Walking Stick with Heart Attack Detection

By

Helen Kim

Choon Yik Lee

ECE 445, SENIOR DESIGN PROJECT

SPRING 2005

TA: Richard Cantzler

May 3, 2005

Project #28

ABSTRACT

The Walking Stick with Heart Attack Detection is equipment that is used daily to indicate heart condition, to detect heart attack and to call for emergency help. It was designed specially to help senior citizens and patients with heart disease. This project is based on the previous project “Wireless Heart Attack Detector with GPS” of Fall 2004 [1].

TABLE OF CONTENTS

1. INTRODUCTION………………………………………………………......................................1

1.1 Overview of Design………………………………………………………………………….2

1.2 Specification…………………………………………………………………………… .…3

1.3 Performance Benchmarks……………………………………………………………………4

1.4 Subprojects…………………………………………………………………………………...4

2. DESIGN PROCEDURE…………………………………………………………………………5

2.1 Biosensors……………………………………………………………………………………5

2.2 Analog ECG Circuitry……………………………………………………………………….5

2.3 Data Transmission between Wrist and the Walking Stick…………………………………..9

2.4 A/D conversion of Analog ECG signal to Digital ECG signal………………………………10

2.5 Heart Attack Detection…………………………………………………………………….....11

2.6 Emergency Calling…………………………………………………………………………...11

 3. DESIGN DETAILS………………………………………………………………………….……12

3.1 Analog ECG Circuitry……………………………………………………………………….12

3.2 A/D Conversion and RS232 of PIC16F877…………………………………………………..12

3.3 Digital Data Transmission of HP-3 Transceiver……………………………………………...13

3.4 Heart Attack Algorithm of the Javelin Stamp Microcontroller………………………….……14

3.5 Low-Risk and High-Risk LEDs of Heart Attack……………………………………………..14

3.6 EB500 Bluetooth Module and Javelin Stamp Microcontroller…………………………….....15

 4. DESIGN VERIFICATION/TESTING…………………………………………………………....16

4.1 A/D Conversion……………………………………………………………………………....16

4.2 RS232 of the PIC……………………………………………………………………………..16

4.3 ECG Data Collection and Wireless Transmission between Wrists and the Stick…………….16

4.4 Heart Attack Algorithm……………………………………………………………………….17

4.5 Alert Level…………………………………………………………………………………….17

4.6 Emergency Calling…………………………………………………………………………....17

4.7 Power Consumption…………………………………………………………………………...17

4.8 Weight………………………………………………………………………………................17

5. COST………………………………………………………………………………………………18

5.1 Parts and Cost………………………………………………………………………................18

6. IMPROVEMENTS TO THE PREVIOUS PROJECT…………………………………...............20

7. CONCLUSIONS………………………………………………………………………………….22

APPENDIX 1 - ECG Analog Circuit, PIC16F877, HP-3 Transmitter……………………………23

APPENDIX 2 - HP-3 Receiver, Javelin Microcontroller, EB500 Bluetooth Module…………….24

APPENDIX 3 –Sample Normal ECG Waveforms………………………………………………..25

APPENDIX 4- Sample Abnormal ECG Waveforms……………………………………………...26

APPENDIX 5- PIC16F877 Programming Code…………………………………………………..27

APPENDIX 6 – Javelin Stamp Programming Code……………………………………………….28

REFERENCES…………………………………………………………………………………….37

ACCKNOWLEDGEMENT……………………………………………………………………….38

1. INTRODUCTION
The National Heart, Lung, and Blood Institute [2] states that “more than a million persons in the U.S. have a heart attack and about half (515,000) of them die in each year. About one-half of those who die do so within 1 hour of the start of symptoms and before reaching the hospital”. A heart attack happens to a person when the blood flow and oxygen supply to heart muscle is blocked, and it is mostly caused by the Coronary Artery Disease (CAD) [2]. CAD occurs when the arteries that supply blood to the heart muscle (coronary arteries) become hardened and narrowed [3]. It often causes irregular heart beat or rhythm by blocking blood stream [2]. The National Heart, Lung, and Blood Institute [2] suggest that “everyone should know the warning signs of a heart attack and how to get emergency help”.
The symptoms of heart attack can be detected by observing electrocardiogram (ECG) waveform. An ECG is an electrical recording of the heart and is used in the investigation of heart disease [4]. An electrical impulse initiates muscle contraction, which results in heart beating. The spacing between pulses provides a measure of the heart’s rhythm, whereas the height of the pulses is an indicator of pumping strength [1]. By observing the ECG waveform, the heart condition of the patients can be explained by doctors.
The ECG Library shows many samples of abnormal ECG waveform, and they are mostly collected from aged people who are more than 55 years old [4]. The senior citizens are more prone to have heart attack than young people. The Walking Stick with Heart Attack Detection is specially designed to help the senior citizens who need walking aids by walking sticks and have the most possibility of heart attack. The walking stick is used as detection unit and as the medium asking for medical help.
1.1 Overview of Design

The ECG circuitry unit on the wrist captures abnormal heart beat signal from the patient. The microcontroller on the stick runs a heart attack algorithm. Warning is given out to the person about his heart condition. The Bluetooth emergency calling system calls for medical help at the moment of heart attack. This project aims to shorten the time between the moment of heart attack and the arrival of medical personal. The warning before the emergency call will give the patient a chance to avoid heart attack.
[image: image1]
Figure 1.1 Block Diagram of Walking Stick with Heart Attack Detection
Two biosensors worn on the user’s wrists send the real ECG signal to the analog ECG circuitry. The amplified and filtered analog output of the circuitry is converted from analog to digital signal and transmitted to the unit on the walking stick. The ECG circuitry unit, the A/D converter, and the transmitter are worn on one of the user’s wrists. The wireless connection between the unit on the wrist and the main unit on the walking stick gives the user more freedom to move by avoiding wire attachment between the wrist and the stick.
The receiver on the stick receives the digital ECG signal, and the microcontroller runs a heart attack algorithm to detect possible heart attack symptoms. If any symptom of heart attack is detected, the risk level rises. When the risk level reaches up to the emergency mode, the Bluetooth module activates the user’s mobile phone to call 911 for medical help. Latest mobile phones include GPS function. Therefore, the GPS unit is eliminated from the previous project [3] as the mobile phone’s GPS can locate the user.
1.2 Specifications
For the design of the ECG circuitry and the ECG algorithm, the specifications of the previous project “Wireless Heart Attack Detector with GPS” [1] were used.
The frequency range of ECG signal depends on the activity of individual. The typical range is approximately from 50 Hz to 70 Hz. To cover a wide range of frequencies for all scenarios, the band-pass filter of the ECG circuitry is designed to have a lower cutoff frequency of 0.5 Hz and an upper cutoff frequency of 150 Hz. The analog output of the ECG circuitry must be in the range between -2 V to 2V so that the A/D conversion operates properly. The overall amplification inside the ECG circuitry should be at least 3000 but no greater than 5000. The minimum sampling rate of A/D converter should be 400 Hz to capture the detailed ECG waveform that changes in millisecond unit [1].
The transmitted data and the received data must be the same. No noise should be added during the transmission. The distance for reliable transmission should be wide enough so that the movement of user is not limited in the near area of the stick. 40 feet is chosen as the user is assumed to be within this distance during all his activities.
All the hardware should operate with low power consumption, and the microcontroller must show the least number of error when it runs the heart attack algorithm. High risk and low risk warnings should be shown when symptoms are detected. The delay time between the moment of heart attack detection and the activation of Bluetooth module should be as short as possible.

