iPhone Ultrasound

Jonathan Adam
Adam Keen
Dean Santarinala
Ultrasound Background

- Ultrasound devices use a pulse-echo imaging technique with sound frequencies above human hearing limit

- Piezoelectric transducer generates an ultrasonic pulse
 - Echoes occur as ultrasonic pulse passes between different media
 - Timing of echo receptions yield distance to media interfaces

- Axial resolution is inversely proportional to frequency
 - Medical ultrasound devices typically operate in the MHz range to achieve resolution of less than 1mm
A-scan Biometry

• A-scan biometry is a 1D ultrasound that measures axial lengths between components within the eye. Measurements are used to calculate the power of a lens to be implanted during cataract surgery.

 - Typical A-scan operating frequency is 10MHz
 - Average velocity of sound in eye = 1,500 m/s
 - Average eye length = 23.6 mm
• Create a portable A-scan ultrasound device using an iOS device as the user interface and patient data repository

• Achieve lower device cost by using a doctor’s existing hardware (iPhone, iPad, or iPod touch)

• Demonstrate an improved user interface over existing devices

• Simplify sharing of scan data between doctors and to patients
Design Overview

- Power Electronics
- Pulser
- FPGA
- T/R Switch
- AFE
- iPhone

Flow directions:
- Power (green dotted line)
- Control (red line)
- Data (blue line)
iPhone

- initiate, view, and stop scans
- manage patient records
- intuitive user interface
iPhone

Communication Protocol

Mic In

Ground

Right Out

Left Out
iPhone

Communication Protocol (Sending)

![Diagram of iPhone communication protocol (sending)](image-url)
FPGA

Why an FPGA?

10 MHz x 2.5 x 12bits/sample = 300 Mbps

LVDS I/O Support
HV Pulser

MAX4940 High-Voltage Digital Pulser
HV Pulser

- Generates a high-voltage, high-frequency, unipolar pulse from a logic-level voltage pulse
- Satisfies pulsing frequencies necessary for ultrasound applications
- High-impedance output during non-pulse intervals to allow echoing pulses to drive the transmit/receive line
- Will transmit a +30V, 50ns pulse every second while scanning
- A 50ns pulse width corresponds to a unipolar 10MHz half-period
Transducer Probe Physics

- Ceramic crystal undergoes mechanical vibration when stimulated by electrical energy

- Longitudinal ultrasound beam propagates through material

- Pulses are partially reflected back at interfaces of different material

- Returning (echoed) mechanical vibrations transduce back into electrical signals sent to receiver

- Damping material attached to back of crystal shortens pulse width and improves axial resolution
Transducer Probe Physics
• DGH 6000 Scanmate A Transducer

• Weakly Focused to ~23mm

• 10-12MHz Nominal Operating Frequency

• Characteristic Impedance of 55 Ohms

• Fixation LED to aid patient during procedure
Transmit/Receive Switch

TX810 T/R Switch
Transmit/Receive Switch

- Protects the amplifiers in receiver from high voltage pulses
- Diode bridge & diode clamp limit output voltage when high input voltage Tx signals applied
- Program bits control bias current for different performance and power requirements
Analog Front End (AFE)

AFE5801 Analog Front End Chip
Analog Front End (AFE)

• Receives echoed voltage signal
 - amplifies the signal to compensate for attenuation in the eye over time
 - digitizes the data for the FPGA & iPhone to analyze

• Variable Gain Amplifiers
 - Time Gain Control
 -- 5dB to 31dB gain digitally controlled
 - Gain vs Time curve stored in memory using Serial Peripheral Interface (SPI)

• Analog to Digital data conversion
 - 12bit, 25MSPS ADC
 - Low Voltage Differential Signaling (LVDS) output
FPGA

- Serial Programmer EPCS16
- Altera Cyclone III EP3C10
- Abracon 30MHz Oscillator
- AS Header Pins
- Audio Communication Jack
- LM311 Voltage Comparator
- I/O Pins
Low-Voltage Differential Signaling (LVDS)

