cost of Labor
Name Hourly Rate Total Hours Total = Hourly Rate x

2.5 x Total Hours

Jared Lesicko $40 200 $20000

Kenji Nanto $40 200 $20000

Miceal Rooney $40 200 $20000

Total $60000

Table 2: Bill of Materials

Part Number Description Cost Quantity Total
Arduino Mega

2560
Microcontroller

Board
$58 1 $58

Adafruit Data
Logger

Data Logger $20 1 $20

Analog Devices
TMP36GT9

Temperature Sensor $2 1 $2

Patriot
PSF2G40SD

2 GB SD Card $5 2 $10

RFM-007B Driver/Receiver $350 1 $350

CTL-MB2B Controller $320 1 $320

- Capacitors $1 7 $7

- Casing $100 1 $50

 Wires $2 1 $2

UPG 75aH Battery $170 1 $170

ANT-G01E-30 Antenna $240 1 $240

TRP-RR2B-30 Transponders $5.46 5 $27.20

Fairchild
Semiconductor
KA378R12CTU

Voltage Regulator $.57 1 $.57

MAX232N RS-232 to TTL $.62 1 $.62

Radioshack
Circuit Board

Circuit Board $4 1 $4

Total $1,261

Table 3: Total Costs

Section Total

Labor $60000

Parts $1261

Grand Total $61261

16

5. Conclusion

5.1 Accomplishments and Challenges
The Otter Sensing Project is an almost total success. The system can sense an RFID tag 100
percent of the time, with a range of approximately nine inches, allowing it to be buried. The
coverage of the antenna may only be three feet out of the approximately 70 foot shoreline, but
otters generally use the same paths, specifically around their latrine area. In addition the system
can last for much longer than the required duration. Even at max power usage, it will still last for
six days during the summer.

Many problems were encountered during the design of the system. The initial implementation
included designing the antenna and the receiver. Due to the difficulties in obtaining correct
signal output and antenna resonance, this setup was scrapped in favor of a commercial receiver
and antenna. While the choice increased the cost, it resulted in a much more reliable system.
Currently, the project does not have a final casing to be mounted in. Lastly, recording the tag ID
at the same time as recording the time and temperature has not been implemented effectively;
the data is corrupted when stored.

5.2 Ethical Considerations
This project does not encounter very many ethical problems. The main concern is to avoid
harming or interfering with the otters’ lives. All electrical equipment must be enclosed in order
to ensure the animals do not shock or burn themselves. Otters are not frightened by human
activity or man-made objects; therefore, the antenna and main circuitry will not interfere.
Additionally, this project may be used without requiring any licenses; the FCC does not require
one for low frequency RFID products.

5.3 Future Work
The immediate goal is to obtain a field able project for the Prairie Research Institute. In order to
accomplish this, the waterproof casing must be obtained, and the code must be corrected.
Beyond the completion of this project, additional antennas may be used along with a
multiplexer available from Texas Instruments to increase the coverage. A future project could
involve synchronizing these extra antennas and handling the much larger power requirements.
The system can also be duplicated for any other researchers interested in its capabilities.

17

References

[1] Read/Write Base Station U2270B, datasheet, Atmel Corporation, 2008. Available at:
http://www.atmel.com/Images/doc4684.pdf

[2] MAX232 DUAL EIA-232 DRIVERS/RECEIVERS, datasheet, Texas Instruments, 2004.

Available at: http://www.ti.com/lit/ds/symlink/max232.pdf

[3] Series 2000 Reader System High Performance Reader Frequency Module RI-RFM-007B,
reference guide, Texas Instruments, 2006. Available at:
http://www.ti.com/lit/ug/scbu022/scbu022.pdf

[4] KA378R12C Low Dropout Voltage Regulator, datasheet, Fairchild Semiconductor

Corporation, 2005. Available at:
http://www.fairchildsemi.com/ds/KA/KA378R12CTU.pdf

[5] ENERGIZER EN22, datasheet, Energizer Holdings, Inc. Available at:

http://data.energizer.com/PDFs/EN22.pdf

[6] New i2c libraries with ‘softi2c’, web page. Available at:
http://forums.adafruit.com/viewtopic.php?f=25&t=13722. Accessed April 2012.