1.3 Performance Benchmarks

The total delay from the moment the microcontroller output a heart attack signal to the arrival of medical assistance should be shortened as much as possible. This delay is between the output of heart attack signal and the mobile phone calling. The delay time should be less than 45 second.
1.4 Subprojects

[image: image28.wmf]
Figure 1.4 Subproject Flow Chart
There are three main subprojects: ECG circuit unit, Analysis Algorithm, and Bluetooth Communication. The first unit is worn on the user’s wrist, and the rest two are installed in the stick. The ECG circuit unit captures ECG waveform from the user’s wrists by electrodes. It then amplifies and filters the ECG signal. After that, the signal is digitized by an A/D converter and is transmitted to the stick. In Analysis Algorithm unit, the receiver first captures the digital ECG signal and feeds it to the microcontroller. The microcontroller runs the algorithm to detect heart attack and to raise the risk level. When a heart attack is confirmed, an emergency signal is sent to the Bluetooth Communication unit. In the Bluetooth Communication unit, the Bluetooth module activates the user’s mobile phone to call 911.
2. DESIGN PROCEDURE
2.1 Biosensors

Since the previous project mentioned about the benefits of the Ag-AgCl ECG electrodes, we decided to use the same electrodes as our biosensors. The benefits of the electrodes include good electrical contact with human skin, low motion artifacts and strong adhesive quality to skin.

2.2 Analog ECG Circuitry

Based on the “Wireless Heart Attack Detector with GPS” [3], we designed the three components, unity-gain buffers, differential amplifier and band-pass filter. The unity-gain buffers are needed for both wrists as impedance transformers. Although skin impedance is high, the input impedance of op-amps is infinity and the op-amps will be able to catch the bio signals out of the two electrodes. Differential amplifier will take the two bio signals and differentiate them with gain to get the desired ECG waveform. Band-pass filter will make sure that noise of frequencies outside 0.5 Hz and 150 Hz is eliminated.

For the Calculation of the ECG circuitry design, the same procedure from the “Wireless Heart Attack Detector with GPS” [1] was used and was quoted as below.

The differential amplifier gain should not exceed 33 in order to prevent a 300 mV electrode offset potential from causing the system to saturate. Figure 2.2 shows a diagram of the differential amplifier component of the circuit.

[image: image2]
Figure 2.2.1 Differential Amplifier Component Diagram

KCL is applied keeping in mind that no current flows into the input terminals

[image: image3.wmf]

 EMBED Equation.3 [image: image4.wmf]7

6

1

R

v

v

R

v

v

od

-

=

-

-

-

(1)

and

[image: image5.wmf]5

4

2

0

R

v

R

v

v

-

=

-

+

+

(2)

Solving for v+ in eq. (2) and since v+ = v-

[image: image6.wmf]5

4

5

2

R

R

R

v

v

v

+

=

=

-

+

(3)

Plugging eq. (3) into eq. (1) and solving for vod

[image: image7.wmf]6

7

1

6

7

6

5

4

5

2

R

R

v

R

R

R

R

R

R

v

v

od

-

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

Let R4 = R6 and R​5= R​7

[image: image8.wmf](

)

1

2

6

7

v

v

R

R

v

od

-

=

Hence the differential amplifier produces an output that is the difference between the inputs multiplied by a gain factor. The gain is chose to be at 15; R7 and R5 are selected to be 15kΩ; R6 and R4 are selected to be 1kΩ.

The lower frequency cut-off was desired to be around 0.04Hz, and upper frequency cut-off was desired to be about 150Hz. A gain of around 100 was sought from the band-pass filter. (Overall gain needed to be 1000 to 5000 with the differential amplifier having a gain no greater than 33.) A diagram of the low and high pass portions of the band-pass filter are shown in Figures 2.3 and 2.4, respectively.

[image: image9]
Figure 2.2.2 Low Pass Portion of Band-pass Filter Diagram

[image: image10]
Figure 2.2.3 High Pass Portion of Band-pass Filter Diagram

Applying KCL and remembering that there is no current to the input terminals of the low pass portion

[image: image11.wmf]2

11

10

/

1

0

C

j

v

v

R

v

v

R

v

o

o

w

-

+

-

=

-

-

-

-

Solving for v-

[image: image12.wmf]10

11

11

2

11

2

1

1

R

R

R

C

j

R

C

j

v

v

o

+

+

+

=

-

w

w

(4)

Applying KCL and knowing that no current flows into the input terminals of the high pass portion

[image: image13.wmf]8

1

0

1

R

v

C

j

v

v

od

-

=

-

+

+

w

Solving for v+

[image: image14.wmf]1

8

1

8

1

C

j

R

C

j

R

v

v

od

w

w

+

=

+

(5)

Since v+ = v-, eqs. (4) and (5) can be combined. Solving for vo/vod

[image: image15.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

+

+

+

=

11

10

10

11

11

2

10

10

1

8

1

8

1

R

j

R

R

R

R

C

j

R

R

C

j

R

C

j

R

v

v

od

o

w

w

w

w

Let τ1 = R8C11 and τ2 = R11C2

[image: image16.wmf](

)

÷

÷

ø

ö

ç

ç

è

æ

+

+

+

=

2

10

11

1

1

1

1

1

wt

wt

wt

j

R

R

j

j

v

v

od

o

(6)

The lower cut-off frequency ω1 = 1/τ1 and the upper cut-off frequency ω2 = 1/τ2. Desiring ω1 to be 0.04 Hz and ω2 to be 150 Hz

[image: image17.wmf]1

8

1

)

2

(

04

.

0

C

R

=

p

(7)

and

[image: image18.wmf]2

11

1

)

2

(

150

C

R

=

p

(8)

From eq. (6), it can be seen that the output is amplified by a gain equal to R11/R10. Since the gain is desired to be about 100, eqs. (7) and (8) can be solved. Thus R11 is selected to be 106.2 kΩ, R10 to be 1 kΩ, R8 to be 3.9 MΩ, C1 to be 1 μF and C2 to be 0.01 μF. The value of R9 is not significant and is selected to be 10 kΩ.

A buffer with unity gain is needed for each input as an impedance transformer, because the skin has much higher impedance compared to the input impedance of the differential amplifier. Figure 2.5 shows a diagram of the buffer components.