- **Input Signal**
- **Input Clock CLKN**
 - Freq = f_{CLKIN}
- **Frame Clock FCLK**
 - Freq = f_{FCLK}
- **Bit Clock DCLK**
 - Freq = 6 x f_{CLKIN}
- **Output Data CHi OUT**
 - Data rate = 12 x f_{CLKIN}

- **SAMPLE N – 1**
- **SAMPLE N**
- **SAMPLE N + 10**
- **SAMPLE N + 11**

- **D11 (D0)**
- **D10 (D1)**
- **D9 (D2)**
- **D8 (D3)**
- **D7 (D4)**
- **D6 (D5)**
- **D5 (D6)**
- **D4 (D7)**
- **D3 (D8)**
- **D2 (D9)**
- **D1 (D10)**
- **D0 (D11)**

- **Data Bit in MSB First Mode**
- **Data Bit in LSB First Mode**

- **DCLKP**
- **DCLKM**

- **t_h**
- **t_{su}**

- **Output Data Pair**
 - CH_{i} out
 - Dn
 - Dn + 1
FPGA

Data Acquisition/Output

1. Detect initial spike with threshold
2. Buffer window of samples (40us or 60mm)
3. Downsample to 10MHz
4. Decrease intensity resolution to 8 bits
5. Read out buffer to iPhone serially
iPhone

Communication Protocol (Receiving)
iPhone

decode Manchester-encoded serial data

view live echograms

save scans to memory

export scans via email or other application

built in IOL calculator
Intraocular Lens (IOL) Calculations

- $v_{\text{phakic}} = 1550 \text{ m/s}$
- $v_{\text{aphakic}} = 1532 \text{ m/s}$
- $v_{\text{cornea,lens}} = 1641 \text{ m/s}$
Intraocular Lens (IOL) Calculations

SRK II Formula: \(P = A_1 - 0.9K - 2.5L \)

Typical \(K \) = 43 diopters
Typical \(L \) = 23.5 mm

- \(A_1 = A + 3 \) for \(L < 20 \)
- \(A_1 = A + 2 \) for \(20 \leq L < 21 \)
- \(A_1 = A + 1 \) for \(21 \leq L < 22 \)
- \(A_1 = A \) for \(22 \leq L < 24.5 \)
- \(A_1 = A - 0.5 \) for \(24.5 < L \)
Power Electronics
Power Electronics

Regulates nine different voltage levels from a 9V battery

+30V: High-voltage supply for Transmit Pulser
±10V: Output driver supply for Transmit Pulser
±5V: Output supply for T/R Switch
+3.3V: Digital logic supply for all system components
+2.5V: PLL supply for FPGA
+1.8V: LVDS supply for AFE and FPGA
+1.2V: Internal logic supply for FPGA
Power Electronics

Power electronics design balances efficiency and area

Over 2 hours of battery life
Power Electronics

TL497ACN +30V DC/DC boost converter

KA78L10AZTA +10V fixed positive voltage regulator

TL497ACN -10V DC/DC inverting converter

TL497ACN 5V DC/DC buck converter

+2.5V fixed positive voltage regulator

+1.2V fixed positive voltage regulator
Results and Verifications
HV Pulser

FPGA configured to generate an appropriate pulse every 5ms
HV Pulser

Digital input pin on the Transmit Pulser correctly receives a 50ns-wide, logic-level voltage pulse
HV Pulser

Digital input pin on the Transmit Pulser correctly receives a 50ns-wide, logic-level voltage pulse
High-voltage output pin on the Transmit Pulser correctly generates a 50ns-wide, +30V pulse.
High-voltage output pin on the Transmit Pulser correctly generates a 50ns-wide, +30V pulse
Transducer Probe

