
Special Vehicle for
Transporting
Unstable Chemicals

Team 15
Gong, Zhangxiaowen
Ma, Jun
Zhou, Wenjia
TA: Fortier, Justine

Introduction

Motivation
– Provide safe and high efficient transportation for

dangerous or volatile chemicals
Objective
– Maintains a stable chassis
– Fits both lab and road conditions

Feature
– Omni-directional movement
– Active ground adaption
– Real-time data monitoring

Modular Design

Mechanical System

Omni-directional
movement:
servo and closed
loop controlled
motor

Active suspension:
closed loop controlled
worm motor

Omni-directional Movement

Design
– Servo and closed

loop controlled motor
Why not use traditional
omni-wheels?
– Introducing vibration
– Not suitable for real

road condition

Embedded Solution

Hardware
– Master-slave multi-processor approach
Software
– High efficient driver design
– Operating system based task manage-

ment

Control System

Simulation
– Motor Transfer Function Testing
– Filter for MEMS sensor
– PID controller settling time estimation
Calibration
– Wireless data acquisition
– PC software for data plotting and

analysis

Main Controller

Main Controller
nRF24L01P
2.4GHz wireless
point-to-point
transceiver

LM2576S 5.0V
3A switching
regulator MAX629 step-

up regulator
(configured at
13.8V)

AT32UC3C225
6C 32-bit MCU
@66MHz

I2C bus (master
side)

MPU6050 3-axis
gyroscope and 3-
axis accelerometer

0.96” 128x64
OLED screen

HMC5883L 3-axis
magnetometer
(not used)

LM1117 3.3V
500mA linear
regulator (beneath
the module)

Main Controller

Software highlights
– Real-time operating system for preemptive task

scheduling
– OS optimized asynchronous I2C driver with DMA

support for:
 MEMS sensor (MPU6050)
 Side controller

– Asynchronous SPI driver with DMA support for:
 OLED screen
 Wireless transceiver

– OS optimized dynamic memory management

Main Controller

Real-time operating system
– Preemptive scheduling ensures high priority tasks to

be served in real-time
– Task / priority / wake up period:

 Active suspension / highest / 50ms
 Update sensor reading / high / 10ms
 Refresh OLED display / low / 100ms
 Process received command / low / 100ms
 Send sensor data over wireless / low / 50ms
 Idle task that cleans up the dynamic memory /

lowest / N/A

Main Controller

I2C driver
– OS optimized: suspend the calling task when a block

read/write is required and resume it after the
transaction finishes

– DMA support that reduce the CPU load significantly
– Full automatic streaming algorithm

SPI driver
– DMA support and streaming algorithm
– Automatically switch modes for different slave

devices
– Not OS optimized because context switching may

cause unnecessary overhead at high data rate

Main Controller

Problems of MEMS sensor readings
– Accelerometer data is noisy at high acceleration
– Gyroscope data has drift at rest

Choose of filter for sensor data noise reduction
– Traditional software Kalman filter
– MPU6050 sensor built-in complementary filter (ASIC)

Kalman Filter

Measurement
Update Prediction

T

X FX U
P FPF
= +

=





1

()

T

T

Y Z HX
S HPH R
K PH S
X X KY
P I KH P

−

= −

= +

=

= +

= −





Kalman Gain

gyro output

Kalman Filter
θ
k+1

= θ
k

+ (ω − β)dt

the new angle is equal to the previous angle
plus the angular velocity (from Gyroscope) with
drift correction multiply by time
State-space representation

 X’ = F X + U
 H =

θ

1

1

1
0 1 0

k k

k k

dt dtθ θ
ω

β β
+

+

−      
= +      
      

ω

[]1 0

Complementary Filter

Accelero
meter

Gyrosco
pe

Filter1

Filter2

Estimated
angle

Complimentary Filter

Ha(s)Ga(s)+sHg(s)Gg(s)=1
Assume ideal sensors
Ha(s)=Hg(s)=1
Ga(s)=
Gg(s)=
Tune the constant tau

Main Controller
CPU usage analysis
– Worst case estimation: consider idle only when the

idle task occupies a whole OS tick (1ms)
– Best case estimation: consider idle whenever the idle

task is executed in an OS tick

Side Controller

Side Controller

LM2576S 5.0V
3A switching
regulator

ATmega8A 8-bit
MCU @16MHz

I2C bus
(slave side)

IRF3205S NMOS

IR2104 half
bridge controller

DIP switch for
selecting I2C
slave address

Side Controller

Software highlights
– Foreground-background structure
– Asynchronous I2C slave driver
– Wheel motor driver with PID speed control
– Worm motor driver with position monitor
– Software generated PPM signal for servo

control

Side Controller

Asynchronous I2C slave driver
– Interrupt based auto package handling
– Fully compatible with traditional I2C slave register

convention
– Commands:

 Set wheel motor PWM output
 Set worm motor PWM output
 Set servo position
 Set servo calibration setting
 Set worm motor position threshold
 Worm motor break
 Wheel motor break
 Set wheel motor PID set point
 Get wheel motor speed
 Get worm motor position

Side Controller

Wheel motor driver with PID
speed control
– External interrupt for

capturing encoder events
– Timer interrupt for

measuring wheel speed
– Speed sampling period:

50ms
– PID settling time: 300ms

Rotational
encoder for
feedback

Side Controller

Worm motor driver with
position monitor
– ADC works at continuous

sampling mode to monitor
the worm motor’s position

– ADC interrupt checks
whether the worm motor is
at threshold position and
disables its further
movement accordingly

Worm motor

Potentiometer
for position
feedback

Side Controller

Software generated PPM signal
for servo control
– Accumulated timer

interrupts for generating
20ms period PPM signals

– Position calibration setting
can be received from the
main controller over I2C
bus

Servo

Feedback Control System

PID Controller
Saturation Filter
Worm Motor System

PID Controller

Saturation Filter

A filter that will cut off the signal if it
detects the signal has gone beyond the
limit

Worm Motor System

Determine the transfer function of the motor
system
Frequency Response
Step Response

Function Oscillosco
pe Motor Tachomet

er Amplifier

Motor Transfer
Function

Frequency Response

Step Response

Overall Suspension System
Simulation

Pseudo Code for Control System

integral = 0
preverror = 0

error= sp – pv
output = Kp*error + Ki*(integral + error*dt) + Kd*(error -

preverror)/ dt

preverror = error

if (output > max)
{ output = max; }
else if (output < min)
{ output = min; }

Wireless Receiver

Wireless Receiver

ATmega32U4 8-bit
MCU @16MHz with
USB device controller

SPI bus for the
RF module

nRF24L01P
2.4GHz wireless
point-to-point
transceiver

Wireless Receiver

Software highlights
– Asynchronous USB device driver
– CDC (Communication Device Class) driver
– Support for connecting up to 6 other

transceivers

Wireless Receiver

CDC driver
– Emulate a virtual serial port
– Data rate is not limited by the serial port BAUD rate

setting
– Reduce the complexity of the PC side USB driver

PC Software

Windows Serial Port
driver
Data Storage
3D View
Real time Data
Plotting
Motion replay

Communication Protocol

Incoming
data

• Find “0x00 0x00 0x00 0x00” header
• Start reading the next 12 bytes

Binary to
Float

• Read 4 bytes a time ,convert string to hex
• IEEE 754 Binary to Float conversion

Axis
Adjust

• Map Y axis in OpenGL to Z axis
• Map Z axis in OpenGL to –Y axis

Communication Protocol

Get
Command

• Read status from Dial and Slider bar
• Get the corresponding command code

Assemble the
Command

• Check if active suspension is turned on
• Format : (0xFF) * 4 + Command + Value

Send
Command

• Check if serial port is open
• Write to serial port

Data Storage

Serial port receiver buffer size increasing with
time and Qt Text browser insertion lead to
accumulated delay
Need another way of saving data
Dynamically allocate memory
Use linked list to avoid copy data
Create a new file format

Sample File Format
(demo.ECE445)

0x12=18 0x24=36
16*1024+36 = 18468 bytes

0x4824 = 18468 bytes

File is stored correctly

Data Demonstration

3D view
– OpenGL Basics
– initializeGL()
– paintGL()
– UpdateGL()

Data line charts
– Qwt open source library
– A Qt widget for scientific data plotting
– Reload stored data

Challenges and Improvements

Stronger motor with greater torque should be
adopt for the active suspension
– May use linear actuators instead of worm

motors
Less powerful MCU could be used in order to
reduce both cost and power consumption
– Low end ARM Cortex-M3 MCU (around $3)

Special Thanks

Prof. Carney
TA Justine
Machine Shop
Service Shop
Dan Block
Everyone who supported us during the project

	Special Vehicle for Transporting Unstable Chemicals
	Introduction
	Modular Design
	Mechanical System
	Omni-directional Movement
	Embedded Solution
	Control System
	Main Controller
	Main Controller
	Main Controller
	Main Controller
	Main Controller
	Main Controller
	Kalman Filter
	Kalman Filter
	Complementary Filter
	Complimentary Filter
	Main Controller
	Side Controller
	Side Controller
	Side Controller
	Side Controller
	Side Controller
	Side Controller
	Side Controller
	Feedback Control System
	PID Controller
	Saturation Filter
	Worm Motor System
	Slide Number 30
	Frequency Response
	Step Response
	Overall Suspension System Simulation
	Slide Number 34
	Pseudo Code for Control System
	Wireless Receiver
	Wireless Receiver
	Wireless Receiver
	Wireless Receiver
	PC Software
	Communication Protocol
	Communication Protocol
	Data Storage
	Sample File Format (demo.ECE445)
	Data Demonstration
	Challenges and Improvements
	Special Thanks