[image: image19]
Figure 2.2.4 Buffer Components Diagram

Since no current flows into the input terminals and v+ = v-, by applying KCL

[image: image20.wmf]3

2

2

2

2

1

1

1

1

R

v

V

R

V

V

R

V

v

o

o

-

=

-

=

-

The gain is determined by R1/R2 = R3/R2. Desiring a gain of unity, R1, R2, R3, and R4 were chosen to be 10 kΩ each.

2.3 Data Transmission between Wrist and the Walking Stick

Our original design was to transmit the analog ECG waveform directly out of the ECG analog circuitry to the walking stick. We would use the analog signal transmission capability of the HP-3 transceiver. We wanted to make this data transmission wireless from the wrist to the stick. This would avoid the inconvenience of the stick attachment to the wrist. User can go into a car and put his stick at the back seats without detaching any wire between his wrist and the stick. He also does not have to switch the device off. When the stick falls down, it won’t drag the user’s wrist to the ground.

After we browsed through the data sheet of the HP-3 transceiver, we discovered that the analog bandwidth of the transceiver pair is between 50 Hz and 28000 Hz. As discussed in the previous project, normal ECG waveform has frequency range between 50 Hz and 70 Hz. However, to cover all the possible scenarios like sleeping and fast walking, the lower and the upper cutoff frequencies were decided to be 0.5 Hz and 150 Hz. Since the range from 0.5 Hz and 50 Hz is outside the transmission bandwidth of the HP-3 transceiver, we thought about using mixer and oscillator to raise the lowest frequency of analog signal, which is 0.5 Hz, to 60 Hz. This would ensure correct transmission of the analog signal.

When we discussed this idea with our TA, we were introduced to the RS232 capability of PIC. Since RS232 signal is digital, we can use the same transceiver to transmit digital signal. We no longer have to worry about the lowest frequency of the analog signal along with the mixer and the oscillator.

2.4 A/D Conversion of Analog ECG Signal to Digital ECG signal

Since we are using a PIC for its RS232 feature, we thought it would be natural to use the A/D conversion feature of the PIC. We then had to decide between using an 8-bit conversion or a 10-bit conversion. 10-bit conversion would give higher resolution to the digitized ECG waveform. But, the final decision was determined by the RS232 transmission. According to the PIC-C Compiler Manual, when defining #use RS232, bits sent can only be between 5 and 9. Because 10 are not in this range, we decided to do 8-bit A/D conversion.
2.5 Heart Attack Detection
When the microcontroller on the walking stick has received digital ECG data from the wrists, it will check for heart attack symptoms. We decided to use the heart attack algorithm developed by the previous project. We would like to indicate to the user his heart condition so that he can take proper action like slowing down or taking a rest before heart attack really happens to him.
2.6 Emergency Calling
Previous project needed to use a Bluetooth module and a laptop to make an emergency call. Our goal was to eliminate the laptop. Our project will execute emergency calling with just a Bluetooth module. Bluetooth communication is wireless. The user can put his cell phone anywhere he wants as long as it is within the range of the Bluetooth communication. The user does not have to hang his cell phone to the walking stick, making his waking stick heavy and hindering his movement.

3. DESIGN DETAILS
3.1 Analog ECG Circuitry
	Componet
	Value

	R1, R2, R3
	10 kΩ

	R4, R6
	1 kΩ

	R5, R7
	15 kΩ

	R8
	100 kΩ

	R9
	3 kΩ

	R10
	1 kΩ

	R11
	150 kΩ

	C1
	1 µF

	C2
	0.01 µF

The band-pass filter has a lower cut-off frequency of 1.59 Hz and an upper cut-off frequency of 106.1 Hz. The gain of band-pass filter is 150, and the overall gain is 150×15=2250.
3.2 A/D Conversion and RS232 of PIC16F877

We use PIC16F877 as our microcontroller on the wrist. The connections to the PIC are shown in Appendix 1. Oscillator of 20 MHz is used as clock to the PIC.

Analog ECG signal is sent to Pin2 RA0. Pin4 Vref- is connected to 0 V and Pin5 Vref+ is connected to 5 V. The analog signal will be digitized into 8 bits. The digital values will be between 0 and 127. 0 V will correspond to 0, 1 V will correspond to 50, 2 V will correspond to 100 and 2.5 V will correspond to 125. Since the analog ECG waveform will be amplified to only 2 V, the highest digital value will be 100. The reason of not amplifying the signal to 2.5 V is to provide some error of margin in the real world. The sampling will be done with a while loop that runs continuously with the condition always set to ‘true’. Please refer to the C codes on Appendix 5. The sampling rate of 400 Hz will be implemented by putting a delay of 2500 us in the while loop.

After the digital values are obtained through the A/D conversion, the digital values are parallel 8 bits. These parallel 8 bits will be transformed into serial bits of the format of RS232. According to Wikipedia, RS-232 is a standard for serial binary data interchange between a DTE (Data Terminal Equipment) and a DCE(Data Communication Equipment) [5]. In our case, the DTE will be the PIC and the DCE will be the HP-3 transmitter. The RS232 format will consist of a ‘start’ bit, eight data bits, least-significant bit first, and a ‘stop’ bit. We also make sure the logic voltage level of RS232 will be between 0 V and 5 V as required by the HP-3 transmitter.

3.3 Digital Data Transmission of HP-3 Transceiver

The digital ECG values in RS232 form will be fed into a HP-3 transmitter. HP-3 transmitter has 8 parallel selectable channels. To have simple wiring, we selected channel 0 as we only needed to ground the three ‘channel select’ pins. We are also well aware that the HP-3 transmitter does not encode or packetize the data in any manner. This will assure us that the RS232 data sent from the PIC will be the same RS232 data received at the receiver. The microcontroller at the walking stick does not have to do any decoding.

3.4 Heart Attack Algorithm of the Javelin Stamp Microcontroller
 The RS232 digital ECG data will be fed from the HP-3 receiver to the Javelin microcontroller. The parameters of the UART of the microcontroller are set up according to those of the PIC. The microcontroller will then get the correct digital ECG from the PIC.

These digital ECG samples will be analyzed with the heart attack algorithm developed by the previous project. Heart attack is preceded by three notable symptoms, which are weak pulse amplitude, irregular heart beat and widened QRS pulse. To check for weak amplitude, a baseline is set up by averaging all the data points. Pulse amplitude is considered as weak if it is below 50% of the baseline. Normal pulse rate is between 35 bpm (beats per minute) and 200 bpm. If the digital ECG data indicates a pulse rate outside of this range, then irregular heart beat is detected. Normal pulse width is less than 36 ms. If the digital ECG data indicates a pulse width more than 36 ms, then QRS pulse has widened.

3.5 Low-Risk and High-Risk LEDs of Heart Attack

The previous project set up an alert level of threshold of 5 before emergency calling is executed. In our project, we decided to use this alert level to define two conditions, low-risk and high-risk. Low risk is when the alert level is between 4 and 6. High risk is when the alert level is between 7 and 9. These two conditions will be indicated to the user with two LEDs. User can look at the LEDs and be aware of his heart condition to take proper action to avoid the fatal moment.