[7] Low Voltage Temperature Sensors TMP36, datasheet, Analog Devices Inc., 2010.

Available at:
http://www.analog.com/static/imported-files/data_sheets/TMP35_36_37.pdf

[8] 8-bit Microcontroller ATmega2560/V, datasheet, Atmel Corporation, 2011. Available

at: http://www.atmel.com/Images/doc2549.pdf

[9] Series 2000 Reader System Control Modules RI-CTL-MB2B, datasheet, Texas
Instruments, 2008. Available at: http://www.ti.com/lit/ug/scbu044/scbu044.pdf

[10] Series 2000 Read System ASCII Protocol, Reference Guide, Texas Instruments, 2006.

Available at: http://www.ti.com/lit/ug/scbu028/scbu028.pdf

http://www.atmel.com/Images/doc4684.pdf
http://www.ti.com/lit/ds/symlink/max232.pdf
http://www.ti.com/lit/ug/scbu022/scbu022.pdf
http://www.fairchildsemi.com/ds/KA/KA378R12CTU.pdf
http://data.energizer.com/PDFs/EN22.pdf
http://forums.adafruit.com/viewtopic.php?f=25&t=13722
http://www.analog.com/static/imported-files/data_sheets/TMP35_36_37.pdf
http://www.atmel.com/Images/doc2549.pdf
http://www.ti.com/lit/ug/scbu044/scbu044.pdf
http://www.ti.com/lit/ug/scbu028/scbu028.pdf

18

Appendix A Requirements and Verification Table

Table 4: Requirements and Verification Table

19

20

Appendix B Schematics and Tables

Arduino
Mega 2560

RI-CTL-MB2B/
RI-RFM-007B

RFID

ADA FRUIT DATA LOGGER
W/ SD MEMORY CARD

TMP35

12V

9V

4 SD_CS

GND

A1

3V

GND V0 VS

D19

ANT-G01E-30
[Antenna]

ST22

ST21

31

D10
D11
D12
D13

MAX232

3

4 13 12

6

16
2

+9V

-9V

1
2
3
4
5
6

12V

Figure 14: System Pinout Diagram

21

Figure 15: Bottom View of CTL [9]

Table 5: ST21-RS-232 Communication Interface [9]

Table 6: ST22-Supply [9]

Table 7: ST32-Indicator Outputs [9]

22

Figure 16: MAX232N Circuit [2]

23

Appendix C Interfacing With the RFM/CTL

Installation and Setup
1. Connect the RFM to the computer using the USB-Micro USB cable. On first time setup, the

RFM drivers should install automatically.

2. Download the file putty.exe located under “For Windows on Intel x86” from the PuTTY
website: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

3. Run putty.exe. The following screen will appear:

Figure 17: Initial PuTTY Configuration Screen

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

24

4. The receiver communicates with the computer by way of serial communication. Change
“Connection type” to Serial. Then under “Serial line” type “COM4”. Click Open.

Figure 18: Final PuTTY Configuration Screen

Operation
The terminal accepts commands given by the single press of a key, using ASCII communication
protocol. For this system’s purposes, only V, X, and L will be used. For a full list of commands, see the
ASCII Reference Guide [10]. When giving a command, the terminal does not show the key pressed, but
only the response from the receiver.

V: Requests the version number of the RFM. The receiver should respond with something similar

to “S2000 – REV 1.50”. This command is useful to confirm that the receiver is connected to the
computer.

X: This puts the receiver in Execute mode. It attempts a single read then goes to idle. It is useful

to stop the receiver. The following are possible responses:
 X –Nothing is read.
 XI –Some signal is read but not a tag, generally due to electromagnetic noise.
 XR 0000 0000000174783400 –A successful tag read with the tag’s ID.

25

L: This command puts the receiver in Line mode. Line mode is the normal mode of operation for

this system. The RFM will continually attempt to read a signal. When a signal is read it will
immediately send it. Possible responses are:

 L –Nothing is read.
 LI - Some signal is read but not a tag, generally due to electromagnetic noise.
 LR 0000 0000000174783400 –A successful tag read with the tag’s ID.

