User Specific Firearm Locking System

Group 12

Steve Bettenhausen, Yong Seok Lee, Andrew Weller

ECE 445 – Senior Design

April 27, 2012

Outline

- I. Introduction & Objectives
- II. Features
- III. Review of Original Design
- IV. Final Design & Functional Tests
- V. Challenges & Recommendations
- VI. Ethical Issues

Introduction

- A portable and inexpensive system that allows firearm owners to have control over the firearm's operators
- Utilizes a fingerprint recognition system that allows only authorized persons to operate the firearm

Objectives

- Simple and transportable system that increases firearm safety
- Increased security via fingerprint identification system
- Locking system that prevents trigger from being pulled and magazine from being removed

Features

- Simple user interface via keypad and LCD screen
- Fingerprint management system that accepts multiple fingerprints
- Automated locking for trigger and magazine
- Pressure sensitive or timed unlock options
- Wireless capabilities

Original Design

- Initial design including GPS tracking if firearm was stolen
- Locking mechanisms would move on tracks instead of rotating

Final Design

- Two separate systems, a control unit and a firearm unit
- Control unit not attached to firearm
- Firearm unit attached to firearm

Project Pictures

Control Unit

Firearm Unit

Control Unit

- Successful fingerprint scan allows authorized user to go through menu
- User interfaces with LCD screen and keypad
- Unlocked state options timed or pressure sensitive
- Wireless signal with timer information sent to firearm unit

Control Unit Power Supply

- Using a 9V battery and voltage regulators:
 - Supplies +5 Vdc to LCD, microcontroller, and wireless transmitter and +3.3Vdc to fingerprint scanner
 - Nominal current of 150 mA and 300mA maximum (during fingerprint scan)

Control Unit Power Supply

	Requirement	Peak-peak	Max	Average
+5V supply	5V +/- 0.25V	250mV	5.00V	4.908V
+3.3V Supply	3.3V +/- 0.3V	250mV	3.31V	3.164V

🔆 Agilent	Technolog	ies					<u> 🔆</u> А
1 2.007/			, 0.0s	2.00날/	Stop <i></i> ∮ 2	6190	1 2.000,
			Ť.				
			-				
			-				
			1				
			-				
			-				
			_				
			-				
			-				<u>1</u>
			-				
Pk-Pk(1): 2	50mV] [Avg(1):	3.164 V	Max(1): 3.31V	j	(Pk-Pk(
Source	Select:	Measure	Clear	Sett	ings Thre	sholds	A Sour
<u> </u>	мах	ر Max	JMeas				

🔆 Agile	nt Technolog	ies			
1 2.007/			r 0.0s	2.00달/ Sto	p ≨ 2 619♡
			-		
			-		
			-		
			-		
			ŧ		
			-		
			-		
			-		
			-		
Pk-Pk(1):	250mV) (Avg(<u>1</u>): 4.	908 V	(Max(1):	5.00V J
▲ Source 1	Select: Max	Measure Max	Clear Meas	Settings	Thresholds

User Interface

- Keypad: 16 key conductive rubber keypad
 - Accepts user inputs to allow control of fingerprint scanner and lock/unlock commands
- LCD : 16 character x 2 line display
 - Shows menu options and prompts user input

Fingerprint Scanner

- Optical scanner with control board
- Manages and stores several hundred fingerprints
- GPIO and serial interface capabilities

http://www.sparkfun.com/products/8839

Wireless Transmission

• Linx HP-3 transmitter, receiver, and antennas

• Transmits 8 data bits +1 start bit

Fingerprint & Wireless

Firearm Unit

- Microcontroller interprets the received wireless signal from control unit
- Microcontroller provides control signals to locking mechanisms
- Locking mechanisms physically put firearm into proper state

Firearm Power Supply

- Supplies +5 Vdc to firearm's subsystems
- Contains enough energy for approximately 12 hours of continuous usage

Firearm Power Supply

- Avg(1) input voltage from battery
- Avg(2) –voltage regulator output

🔆 Agilent Technolog	jies				
1 2.00V/ 2 2.00V/		- 32.0ਵ	200날/ St e	op 	124♡
	-	-			
23					
	-	-			
		-			
		-			
Avg(1): 7.352V	/ Av	a(2):	4.969V		1
Source) Measure Avg	Clear Meas	Settings) Three	sholds

Firearm Power Supply Lifetime

Constant Current Performance

- Current drawn from supply
 - Motors spinning: 70 mA (nominal) 135 mA (maximum)
 - Motors off: 40 mA (nominal)

Pressure Sensor

- Pushbutton feeding into firearm's microcontroller
- Sensor outputs +5V signal when firearm is held

Pressure Sensor Testing

🔆 Agile	nt Technolog	lies					
1 2.007/ 2	2.007/		→	0.0s	500%/	Stop	
			Ŧ				
1.							
-			-				
			· · · · T ·				
			-				
			-				
2.			-				
						> 75 M	
Ampi(2):L	.ow signal	AVg(2	1: 4.948	v	, AVGU	J: -75mV	
▲ Source	Select:) Meas	g	Clear Meas	J Setti	ngs (Thre	sholds

Sensor unpressed: output voltage = 0 V

Agilent Technologies										
1 2.007/	2 2.00	V/		-	• 0.0s	50	0 <u>°</u> /	Stop		
				-						
E .										
1							_			
÷"										
							_			
E										
₽										
Ampl(2):Low s	ignal	ΙΔναί	2): 4.9	51V	1	Ανα(1): 4.	965V	_
▲ Sourc	e 1 40	Select:) Mea	sure	Clear	=	Setti	ings	Three	sholds)
1		Avg		vg	Meas		-			

Sensor pressed: output voltage = +5 Vdc

Locking Mechanisms

- Receives multiple signals from microcontroller indicating the firearm's state
- MOSFETs used to control voltage into motors
- Using microcontroller's signals, the motors spin locking mechanisms into proper state

Locking Mechanisms

Trigger Lock

Locking Mechanisms Testing

Enable	L/U	INV_L/U	Α	B	С	D	Movement
0 V	0 V	5 V	5 V	5 V	5 V	0 V	Unlocking
0 V	5 V	0 V	5 V	5 V	0 V	5 V	Locking
5 V	Х	Х	Х	Х	0 V	0 V	None

Challenges & Recommendations

- Connector on fingerprint scanner
 - Solder connection directly

 Serial communication from fingerprint scanner
Use GPIO for control – serial determined to be unneeded

Challenges & Recommendations

- Limited wireless range
 - Better antennas
- Floating voltages on PIC inputs
 - Use pull down resistors
- Difficult to pack large components on firearm
 - Smaller components for marketability

Ethical Considerations

- Project designed to increase firearm safety; mirroring IEEE Codes 1,5, and 9
- Code 1: "Making decisions consistent with the safety, health, and welfare of the public"
- Codes 5 & 9: Through the "appropriate application" of technology this project helps to "avoid injuring others"

Thank You!

- Professor Carney
- Jane Tu
- Wally Smith
- Mark Smart
- Skot Wiedmann