3.6 EB500 Bluetooth Module and Javelin Stamp Microcontroller

When the alert level reaches 10, emergency calling through the user’s cell phone will be executed. In our project, the emergency calling will be done with only the Bluetooth module and the Javelin microcontroller. Laptop will not be used as an intermediate between Bluetooth module and the cell phone.

When the Bluetooth module is first powered up, it is in command mode. Communication between the Bluetooth module and the microcontroller will be done in the form of UART. Please refer to the codes in Appendix 6. Microcontroller will send some commands to the Bluetooth module to set up a Bluetooth connection with the user’s cell phone. When the connection is successfully set up, which is indicated by the LED on the Bluetooth module, the module automatically switches to data mode. A successful Bluetooth connection is nothing more than a wireless serial cable. In data mode, everything sent by the Javelin microcontroller will be received by the cell phone.

Commands to control a phone are called AT commands. AT commands direct a phone to dial (D), answer (A) and hang up (H). Every AT command starts with “AT” (Attention). This is the command line prefix. To make a 911 call, the following command will be sent by the microcontroller to the cell phone, “ATD911;\r”. The last character, “\r” is carriage return. The command means “Attention: Dialing 911”. The number 911 can be replaced by any phone number.

Since most cell phones today have the GPS feature, the location of the user can be discovered and faster medical help can be sent to the spot.

4. DESIGN VERIFICATION/TESTING
4.1 A/D Conversion

To test the A/D conversion of the PIC, we would input a known voltage level and check the corresponding digital values.

Here is our test result.

	Known Voltage Level
	Digital Value

	0.1 V
	5

	1.0 V
	50

	2.0 V
	100

	2.5 V
	125

4.2 RS232 of the PIC

We tested the RS232 transmission pin of the PIC by the oscilloscope. The scope showed TTL signal between 0 V and 5 V. The signal was like a square wave.

4.3 ECG Data Collection and Wireless Transmission between Wrists and the Stick

To test the ability to obtain ECG waveform and the reliability of the data transmission between wrists and the stick, we displayed digital data received by the Javelin microcontroller on the monitor and plotted the data points in Excel. Please refer to the Appendix 3 for some digital ECG samples.

4.4 Heart Attack Algorithm

One of the ECG samples was stored in the Javelin’s memory. The data points were modified in terms of amplitude, pulse rate and pulse width. The Javelin was programmed to run with this modified data. Each of the three symptoms responded positively.

4.5 Alert Level

To test the low-risk and the high-risk LEDs, we used the same modified data. We displayed the alert level on the monitor and watched the LEDs. When the alert level on the monitor was between 4 and 6, the low risk LED shone accordingly. When the alert level on the monitor was between 7 and 9, the high risk LED shone accordingly.

4.6 Emergency Calling

We used the same modified data to trigger the alert level to rise above 9. When we did the testing, we changed the phone number to 2173335257, which is the lab phone’s number. The LED on the Bluetooth module light up accordingly, the Ericsson T610 cell phone’s screen showed the message “Dialing 2173335257” and the lab phone rang accordingly.
4.7 Power Consumption
The power consumption of the unit worn on wrist is 0.046 W.
The power consumption of the unit on the stick is 0.465 W when Bluetooth module is not activated. The unit consumes 0.575 W when Bluetooth module is activated
4.8 Weight
The weight of the wrist unit is measured to be 2.88 oz without batteries. The weight will be 3.4 oz with batteries.

The weight of the stick unit is measured to be 4.4 oz without batteries. The weight will be 6.4 oz with batteries.
5. COST
5.1 Parts and Cost

Parts:
	Part
	mft
	Quantity
	Unit Price
	Subtotal

	Ag-AgCl Electrodes

AH 59-8438
	Harvard Apparatus
	Box of 50
	$0.90
	$45.00

	1 μF Capacitor

(25V Rating)
	
	1
	$0.11
	$0.11

	0.1 μF Capacitor

(25V Rating)
	
	2
	$0.08
	$0.16

	0.01 μF Capacitor

(25V Rating)
	
	1
	$0.08
	$0.08

	1 kΩ Resistor

(1/2W Rating)
	
	3
	$0.05
	$0.10

	3 kΩ Resistor

(1/2W Rating)
	
	1
	$0.05
	$0.05

	6.2 kΩ Resistor

(1/2 W Rating)
	
	1
	$0.05
	$0.05

	10 kΩ Resistor

(1/2 W Rating)
	
	3
	$0.05
	$0.15

	15 kΩ Resistor

(1/2 W Rating)
	
	2
	$0.05
	$0.10

	100 kΩ Resistor

(1/2 W Rating)
	
	2
	$0.05
	$0.10

	150 kΩ Resistor

(1/2 W Rating)
	
	1
	$0.05
	$0.05

	Op Amp

National LM 741C
	
	4
	$0.68
	$2.72

	PIC16F877
	Microchip
	1
	$8.00
	$8.00

	JavelinStamp Starter Kit
	Parallax
	1
	$239.00
	$239.00

	EmbeddedBlue 500 Transceiver AppMod
	A7 Engineering
	1
	$99.00
	$99.00

	Ericsson T610 phone

	Sony
	1
	$100.00
	$100.00

	HP Series RF Receiver

RXM-900-HP3-PPS
	Linx
	1
	$27.40
	$27.40

	HP Series RF Transmitter

TXM-900-HP3-PPS
	Linx
	1
	$19.40
	$19.40

	Batteries
	Energizer
	3
	
	$10.00

	Walking stick
	Meijer
	1
	$40.00
	$40.00

	TOTAL
	$591.47

Labor: Choon’s Labor:

$30/hour * 2.5 months * 200hours/month
=
$15,000.00

 Helen’s Labor:

 $30/hour * 2.5 months * 200hours/month
=
$15,000.00

Total = $ 30,000.00

Total Cost = $591.47 + $30,000.00 = $30,591.47

6. IMPROVEMENTS TO THE PREVIOUS PROJECT
1. We deleted four pages of Visual C++ codes of the previous project. Those codes are all on Appendix 6 of the final paper of the previous project. The codes are very technical and complicated. In deleting them, we consider a big improvement in reducing the complexity of the project greatly, in saving power consumption of the project to run much fewer codes and in making the project to run at a faster time.

2. We did not use a laptop as an intermediate between the Bluetooth module and the cell phone. Laptop is a very powerful machine that can store any programs like phone dialing program and can have hardware like Bluetooth and infra-red. Our project will never be marketable and useable if it required a laptop strapped to the walking stick. The elimination of the laptop greatly simplifies the hardware requirement of the previous project. This elimination will reduce power consumption and the project’s executing time.

