

Otter Print Shooter

Sabrina Cheng Sze Yin Foo Hoong Chin Ng

ECE 445 Senior Design Project 9 Spring 2012

ECE ILLINOIS

Agenda

- Objectives
- Device Overview
- Features and Benefits
- Hardware Modules and Testing
 - Control Unit
 - Imaging Module
 - Force Sensing Module
 - Motion Sensing Module
 - Lighting Module
 - Power Unit
 - Container and Lid
- Other Tests
- Success
- Recommendations
- Ethical Considerations

Objectives

- Assist Illinois Natural History Survey in collecting biometrical data of otters
- Facilitate the identification of individual otters and get a count of otters

Device Overview

- 23" L x 15" W x 21" H
- A transparent window on the top
- Activates when an otter steps on the window
- A DSLR camera captures the otter's footprint
- LEDs provide illumination

Features and Benefits

- Captures high-detail images of otter footprints
- Records the date/time of otter activities
- Operates independently without human intervention
- Lasts at least four days

Block Diagram

Control Unit

- TI MSP430G2553 microprocessor
- Ultra low power consumption
 - Otters are only active on land for a few hours
- Fast wake-up time
 - Minimizing response time

Control Unit

Schematic of Control Unit

ECE ILLINOIS

Control Unit

Workflow

- Standby and waiting for input interrupt
- Motion triggers PWM output to lighting module
 - 0% to 80% duty cycles over 4 sec
 - Rest for 5 sec before next motion detection
- Force triggers lighting module and imaging module
 - One image per sec while force is applied

Control Unit

Ampl(1): 3.00V

Select:

Freq

Source

Measurement Results:

PWM output with varying duty cycles

Period(1): 9.90ms

Clear

Meas

Measure

Freq

Freq(1): 101.0Hz

Thresholds

ECE ILLINOIS

Imaging Module

Camera

 Canon EOS Rebel T3 DSLR camera (12M) with 18-55 mm lens

• Shutter Controller

- Vishay SFH618A optocoupler
- Nikon and Canon interface cables

Imaging Module

Camera Setting

Parameter	Value
Focal Length	18mm
Focus	Manual
Shutter Speed	1/100 sec
Aperture	F 3.5
ISO Sensitivity	800
Image Format	JPEG

Imaging Module

Schematic of Shutter Controller

Imaging Module

Interface Connectors

Force Sensing Module

Schematic of Force Sensing Module

Design Challenges

- Problem: Determine when the camera should capture a picture.
- Initial solution:
 - Place Force Sensitive Resistors (FSR) under the acrylic sheet.
- Solution:
 - Putting washer on top of the FSR to have a smaller point of weight.
 - Add tapes and foams so that the surface is leveled.

Force Sensing Module

Force Sensing Module

Force Sensing Module

Testing and Measurements:

FSR	Resistance		Output Voltage		Microcontroller	
	0kg	3kg	0kg	3kg	0kg	3kg
1	>1MΩ	5.3kΩ	~0V	1.957V	LOW	HIGH
2	235kΩ	3.3kΩ	0.122V	2.251V	LOW	HIGH
3	>1MΩ	4.8kΩ	~0V	2.023V	LOW	HIGH
4	118kΩ	3.1kΩ	0.234V	2.285V	LOW	HIGH

Motion Sensing Module

Schematic of Motion Sensing Module

Design Challenges

- Problem: Determine the presence of the otter.
- Initial Solution:
 - Place motion sensors (PIR) at the bottom of the container
- Solution:
 - Drill holes for the PIR sensors to be leveled with the surface of the plexiglass window.
 - Use 2 PIR sensors.

Motion Sensing Module

Motion Sensing Module

Horizontal and Vertical Detection Angle of 90° and Detection Range of 2m.

Motion Sensing Module

Testing and Measurements:

 The PIR sensors would generate 2.81V HIGH output when motion is detected.

Lighting Module

- 14 surface mounted LEDs (Everlight Electronics 61-238/QK2C-B28322FAGB2/ET)
- Forward current of each LED = 60 mA
- Current in whole LED circuit = 60 mA x 14 = 0.84 A

Lighting Module

Schematic of Lighting Module

Lighting Module

• Schematic of the switch (NPN transistor) of lighting module

ECE ILLINOIS

Testing on Lighting Module

- To verify that the lighting unit can generate sufficient lights for high-detail images
- Results:

ECE ILLINOIS

Power Supply Unit

VDD(4.8V)

- Four Sanyo Eneloop AA NiMH rechargeable batteries (2000mAh) in series
- Input voltage of voltage regulator and lighting module

ECE ILLINOIS

Power Supply Unit

VCC (3.0V)

- Microchip Technology MCP 1700 LDO 3.0V output voltage regulator
- Input voltage of control unit and the sensing modules

Testing on Power Unit

- To verify that the power unit is able to sustain device usage up to four days
- Results:

Situations	Device current Usage
When in standby	3.08 mA
When activated with PIR sensors	0.5 A

```
Standby current (4 days):
3.08 mA x 4 days x 24 hours/day = 296 mAh
Active current (4 days):
0.5 A x 5 seconds x 660 shots x 1 hour/3600seconds = 458 mAh
```

Total power consumed = 296 mAh + 458 mAh = 754 mAh

ECE ILLINOIS

Container and Lid

Dimension:

Length (23") × Width (15.5") × Depth (21.5")

Container and Lid

Handles to take off the lid

Container and Lid

Gasket: Enable weight to be transferred to the FSRs

Container and Lid

Wiring (11Wires) : Shared VCC (1) FSR (5) PIR (4) LEDs (2)

Design Challenges

- Problem: Container will be placed outdoor at all times.
- Initial solution:
 - Use rubber tube and latch so that container is waterproof.
- Solution:
 - Add foam under the lid to make the seal tighter.
 - Drill drain holes around the lid to drain out the water.

Container and Lid

Amenities to make the container water-proof

Ĩ

Container and Lid

Testing: The container is water-proof

Ī

Other Tests

Frustrated Total Internal Reflection:

• acceptance angle for acrylic sheet to act as a waveguide

Acceptance angle,
$$\theta_A \le 2 \sin^{-1} \sqrt{n_{acrylic}^2 - n_{air}^2} = 2 \sin^{-1} \sqrt{1.491^2 - 1^2}$$

 $\theta_A \le 180^\circ$

• Able to capture human fingerprint without external light source

Recommendations

- Cheaper camera
- Adaptive camera setting to handle all lighting conditions
- Better window material that refrain from scratches

Ethical Considerations

- IEEE code of Ethics #3: "to be honest and realistic in stating claims or estimates based on available data"
 - Fully credit the responsible party or organization for material that is not produced by us fulfils

Thank you

- Professor P. Scott Carney
- TA Tom Galvin
- ECE Machine Shop, Greggory L. Bennett
- ECE Electronic Shop
- Samantha and Team (Illinois Natural History Survey)

I

Questions?