Below is an example of the terminal screen.

Figure 19: Sample terminal screen

Once the system is confirmed working, the user can disconnect the computer from the receiver. The
system is now ready to be used.

26

Appendix D Final Coding for Arduino Mega 2560

#include <SD.h>

#define aref_voltage 3.3

const int chipSelect = 4;

int tempPin = 0;

int n=0;

int tempReading;

int check;

char Buf='X';

char CurrentID[]="0000 0000000000000000";

char ID[]="174783400";

char incomingByte;

//--

//--

//**SoftDS1307_example_Headers

//--

//--

// Utility sketch to explore DS1307 and

// demonstrate SoftI2cMaster and TwiMaster

//

#include <avr/pgmspace.h>

#include <I2cMaster.h>

// select software or hardware i2c

#define USE_SOFT_I2C 1

#if USE_SOFT_I2C

#if defined(__AVR_ATmega1280__)\

|| defined(__AVR_ATmega2560__)

// Mega analog pins 4 and 5

// pins for DS1307 with software i2c on Mega

#define SDA_PIN 58

#define SCL_PIN 59

#elif defined(__AVR_ATmega168__)\

||defined(__AVR_ATmega168P__)\

||defined(__AVR_ATmega328P__)

// 168 and 328 Arduinos analog pin 4 and 5

#define SDA_PIN 18

#define SCL_PIN 19

#else // CPU type

#error unknown CPU

27

#endif // CPU type

// An instance of class for software master

SoftI2cMaster rtc(SDA_PIN, SCL_PIN);

#else // USE_SOFT_I2C

// Pins for DS1307 with hardware i2c

// connect SCL to Arduino 168/328 analog pin 5

// connect SDA to Arduino 168/328 analog pin 4

// Instance of class for hardware master with pullups enabled

TwiMaster rtc(true);

#endif // USE_SOFT_I2C

// i2c 8-bit address for DS1307. low bit is read/write

#define DS1307ADDR 0XD0

//--

/*

 * Read 'count' bytes from the DS1307 starting at 'address'

 */

uint8_t readDS1307(uint8_t address, uint8_t *buf, uint8_t count) {

 // issue a start condition, send device address and write direction bit

 if (!rtc.start(DS1307ADDR | I2C_WRITE)) return false;

 // send the DS1307 address

 if (!rtc.write(address)) return false;

 // issue a repeated start condition, send device address and read direction bit

 if (!rtc.restart(DS1307ADDR | I2C_READ))return false;

 // read data from the DS1307

 for (uint8_t i = 0; i < count; i++) {

 // send Ack until last byte then send Ack

 buf[i] = rtc.read(i == (count-1));

 }

 // issue a stop condition

 rtc.stop();

 return true;

}

//--

/** Store and print a string in flash memory.*/

28

#define PgmPrint(x) SerialPrint_P(PSTR(x))

/** Store and print a string in flash memory followed by a CR/LF.*/

#define PgmPrintln(x) SerialPrintln_P(PSTR(x))

//--

/*

 * Print a string in flash memory to the serial

 */

//static void SerialPrint_P(PGM_P str) {

// for (uint8_t c; (c = pgm_read_byte(str)); str++) Serial.write(c);

//}

//--

/*

 * Print a string in flash memory followed by a CR/LF.

 */

//static void SerialPrintln_P(PGM_P str) {

// SerialPrint_P(str);

// Serial.println();

//}

//---

// day of week U.S. convention

char *Ddd[] = {"Bad", "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};

//--

void hexPrint(uint8_t v) {

 Serial.print(v >> 4, HEX);

 Serial.print(v & 0XF, HEX);

}

void hexPrintln(uint8_t v) {

 hexPrint(v);

 Serial.println();

}

//--

/*

 * write 'count' bytes to DS1307 starting at 'address'

 */

uint8_t writeDS1307(uint8_t address, uint8_t *buf, uint8_t count) {

 // issue a start condition, send device address and write direction bit

 if (!rtc.start(DS1307ADDR | I2C_WRITE)) return false;