3. No wire is attached to the wrists. In our project, the ECG waveform is transmitted wirelessly from the wrists to the walking stick. This gives the user great flexibility while the program is switched on and running. User can drive safely, can use restroom easily and can function normally like without the project. Previous project had the wire connection. All the hardware on the walking stick would have been strapped to the wrists. This will not make the project functional and marketable.

4. Our project is completely portable. We have two main units. One main unit is worn on the wrists and the other is installed on the walking stick. The wrist unit with batteries is 3.4 oz and the stick unit with batteries is 6.4 oz.

5. Heart condition is displayed in our project. The previous project did not inform the user about his heart condition. We display the heart condition through two LEDs as low-risk (alert level between 4 and 6) and high risk (alert level between 7 and 9). The user can know their heart condition and take proper action to avoid the fatal moment. Proper action could be slowing down and taking a rest.

6. CONCLUSIONS

The Walking Stick with Heart Attack Detection functions as designed overall. ECG waves properly collected from analog circuitry unit. The transmitting and receiving of A/D converted waveform performed as expected. The most significant improvement was the emergency calling part. We successfully deleted the laptop between Bluetooth module and the mobile phone when activating emergency calling.

Possible future improvements are better packaging of the wrist circuitry, lower power consumption for main units, more common media rather than just walking sticks, shorter delay between heart attack detection and emergency calling via cell phone, and more accurate and faster heart attack algorithm.
APPENDIX 1- ECG Analog Circuit, PIC16F877, HP-3 Transmitter

[image: image21.emf]Title

Size

Document Number

Rev

Date:

Sheet

of

<Doc>

<RevCode>

ECG Amplifier, Digital Signal Processor and Transmitter (Helen Kim, Choon Lee)

A

1

1

Monday, May 02, 2005

V3

5Vdc

0

3

2

6

7

1

4

5

-

+

U1

LM741C

3

2

6

7

1

4

5

-

+

U2

LM741C

3

2

6

7

1

4

5

-

+

U3

LM741C

3

2

6

7

1

4

5

-

+

U4

LM741C

R1

10k

R2

10k

R3

10k

R6

1k

R7

15k

R8

100k

R4

1k

R5

15k

R10

1k

R9

3k

R11

150k

C1

1u

C2

0.01u

15

16

0

0

0

V1

12Vdc

V2

-12Vdc

17

0

V1 (ECG input)

0

Vo (output to DSP)

V2 (ECG input)

18

19

20

GND

CS1

CS0

RF/ANT Out

CTS

CS2

GND/MODE

VCC

PDN

Analog In

Channel Select:4

antenna

VCC 5V DC

From DSP

02

01

LINX HP-3 Transmitter

05

04

03

08

07

06

10

09

0

0

PIC16F877

1

26

23

24

25

21

22

36

37

30

40

35

34

27

38

31

28

29

33

39

32

R12

1k

C3

0.01u

5V VDC

0V VDC

8

14

1

F1100E

7

1

6

7

5

4

11

12

14

3

9

10

13

2

8

Title

Size Document Number Rev

Date: Sheet of

<Doc> <RevCode>

ECG Amplifier, Digital Signal Processor and Transmitter (Helen Kim, Choon Lee)

A

1 1 Monday, May 02, 2005

V3

5Vdc

0

3

2

6

71

45

-

+

U1

LM741C

3

2

6

71

45

-

+

U2

LM741C

3

2

6

71

45

-

+

U3

LM741C

3

2

6

71

45

-

+

U4

LM741C

R1

10k

R2

10k

R3

10k

R6

1k

R7

15k

R8

100k

R4

1k

R5

15k

R10

1k

R9

3k

R11

150k

C1

1u

C2

0.01u

15

16

0

0

0

V1

12Vdc

V2

-12Vdc

17

0

V1 (ECG input)

0

Vo (output to DSP)

V2 (ECG input)

18

19

20

GND

CS1

CS0

RF/ANT Out

CTS

CS2

GND/MODE

VCC

PDN

Analog In

Channel Select:4

antenna

VCC 5V DC

From DSP

02

01

LINX HP-3 Transmitter

05

04

03

08

07

06

10

09

0

0

PIC16F877

1

26

23

24

25

21

22

36

37

30

40

35

34

27

38

31

28

29

33

39

32

R12

1k

C3

0.01u

5V VDC

0V VDC

8 14

1

F1100E

7

1

6

7

5

4

11

12

14

3

9

10

13

2

8

APPENDIX 2 – HP-3 Receiver, Javelin Microcontroller, EB500 Bluetooth Module
[image: image22.emf]Title

Size

Document Number

Rev

Date:

Sheet

of

<Doc>

<RevCode>

<Title>

A

1

1

Sunday, May 01, 2005

P1

P7

P0

VSS

ATN

Sin

Sout

'Alert Level' to

Microcontroller BasicX

RES'

Vss

Vin

P6

P5

P4

P3

P2

P9

P10

P11

P12

P13

P14

P15

VDD

P8

RTS

RX

VSS

Status

CTS

TX

VSS

Mode Ctrl

Low-Risk

Emergency Call Activated

High Risk

5V VDC

RF Input/Anttena Input

N/C

GND

CS0

Channel Select

antenna

VCC 5V DC

Digital output to Javelin

CS2

CS1

LINX HP-3 Receiver

GND/MODE

RSSI

PDN

Analog Out

VCC

Digital Out

GND

GND

GND

GND

GND

02

01

GND

05

04

03

07

06

11

10

09

14

13

12

16

15

08

18

17

0

0

0

9 V VCC

08

07

06

05

04

03

02

01

21

22

23

24

12

11

10

09

13

14

15

16

17

18

19

20

16

14

12

10

08

06

04

02

11

09

07

05

03

01

20

18

19

17

15

13

Bluetooth Module

EB500

Microcontroller

Javelin Stamp

0

0

0

D1

LED

D2

LED

D3

LED

R1

33k

R2

33k

R3

33k

Vin

0

Title

Size Document Number Rev

Date: Sheet of

<Doc> <RevCode>

<Title>

A

1 1 Sunday, May 01, 2005

P1

P7

P0

VSS

ATN

Sin

Sout

'Alert Level' to

Microcontroller BasicX

RES'

Vss

Vin

P6

P5

P4

P3

P2

P9

P10

P11

P12

P13

P14

P15

VDD

P8

RTS

RX

VSS

Status

CTS

TX

VSS

Mode Ctrl

Low-Risk

Emergency Call Activated

High Risk

5V VDC

RF Input/Anttena Input

N/C

GND

CS0

Channel Select

antenna

VCC 5V DC

Digital output to Javelin

CS2

CS1

LINX HP-3 Receiver

GND/MODE

RSSI

PDN

Analog Out

VCC

Digital Out

GND

GND

GND

GND

GND

02

01

GND

05

04

03

07

06

11

10

09

14

13

12

16

15

08

18

17

0

0

0

9 V VCC

08

07

06

05

04

03

02

01

21

22

23

24

12

11

10

09

13

14

15

16

17

18

19

20

16

14

12

10

08

06

04

02

11

09

07

05

03

01

20

18

19

17

15

13

Bluetooth Module

EB500

Microcontroller

Javelin Stamp

0

0

0

D1

LED

D2

LED

D3

LED

R1

33k

R2

33k

R3

33k

Vin

0

APPENDIX 3 –Sample Normal ECG Waveforms

(These samples were collected from team members)