Tested with Prof. Bill O’Brien’s group in the Bioacoustics Research Laboratory

Used Olympus Panametrics 5900 Pulser/Receiver and Labview DAQ system to observe correct focus and frequency of operation
Transducer Probe
Transducer Probe
Transmit/Receive Switch

Applied a 50ns, 23V pulse to the input
Transmit/Receive Switch

Observed <2Vpp pulse output analogous to inputs
Analog Front End (AFE)

SPI Interface:

Verified SPI data lines were sending correct programming sequences at 3.3V logic level.
Analog Front End (AFE)

SPI Interface:

Verified SPI data lines were sending correct programming sequences at 3.3V logic level
Analog Front End (AFE)

SPI Interface:

Verified TGC registers were getting programmed by sending commands to read register contents on DE2 FPGA board seven-segment display.
Analog Front End (AFE)

LVDS Output:

Verified data is transferred differentially at low voltage (1-1.3V) and ~25MSPS

Ran out of time to implement a DAC that could interpret the output data
FPGA

Could not implement LVDS reception protocol for demo

Serial programmer chip correctly saves configuration file
Initialization of Cyclone III FPGA unsuccessful

Used Altera DE2 board to fulfill other requirements
FPGA

Correctly receives pulse commands (2 distinct start and stop bytes)

Correctly sends buffered data to iPhone (verified in XCode console)

 Baud rate set at 4900 Hz for data integrity (1.5 seconds/scan)
Power Electronics

Performed a DC sweep of the input voltage from 6.5V to 9.5V, the operating range of a 9V battery

Measured minimum and maximum output voltages of each power electronics component

Calculated maximum error, verified that none exceeded 5%
<table>
<thead>
<tr>
<th>Component</th>
<th>Nominal Voltage (V)</th>
<th>Min. Voltage Measured (V)</th>
<th>Max. Voltage Measured (V)</th>
<th>Max. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Converter</td>
<td>+30.00</td>
<td>+31.40</td>
<td>+31.40</td>
<td>4.7%</td>
</tr>
<tr>
<td>Buck Converter</td>
<td>+5.00</td>
<td>+5.17</td>
<td>+5.17</td>
<td>3.4%</td>
</tr>
<tr>
<td>Buck Converter</td>
<td>+1.80</td>
<td>+1.80</td>
<td>+1.80</td>
<td>0.0%</td>
</tr>
<tr>
<td>Inverting Converter</td>
<td>-10.00</td>
<td>-10.11</td>
<td>-10.10</td>
<td>1.1%</td>
</tr>
<tr>
<td>Positive Regulator</td>
<td>+10.00</td>
<td>+10.09</td>
<td>+10.09</td>
<td>0.9%</td>
</tr>
<tr>
<td>Positive Regulator</td>
<td>+3.30</td>
<td>+3.32</td>
<td>+3.32</td>
<td>0.6%</td>
</tr>
<tr>
<td>Positive Regulator</td>
<td>+2.50</td>
<td>+2.53</td>
<td>+2.53</td>
<td>1.2%</td>
</tr>
<tr>
<td>Positive Regulator</td>
<td>+1.20</td>
<td>+1.22</td>
<td>+1.22</td>
<td>1.7%</td>
</tr>
<tr>
<td>Negative Regulator</td>
<td>-5.00</td>
<td>-4.98</td>
<td>-4.98</td>
<td>0.4%</td>
</tr>
</tbody>
</table>
iPhone

Demo
Reflections

Have backup DAC

Make our own breakout boards earlier

Understand technical details/scope earlier

Order parts (and backups) earlier
Future Work

Get FPGA board functional

Verify correct output of AFE

Put all components on one PCB

Optimize TGC amplification and sampling timing
Acknowledgments

Prof. Carney
Mustafa Mir
Mark Smart
Skot Weidman

Prof. O’Brien
Michael Kurowski
Alex Suchko
DGH Technologies
Questions