 // send the DS1307 address

 if (!rtc.write(address)) return false;

 // send data to the DS1307

 for (uint8_t i = 0; i < count; i++) {

 if (!rtc.write(buf[i])) return false;

 }

 // issue a stop condition

29

 rtc.stop();

 return true;

}

//--

//--

//--

void setup(void) {

 Serial.begin(9600);//Serial output to Arduino Mega 2560 for data transfer

 Serial1.begin(9600);//Serial input from receiver

 Serial.print("Initializing SD card...");

 // make sure that the default chip select pin is set to

 // output, even if you don't use it:

 pinMode(10, OUTPUT);

 // see if the card is present and can be initialized:

 if (!SD.begin(chipSelect)) {

 Serial.println("Card failed, or not present");

 // don't do anything more:

 return;

 }

 Serial.println("card initialized.");

}

//--

//--

//--

void loop(void) {

 while(check!=1){

 while(Serial1.available()>0){

 incomingByte=Serial1.read();

 if(Buf=='R'){

 for(int i=0;i<22;i++){

 CurrentID[i]=incomingByte;}

 Serial.println(CurrentID);

 Buf='0';

 Serial.println("Tag Read");

 check=1;

 }else{

 Buf=incomingByte;

 }

 //Serial.println(CurrentID);

 }

 }

 if(check=1){

 displayTime();

 displayID();

 displayTemp();

30

 check=0;

 }

}

//--

//--

//--

//**displayID_function**

//--

//--

//--

void displayID(){

 for(int i=0; i<16 ;i++) ID[i]=CurrentID[i+5];

 File dataFile = SD.open("datalog1.csv", FILE_WRITE);

 if(dataFile){

 dataFile.print(CurrentID);

 dataFile.print(',');

 }

 dataFile.close();

return;

}

//--

//--

//--

//--

//--

//**Time_Display_Procedure**

//--

//--

void displayTime(void) {

 uint8_t r[8];

 //if time ds11307 is not functioning

 if (!readDS1307(0, r, 8)) {

 Serial.println("Read Failed for display time");

 return;

 }

 File dataFile = SD.open("datalog1.csv", FILE_WRITE);

 if(dataFile){

31

 // month

 dataFile.print(r[5],HEX);

 dataFile.print('/');

 //day

 dataFile.print(r[4],HEX);

 dataFile.print("/20");

 // year

 dataFile.print(r[6],HEX);

 dataFile.print(' ');

 dataFile.print(Ddd[r[3] < 8 ? r[3] : 0]);

 dataFile.print(' ');

 // hour

 dataFile.print(r[2],HEX);

 dataFile.print(':');

 // minute

 dataFile.print(r[1],HEX);

 dataFile.print(':');

 // second

 dataFile.print(r[0],HEX);

 dataFile.print(",");

 dataFile.close();

 }

}

//--

//read hex input for time stamp buffer

//--

//--

uint8_t hexRead(uint16_t &v) {

 uint16_t n = 0;

 while (!Serial.available());

 while (Serial.available()) {

 uint8_t c = Serial.read();

 n <<= 4;

 if ('a' <= c && c <= 'f') {

 n += c - ('a' - 10);

 }

 else if ('A' <= c && c <= 'F') {

 n += c - ('A' - 10);

 }

 else if ('0' <= c && c <= '9') {

 n += c - '0';

 }

 else {

 Serial.println("Invalid entry");

 return false;

 }

 delay(10);

 }

32

 v = n;

 return true;

}

//--

//--

//--

//--

//--

//--

//**displayTemp_function**

//--

//--

//--

void displayTemp(){

tempReading = analogRead(tempPin);

 // converting that reading to voltage, which is based off the reference voltage

 float voltage = tempReading * aref_voltage / 1024;

 float temperatureC = (voltage - 0.5) * 100;

 // now convert to Fahrenheight

 float temperatureF = (temperatureC * 9 / 5) + 32;

 File dataFile = SD.open("datalog1.csv", FILE_WRITE);

 if(dataFile){

 dataFile.println(temperatureF);

 Serial.println(temperatureF);

 dataFile.close();

 }

return;

}

//--

//--

//--