[image: image23.emf]-150

-100

-50

0

50

100

150

1 18 35 52 69 86 103120137154171188205222239256273290

Series1

Sample 1
[image: image24.emf]-150

-100

-50

0

50

100

150

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99106113120

Series1

Sample 2

APPENDIX 4- Sample Abnormal ECG Waveforms
A 55 year old man with 4 hours of "crushing" chest pain:
[image: image27.wmf][image: image25.png]

Note: The circle of the above ECG waveforms indicates irregular pulse rate.
A 63 year old woman with 10 hours of chest pain and sweating
[image: image26.png]S mafiee Linb:l0 mmja¥ Chest:10 mmfa¥ Son 1.15-150 prY

Note:
The rectangle of the above ECG waveforms indicates weak amplitude.

The circle of the above ECG waveforms indicates widened QRS pulse width.

APPENDIX 5 – PIC16F877 Programming Code

#include <16F877.h> // <-- This is the type of PIC you're using.

 // Other supported PICs are in:

 // C:\Program Files\PICC\Devices

#device *=16 ADC=8 // Use 16-bit pointers, use 8-bit ADC

#fuses HS // You may or may not want some of these

#fuses NOWDT

#fuses NOPROTECT

#fuses NOLVP

#fuses NODEBUG

#fuses NOPUT

#fuses NOBROWNOUT

#use delay(clock=20000000)

#use rs232(baud=9600, xmit = PIN_C6, bits = 8) //8 bits transmission

#include <stddef.h>

#include <string.h>

#include <stdlib.h>

#include "Include\Compiler.h"

#include "Include\Globals.h"

int8 value;

void main()

{

setup_adc_ports(RA0_ANALOG_RA3_RA2_REF); // A0 Ref=A2,A3

setup_adc(ADC_CLOCK_INTERNAL);

set_adc_channel(0);

delay_us(100);

while (TRUE) //Always true to sample continuously

{

value= read_adc();

putc(value);

delay_us(2500); //This delay will make a 400Hz sampling frequency

}

} // END MAIN ROUTINE

APPENDIX 6 – Javelin Stamp Programming Code
import stamp.core.*;

import java.io.*;

//Most codes were created by previous project, especially heart attack algorithm

//Codes created by us are those about receiving digital ECG data, alert level, LEDs and emergency calling, //EB500

public class ReceiverProcessorEB500 {

 // SAMPLING FREQUENCY DEPENDENT CONSTANTS

 /* OFFSET adaptibility:

 1) Ath must be relative to baseline

 2) Wth must be relative to baseline

 3) Take account into the case where PRindex1 starts at the peak, would glitch occur?

 */

 final static int SAMPLING_FREQ = 400; // Current Sampling Frequency in Hz.

 final static int ARRAY_SIZE = 2048;

 final static int MAX_VALUE = 65535 >> 1;

 // Frequency of 600 Hz

 final static int Ath = 200; // Minimum Threshold for value, relative to BASELINE

 final static int Pmin = (60*SAMPLING_FREQ)/200; // Absolute Min. period (pulse rate 200 bpm)

 final static int Pmax = (60*SAMPLING_FREQ)/35; // Absolute Max. period (pulse rate 35 bpm)

 final static int Wmax_th = 20; // Maximum allowable width of W at Wth

 final static int AlertThreshold = 10; // How many alerts to take before Calling EMS

 final static int AdecLimit = 50; // peaks should not differ by more than 50%

 public static int Wth = 200; // Level at which only the QRS pulse should exceed

 final static int Alert_Level_Low = CPU.pin4;

 final static int Alert_Level_High = CPU.pin5;

 final static int Emergency_call = CPU.pin6;

 final static int Receiver_RX_PIN = CPU.pin2; //The receiving port of RS232 from

 //the HP-3 Receiver

 final static int EB500_RX_PIN = CPU.pin0; //The receving port of RS232 from EB500

 final static int EB500_TX_PIN = CPU.pin1; //The transmitting port of RS232 to EB500

 final static int STS_PIN = CPU.pin3; //Status of EB500, not connected or connected

 static Uart Receiver = new Uart(Uart.dirReceive, Receiver_RX_PIN,

 Uart.dontInvert, Uart.speed9600,

 Uart.stop1);

 static Uart EB500RX = new Uart(Uart.dirReceive, EB500_RX_PIN,

 Uart.dontInvert, Uart.speed9600,

 Uart.stop1);

 static Uart EB500TX = new Uart(Uart.dirTransmit, EB500_TX_PIN,

 Uart.dontInvert, Uart.speed9600,

 Uart.stop1);

 //Variables of EB500

 static char d;

 static char m;

 static String b;

 //Variable of HP-3 Receiver

 public static int g;

 //Variables of Processor

 static StringBuffer buffer = new StringBuffer(80);

 static char c;

 public static int AlertLevel;

 public static int i;

 public static int temp;

 public static StringBuffer sbuf = new StringBuffer(8);

 public static String str;

 public static int [] sampleArray = new int[ARRAY_SIZE];

 public static void main()

 {

 System.out.println("===============================");

 System.out.println("ECG Data Receiving, ECG Algorithm Running, 911 Call Ready");

 System.out.println("===============================");

 // Main Instantiations

 int arrayCount = 0;

 AlertLevel = 0;

 int windowCount = 0;

 Terminal terminal = new Terminal();

 // Main Processing Loop begins ======================================

 arrayCount = 0;

 while(true)

 {

 // Delay to have a 250Hz cycle, which is a 4ms period

 addSample(arrayCount, sampleArray);

 arrayCount++;

 // ECG Window Check

 if (arrayCount >= ARRAY_SIZE)

 {

 arrayCount = 0; // reset arrayCount

 AlertLevel += check_filled_ECG(sampleArray);

 System.out.print("\nAlert Level is now: ");

 System.out.print(AlertLevel);

 if (windowCount > 30) // reset AlertLevel after 2 min

 {

 AlertLevel = 0;

 }

 windowCount++;

 } // ECG Window Check

 //Displaying Alert Level LEDs

 if (AlertLevel >= 7) //High Risk

 { CPU.writePin(CPU.pin5,true);

 CPU.writePin(CPU.pin4,false);

 }

 else //Low Risk

 { CPU.writePin(CPU.pin4,true);

 CPU.writePin(CPU.pin5,false);

 }

 if (AlertLevel >= AlertThreshold)

 {

 System.out.println("Alert, Emergency Dial-up");

 CPU.writePin(CPU.pin6,true);

 Call911();

 AlertLevel = 0;

