

 $\frac{\text{USB 3.0 Outlet}}{\text{Project Proposal}}$

Cindy Fok, Andrew Moruzi, Tyler Neyens February 8, 2012

> ECE 445 Spring 2012 TA: Jim Kolodziej

Contents

1	Introduction	3
2	Design 2.1 Block Diagram 2.1.1 Block Descriptions 2.2 Performance Specifications	4 4 5
3	Verification 3.1 Testing Procedures 3.2 Tolerance Analysis	5 5 5
4	Cost and Schedule 4.1 Labor 4.2 Parts 4.3 Schedule	6 6 6

1 Introduction

The project aims to address the growth of external DC converters for consumer products. The objective of this project is to modify an AC wall outlet to include two DC USB ports. One of the DC USB ports will be a lower power, 5V 5A, standard USB 3.0 port; the other one will be a high power, 12V 15A, modified USB 3.0 port. These additional USB ports would eliminate the need for DC converter outside the wall outlet. The project was selected because of the group's common interest in power electronics. It also has a commercial viability and implementation of the product to an existing wall outlet would be simple. This product will promote the standardization of DC appliances. It will also further the transition to green technologies by removing the need for wasteful external converters and replacing them with higher efficiency permanent converters.

Objective:

The modified wall outlet intends to include USB compatibility and maintain a simple installation process for the users. The product will be designed to achieve a high efficiency during the conversion between AC to DC power and DC voltage levels. It will also provide a more ascetically pleasing environment for the user by eliminating bulky external DC converters.

Consumer Benefits:

- Uses less energy
- Saves money on power bill
- Quieter appliances
- User-friendly
- Less "wall warts" (external DC converters)

Product Features:

- Two USB ports with various power levels
- In-wall installation
- High efficiency
- Two 120V 15A AC outlets
- Eliminated need of additional power converter
- Simple installation process

2 Design

2.1 Block Diagram

Figure 1: Block Diagram

2.1.1 Block Descriptions

Control The control algorithms will be implemented using a TI MSP430. Four control signals will be needed: flyback switching signal, high power and low power buck switching signals, and short circuit protection shutoff signal.

Rectifier The rectifier will be implemented using Schottky diodes for reduced voltage drop and higher efficiency.

Start-up Power The start-up power unit will utilize the AC power sources along with a linear regulator to provide initial power required by the micro controller. After the system has reached steady state the unit will switch to a DC power sources which is provided by the low power buck converter. The change in power sources will increase efficiency for the overall system.

Short Circuit Protection The short circuit protection circuit will limit the amount of output current during short circuit conditions. The circuit will detect a short circuit and power down the outlet. This added protection will increase the safety of the outlet.

Flyback Stage A property of a flyback converter is galvanic isolation between the output and input power which will protect the system from current surges. The converter includes a coupled inductor that maintains properties of an ideal transformer and provides turns ratio advantages. The flyback also steps down the DC voltage before the voltage is the input into the buck converter. By stepping the voltage in two stages, the circuit components are able to be sized down. It also provides a high power factor for the system.

High Power Buck The high power buck converter will step down the voltage from 25V to 15V. The converter also helps with line regulation and ripple.

Low Power Buck The low power buck converter will step down the voltage from 25V to 5V. Similar to the high power buck converter, the lower power converter also helps with line regulation and ripple.

Load The system load will be a varying electronic load for testing purposes. The final demo load for the low power circuit will be charging three different cell phones including an Android phone and an iPhone 4. The final demo load for the high power circuit will be an electric drill.

2.2 Performance Specifications

Input voltage: AC 120V 15A 60Hz Two USB 3.0 ports: 5V 5A and 12V 15A output Two output voltage: AC 120V 15A Switching frequency: 100kHz Load regulation: 0.5% Max/startup current: 10A Output ripple: 1% Power factor: 0.85 Efficiency: 85% Charge all mobile phones that accept USB power

3 Verification

3.1 Testing Procedures

Output voltage and current ripple will be measured by utilizing a differential probe, a current probe and an oscilloscope in AC coupling mode. The output ripple varies along with the changing load and frequency. A graph will be produced to reveal the relationships between these properties.

Load regulation is defined in (1). Using an electronic load in constant current mode, the circuit will be tested under full load and no load conditions.

$$\% Load Regulation = \frac{V_{out(minload)} - V_{out(fulload)}}{V_{out(nom)}}$$
(1)

The circuit will be build modularly, with each part being examined individually for specific performance analysis. The rectifier will be tested to establish a stable DC input to the flyback. While the flyback will be analyzed to ensure the correct sizing of the components. The flyback must also provide a 20V DC voltage to the buck converters. The buck converters will be examined for the output current and voltage ripple to verify that they are within the tolerance specified by the performance specifications.

3.2 Tolerance Analysis

The functionality of the circuitry is dependent on the switching frequency of the flyback converter. Along with it, the switching frequency is inversely proportion to the size of the inductor in the flyback circuit. If the frequency is too small, the inductor will saturate and act as a short circuit. If the frequency is too large, the losses due to heat will increase dramatically. The current components are selected to function at the nominal switching frequency of 100 kHz. In order to ANALYZE the system responsiveness, the frequency will be varied from 10 Hz to 1 MHz.

In addition to the frequency tolerance analysis, the gate drive circuitry will contain various pot resistors to determine the output current to gain optimal control of the MOSFET for the flyback converter. The initial stage of the gate driver circuit will be based on the information given on the data sheet. Afterward, a potentiometer will be used to determine the optimal response from the driver.