 }

 else

 {CPU.writePin(CPU.pin6,false);}

 } // end while(1) Main Processing Loop

 } // main ends

 // This function calls 911 via Bluetooth EB500

 static void Call911()

 {

 CPU.delay(25000);

 System.out.println("Emergency Call Started.\r");

 System.out.println("EB500's Info Started.\r");

 EB500TX.sendString("ver all\r");

 CPU.delay(5000);

 getMessage();

 System.out.println("EB500's Info Completed.\r");

 System.out.println("Listing Visible Devices Started.\r");

 EB500TX.sendString("lst visible\r");

 CPU.delay(25000);

 getMessage();

 System.out.println("Listing Visible Devices Completed.\r");

 System.out.println("Getting the address of EB500 Started.\r");

 EB500TX.sendString("get addr\r");

 CPU.delay(5000);

 getMessage();

 System.out.println("Getting the address of EB500 Completed.\r");

 System.out.println("Setting the security mode of EB500 Started.\r");

 EB500TX.sendString("set security open\r");

 CPU.delay(5000);

 getMessage();

 System.out.println("Setting the security mode of EB500 Completed.\r");

 System.out.println("Setting the visible mode of EB500 Started.\r");

 EB500TX.sendString("set visible on\r");

 CPU.delay(5000);

 getMessage();

 System.out.println("Getting the visible mode of EB500 Completed.\r");

 System.out.println("Getting the security mode of EB500 Started.\r");

 EB500TX.sendString("get security\r");

 CPU.delay(5000);

 getMessage();

 System.out.println("Getting the security mode of EB500 Completed.\r");

 System.out.println("Getting the visible mode of EB500 Started.\r");

 EB500TX.sendString("get visible\r");

 CPU.delay(5000);

 getMessage();

 System.out.println("Getting the visible mode of EB500 Completed.\r");

 System.out.println("Setting the passkey of EB500 Started.\r");

 EB500TX.sendString("set passkey 0000\r");

 CPU.delay(5000);

 getMessage();

 System.out.println("Setting the passkey of EB500 Completed.\r");

 System.out.println("Setting the connectable mode of EB500 Started.\r");

 EB500TX.sendString("set connectable on\r");

 CPU.delay(5000);

 getMessage();

 System.out.println("Setting the connectable mode of EB500 Completed.\r");

 do{

 System.out.println("Connecting to cellphone Started.\r");

 EB500TX.sendString("con 00:0A:D9:84:F5:7B\r");//IEEE Address of our ERiCsson T610

 CPU.delay(5000);

 getMessage();

 System.out.println("Connecting to cellphone Completed.\r");

 if (CPU.readPin(CPU.pin3) == true)//Checking the connection status of the bluetooth module

 m='y';

 else

 m='n';

 System.out.println("\r");

 } while (m!= 'y');//Continue making connecntion until connection is successfully established

 System.out.println("Dialing Started.\r");

 EB500TX.sendString("ATD"); //AT Commands given by the Austrian Guy

 CPU.delay(5000);

 EB500TX.sendString("2173335257");

 CPU.delay(5000);

 EB500TX.sendString(";");

 CPU.delay(5000);

 EB500TX.sendString("\r");

 CPU.delay(5000);

 System.out.println("Dialing Completed.\r");

 System.out.println("Emergency Call Completed.");

 }

 static void getMessage()

 {

 while (EB500RX.byteAvailable() ==true)

 {

 d = (char) EB500RX.receiveByte();

 if (d != ' ')

 {

 System.out.print(d);

 }

 }

 System.out.print('\n');

 }

 //===

 static boolean addSample(int arrayCount, int [] samples)

 {

 boolean fail = false;

 g = Receiver.receiveByte();

 temp = g;

 samples[arrayCount] = temp;

 return fail; // Refer to P.7 of manual for I/O.

 }

 //===

 //===

 static int check_filled_ECG(int [] samples)

 {

 // Array Parsing Flags

 int baseline = 0;

 // Amplitude flags

 int AmpPeak = 0;

 int Alert = 0;

 int AmpVar;

 // PulseRate flags

 int period_sample;

 boolean found_PR_peak1 = false;

 boolean found_PR_peak2 = false;

 int PRindex1 = 0;

 int PRindex2 = 0;

 boolean repolarized = false;

 // PulseWidth flags

 boolean found_PW_begin = false;

 boolean found_PW_end = false;

// Wth = Amax/4; // want Wth to be 25% Amax

 int W_sample;

 int PW_index_begin = 0;

 int PW_index_end = 0;

 int BPM = 0;

 System.out.print("\n~4 sec ECG Check Window Filled....\n"); //DEBUG

 System.out.print("===== Main Parsing Loop Begins =====\n"); //DEBUG

 // >>> --- Establishing Baseline --------

 for (i = 0; i < ARRAY_SIZE; i++)

 {

 if (i == 0) baseline = samples[i];

 else

 {

 baseline = (baseline + samples[i]) / 2; // baseline is always the average of all the data points

 }

 }

 System.out.print("Baseline = "); // DEBUG

 System.out.print(baseline);

 // <<< --- Establishing Baseline end -----

 // >>> ========= Main Parsing Loop Begins ========

 for (i = 0; i < ARRAY_SIZE; i++)

 {

 // >>> --- Checking PulseRate -----

 if (!found_PR_peak1) // if first QRS peak is not found yet

 {

 if (samples[i] > samples[PRindex1]) // amplitude relative to baseline is not important here

 {

 PRindex1 = i;

 System.out.print("\nPulseRate peak 1 (Abs) increased to "); // DEBUG

 System.out.print(samples[PRindex1]);

 System.out.print("\n @t= "); // DEBUG

 System.out.print(PRindex1);

 }

 else if (((samples[i] - baseline) < ((samples[PRindex1] / 2) - baseline)) && ((samples[PRindex1] - baseline) > Ath))

 // Amp relative to baseline is key here

 { // if current sample is lower than 50% of the first peak relative to baseline, AND it breaks the Ath minimum limit

 found_PR_peak1 = true; // then first peak is found

 System.out.print("\nPulseRate peak 1 is Found: "); // DEBUG

 System.out.print(samples[PRindex1]);

 System.out.print("\n @t= "); // DEBUG

 System.out.print(PRindex1);

 }

 }

 else if (!found_PR_peak2)

 {

 // wait for repolarization, don't search for the second peak

 // until samples[i] has returned to baseline

 if ((samples[i] >= baseline) || repolarized)

 {

 repolarized = true; // so that we know the ECG has repolarized

 if (samples[i] > samples[PRindex2]) // amplitude relative to baseline is not important here

 {

 PRindex2 = i;

 System.out.print(" \nPulseRate peak 2 (Abs) increased to "); //DEBUG

 System.out.print(samples[PRindex2]);

 System.out.print("\n @t= "); // DEBUG

 System.out.print(PRindex2);

 }

 else if ((samples[i] - baseline) < ((samples[PRindex2]/ 2) - baseline) && ((samples[PRindex2] - baseline) > Ath))

 // Amp relative to baseline is key here

 { // if current sample is lower than 50% of the second peak relative to baseline, AND it breaks the Ath minimum limit

 found_PR_peak2 = true; // then second peak is found

 System.out.print("\nPulseRate peak 2 is Found: "); //DEBUG

 System.out.print(samples[PRindex2]);

 System.out.print("\n @t= "); // DEBUG

 System.out.print(PRindex2);

 }

 } // if samples[i] > baseline

 }

 // <<<--- Finished Checking PulseRate -----

 // >>> --- Checking PulseWidth -----

 if (((samples[i] - baseline) > Wth) && (!found_PW_begin))

 {

 PW_index_begin = i;

 found_PW_begin = true;

 System.out.print("\nPulseWidth begin "); //DEBUG

 System.out.print(PW_index_begin);

 System.out.print(" Amp = ");

 System.out.print(samples[i]);

 }

 else if (((samples[i] - baseline) < Wth) && (!found_PW_end) && found_PW_begin)

 {

 PW_index_end = i;

 found_PW_end = true;

 System.out.print("\nPulseWidth ends "); //DEBUG

 System.out.print(PW_index_end);

 System.out.print(" Amp = ");

 System.out.print(samples[i]);

 }

 // <<< --- Finished Checking PulseWidth -----

 }

 // <<<========== Main Parsing Loop ends ==============

 System.out.print("\n===== Main Parsing Loop ends =====\n"); //DEBUG

 // >>>-------- Setting Alert for Amplitude check Begins -------

 // Set historically max and min values and find % difference

 // See which of the two peaks are greater

 if (samples[PRindex1] > samples[PRindex2])

 {

 AmpPeak = samples[PRindex1] - baseline;

 }

 else

 {

 AmpPeak = samples[PRindex2] - baseline;

 }

// if (AmpPeak > Amax) Amax = AmpPeak;

// if (AmpPeak < Amin) Amin = AmpPeak;

 System.out.print("AmpPeak is (baseline adjusted) "); //DEBUG

 System.out.print(AmpPeak);

// System.out.print(" Amin is (baseline adjusted) ");

// System.out.print(Amin);

// AmpVar = ((Amax - Amin)*100)/Amax;

// System.out.print(" \n%AmpChange is ");

// System.out.print(AmpVar);

 if (/*(AmpVar > AdecLimit) || */ (AmpPeak < Ath)) // If percent decrease exceeds limit

 {

 Alert++;

 System.out.println("\nAlert Raised from Amplitude Check!"); // DEBUG

 }

 else

 {

 System.out.println("\nAmplitude Check Okay! (> 200 relative to baseline)");

 }

 // <<<-------- Setting Alert for Amplitude check Ends-------

 // >>>-------- Setting Alert for PulseRate check Begins-------

 // Now peak1 and peak2 are set

 period_sample = PRindex2 - PRindex1;

 System.out.print("\nPeriod_sample is (Pmax=");

 System.out.print(Pmax);

 System.out.print(" Pmin=");

 System.out.print(Pmin);

 System.out.print("): ");

 System.out.print(period_sample);

 BPM = 10000/((period_sample*(10000/SAMPLING_FREQ)) /60);

 System.out.print("\nTranslating to ");

 System.out.print(BPM);

 System.out.print(" BPM (Beats Per Minute) at a Sampling Frequency of ");

 System.out.print(SAMPLING_FREQ);

 System.out.print(" Hz");

 // if !(Pmin < P < Pmax) Alert the main loop!

 if(period_sample < Pmin || period_sample > Pmax)

 {

 Alert++;

 System.out.println("\nAlert Raised from PulseRate Check!"); // DEBUG

 }

 // <<<-------- Setting Alert for PulseRate check Ends-------

 // >>>-------- Setting Alert for PulseWidth check Begins-------

 W_sample = PW_index_end - PW_index_begin;

 System.out.print("\nW_sample is (less than 20): ");

 System.out.print(W_sample);

 if (W_sample > Wmax_th)

 {

 Alert++;

 System.out.println("\nAlert Raised from PulseWidth Check!"); //DEBUG

 }

 // <<<-------- Setting Alert for PulseWidth check Ends-------

 System.out.print("\n===== End ECG Window Check =====\n"); //DEBUG

 return Alert;

 }

} // class ReceiverProcessorEB500 ends
REFERENCES

[1] Hwang, Limsui, Zhao, “Wireless Heart Attack Detector with GPS”, ECE445. University of Illinois, Fall 2004, https://courses.ece.uiuc.edu/ece445/cgi-bin/view_project.pl?fall2004_24
[2] National Heart, Lung, and Blood Institute, Disease and Condition Index, “What Is a Heart Attack?”,August 2003. http://www.nhlbi.nih.gov/health/dci/Diseases/HeartAttack/HeartAttack_WhatIs.html
[3] National Heart, Lung, and Blood Institute, Disease and Condition Index, “What Is Coronary Artery Disease?”, August 2003, http://www.nhlbi.nih.gov/health/dci/Diseases/Cad/CAD_WhatIs.html
[4] ECG Library. 2002. http://www.ecglibrary.com/ecghome.html

[5] Wikipedia, the Free Encyclopedia, “RS-232”, April 30, 2005,

http://en.wikipedia.org/wiki/RS-232
Acknowledgement

1. Project 24, Fall 2004, “Wireless Heart Attack Detector with GPS”

We owe this project for its ECG analog circuitry and its heart attack algorithm.

2. TA, Richard Martin Cantzler

Marty gave us advice and helped us solving technical problem along the way to the completion of our project. He recommended the PIC to us and its functionalities, A/D and RS232.

3. Professor Scott Carney

Professor Carney introduced us the idea of heart attack detection when we submitted our initial idea on PACE.

4. Frank Dale

Frank searched through the part shop to provide our project the components we needed. He also took great effort to explain code-protect issue when the PIC was damaged.

5. Jim Wehmer

Jim answered all the questions we brought into the part shop and built the PCB for us.

6. Christopher (CwR) from Austria
Chris introduced us to the notion of AT commands and provided us the dialing command.
Javelin Stamp (microcontroller)

Receiver

ECG

Circuitry

A/D Converter

Electrodes

Bluetooth Module

(EB500)

Transmitter

+

-

+

-

V1

V2

vo1

vo2

R1

R2

R3

-

vod

C1

R8

vo

+

R11

-

R10

R9

+

vo

C2

vod

R5

-

R4

R6

+

R7

v1

v2

Analysis Algorithm

ECG Circuit

Bluetooth Communication

PAGE
1

_1163767510.unknown

_1163771704.unknown

_1163771921.unknown

_1163772509.unknown

_1163773498.unknown

_1163794166.unknown

_1163773393.unknown

_1163772310.unknown

_1163771864.unknown

_1163768498.unknown

_1163771207.unknown

_1163768132.unknown

_1163767127.unknown

_1163767186.unknown

_1163766261.unknown