4 Cost and Schedule

4.1 Labor

Table 1: Labor Cost				
Name	Rate	Hour	Total = Rate * Hour * 2.5	
Cindy Fok	\$50/hr	180	\$22,500	
Andrew Moruzi	\$50/hr	180	\$22,500	
Tyler Neyens	\$50/hr	180	\$22,500	
		Total	\$67,500	

4.2 Parts

Description	# on PCB	Supplier	Cost/Per Unit	Total Cost		
Rectifier						
Diode Schottky	4	Digikey	\$3.20	\$12.80		
Flyback Stage	Flyback Stage					
Inductor Core	1	Supplied in Lab	-	-		
Inductor Wire		Supplied in Lab	-	-		
MOSFET	1	Digikey	\$3.43	\$3.43		
High Side Gate Driver	1	Supplied in Lab	-	-		
Bootstrap Diode	1	Supplied in Lab	-	-		
Bootstap Capacitor	1	Supplied in Lab	-	-		
Output Capacitor	1	Supplied in Lab	-	-		
Heat sink	1	Supplied in Lab	-	-		
Buck Stage						
Inductor	2	Supplied in Lab	-	-		
Output Capacitor	2	Supplied in Lab	-	-		
Low Buck-5.5V to 36V Input, 5A	1	Digikey	\$3.25	\$3.25		
High Buck-Wide Input Synchronous	1	Digikey	\$2.70	\$2.70		
Control						
Micro controller	1	Digikey	\$1.56	\$1.56		
Relay	1	Digikey	\$1.86	\$1.86		
Output						
USB 3.0 Female	2	Digikey	\$2.80	\$5.60		
USB 3.0 Male	2	Digikey	\$3.28	\$6.56		
Banana Plugs Female	8	Digikey	\$0.70	\$5.60		
Banana Plugs Male	8	Digikey	\$1.62	\$12.96		
AC Outlet	1	Menards	\$0.39	\$0.39		
Total Parts Cost						

Total Project Cost = 67,600 + 56.71 = 67,656.71

4.3 Schedule

Week	Description of Task	Group Member
	Initial Posts	Class Dates
1/16	Find partner and brainstorm ideas	Cindy Fok
1/10	Find partner and brainstorm ideas	Andrew Moruzi
	Find partner and brainstorm ideas	Tyler Neyens
	None	Class Dates
1/93	Email Prof. Carney about addition to project	Cindy Fok
1/20		

	Topology research	Andrew Moruzi
	Initial simulations	Tyler Neyens
	RFA Due, Project Page Update, Schedule Submitted	Class Dates
1/20	Research section/design, Learn MSP430	Cindy Fok
1/30	Power ratings, proposal	Andrew Moruzi
	Inductor calculation, part selection	Tyler Neyens
	Proposals Due, TA Meeting	Class Dates
0/0	Rectifier, Finalize BOM, Cont. MSP430	Cindy Fok
2/6	Start Flyback on breadboard, Gate drivers	Andrew Moruzi
	Final simulation, Start Design Review	Tyler Neyens
	TA Meeting	Class Dates
0/19	Design Review final, Controls	Cindy Fok
2/13	PCB Schematic Design	Andrew Moruzi
	Finish Flyback, Start Buck on Breadboard, Gate drivers	Tyler Neyens
	Design Reviews, TA Meeting	Class Dates
0./00	Finish Buck on Breadboard	Cindy Fok
2/20	Eagle Part Design/Library	Andrew Moruzi
	Final Breadboard Testing	Tyler Nevens
	TA Meeting	Class Dates
0.407	Order PCB 1.0 from 4PCB	Cindy Fok
2/27	Start SC Protection	Andrew Moruzi
	Finalize PCB Board Layout	Tyler Nevens
	TA Meeting	Class Dates
0/5	IPR, Finish SC Protection	Cindy Fok
3/5	IPR, Start up power	Andrew Moruzi
	IPR, Test SC Protection	Tyler Nevens
	Individual Progress Reports, TA Meeting	Class Dates
0/10	Order PCB 2.0 from 4PCB	Cindy Fok
3/12	Test PCB 1.0	Andrew Moruzi
	Finalize PCB 2.0, Test Start up power	Tyler Neyens
3/19	Spring Break	Class Dates
,	Mock-up Demos, TA Meeting	Class Dates
2/00	Control slides	Cindy Fok
3/20	Test slides	Andrew Moruzi
	Design slides	Tyler Neyens
	Mock-up Presentations, TA Meeting	Class Dates
4/9	Modify USB cord	Cindy Fok
4/2	Circuit Housing	Andrew Moruzi
	Custom Load	Tyler Neyens
	Last Day for Final PCB, TA Meeting	Class Dates
4/0	Presentation	Cindy Fok
4/9	Load	Andrew Moruzi
	Demo	Tyler Neyens
	Demo and Presentation Sign-up Closes, TA Meeting	Class Dates
4/16	Final Paper - Intro, cost, conclusion	Cindy Fok
4/10	Final Paper - design procedure, details	Andrew Moruzi
	Final Paper- testing, verification	Tyler Neyens
	Demos, Presentations, TA Meeting	Class Dates
4/00	Final Paper Review - Intro, cost, conclusion	Cindy Fok
4/20	Final Paper Review - design procedure, details	Andrew Moruzi
	Final Paper Review - testing, verification	Tyler Neyens
4/30	Presentations, Final Paper, Checkout, Lab Notebooks	Class Dates