Touchpad-Controlled Parametric Equalizer

ECE 445 Project Proposal

Spring 2005

Anthony Mangognia

Alexander Spektor

Farsheed Hamidi-Toosi

TA: Chad Carlson

I. Introduction

Our project this semester is a “Touchpad-Controlled Parametric Equalizer” for audio. We selected the project because current interfaces for equalizers are awkward; they involve cumbersome knobs and sliders. The project is exciting because it will provide a new and improved method for musicians and sound engineers to interface with their equalizers so that they can achieve the perfect sound quickly during recording sessions and, more importantly, live performances.
The goal of the project is to provide musicians, sound engineers, and sound designers with a parametric equalizer filter for audio signals. It will function by allowing the user to move his or her finger on a touchpad surface, changing the individual parameters of the filter. More specifically, the horizontal position of the fingertip on the touchpad surface will select the center frequency of the filter and the vertical position will select the amplitude boost or attenuation for that particular frequency. Of course, there will be a smooth curve around this boosted/cut frequency, for a natural-sounding filter effect. Sharp discontinuities are to be avoided as they typically create unpleasant audio artifacts. The selectivity or Q value of the filter will be selected by the average of the total pressure exerted by the user. The idea being that if you wanted a high Q you press harder than if you want a low Q. The filtering component of the device will have a microphone-level input jack for the source and a line-level output jack for the filtered output.
Product Benefits to the End Customer
· Ease of control: Simple finger movements on a flat surface are easier than the traditional knob/slider approach to control over parametric equalizers.
· Instant feedback: As soon as the parameters are changed via the touchpad, the user gets auditory feedback.
· Easy to visualize and understand: The position of the finger corresponds to the position of the curve on a typical filter frequency response graph.

Product Features

· Real-time parametric equalization of audio signals through a DSP
· Independent control over frequency, boost/attenuation, and selectivity of the filter through separate state variable IIR filter design
· Microphone-level inputs and line-level outputs for audio signals
II. Design
Block Diagram

[image: image1]
Block Module Descriptions
· Pre-Amplifier:
The pre-amplifier will take a 1/8” low-level (microphone-level) audio input signal and amplify it to a line level monophonic output. It will connect to the parametric equalizer filter audio input via a monophonic BNC cable input to the DSP.
· Amplifier:

The amplifier will pick up the BNC output of the Parametric Equalizer Filter (DSP) and convert it to a 1/8” speaker-level output.
· Parametric Equalizer Filter:

The parametric equalizer filter will implement a state-variable-controlled IIR DSP filter that will allow separate control of frequency, selectivity (Q), and amplitude. These variables will be sent in real-time from the controller. The DSP will be a Texas Instruments TMS320C54x DSP, and the filter code will be optimized for minimum delay between input and output. The DSP will interface with the audio input and output amplifiers via a BNC cable connection, and will interface with a touchpad via one of several options. Either the DSP serial input or the DSP analog BNC connector input will be used.
· Microcontroller:

The microcontroller will interface with the touchpad, converting pressure sensor data to positional data and mapping the positional data to the respective frequency, amplitude, and selectivity parameters. These parameters will be sent to the Parametric Equalizer Filter via a serial or BNC cable. The microcontroller will be a PIC16F877A microcontroller.
· Touchpad:
We will build our own custom touchpad that uses pressure senses located at each of the four corners of the touchpad plate. Each sensor will read out a unique voltage based on the pressure applied on the touchpad, and output data into the microcontroller input via analog signals.
Performance Requirements
· Real-Time Operation:
Because of the real-time requirement for audio applications, we would like to see a maximum of 50 to 100 ms in the delay from moving the fingertip to the audio being filtered and output. The reason for this is because the minimum audio-temporal delay that is noticeable to humans falls approximately within this range.
· Granularity of Filter Characteristics:
In order to provide a very robust filter design, we would like a multi-resolute, logarithmic incremental frequency value for our tunable center frequency band, with a range of 20 Hz to 20 kHz, which is the approximate range of human hearing. Human hearing is logarithmic. Higher frequencies require a resolution of .03-1 Hz to sound continuous, but lower frequencies require less resolution. As for the amplitude resolution, we think incremental amplitude values of +/- 2-3 dB will be adequate, for anything finer will make the user feel like nothing is happening, because the amplitude change will be too small to be audible. As for Q values, the range will probably vary somewhere within .5 to 10, which will be more than adequate for the range of selectivity we think users will need.

III. Verification
Testing Procedure
· Timing:

The delay in the filter, as specified by the performance requirements, must adhere to the requirements specified by human hearing. Once the finger is moved on the touchpad, the result should sounds immediate to the ear. Because of the delays associated with human hearing, our target of 30 to 50ms should be good. If there is a noticeable delay in the processing, then the performance requirements will not be considered matched. We will test this by testing the delay of the system. As soon as the touchpad is touched, a signal will be sent to a timing device (i.e. oscilloscope) as well as through the system. The signal after being processed will also be output to the oscilloscope and the time recorded. This difference in time will be our system delay time.
· Filter accuracy:

We will use a white noise input to the filter and connect the output to an oscilloscope with frequency-domain display capabilities. As certain filters are boosted or cut, we should be able to see this reflected on the oscilloscope. If the response is not as expected, the performance requirements will not be considered matched. Various frequency sine, square, sawtooth, and triangle waves will also be tested through the system, the output will be viewed in the time domain, and verified to be working according to our specifications. With such a broad range of signal inputs we will have simulated a realistic input.
Tolerance Analysis

· Issues concerning sensitivity, stability, and response time are criticial for the project to be successful. We need the touchpad to give consistent output when touched in order for a reliable, stable input to the DSP algorithm. Also, for the entire system to function correctly, we must remove all excess latency from the circuit. One source of significant delay in our design will occur from the DSP processing speed. If there are too many cycles required for the DSP algorithm to implement the filter, there will be significant delay as the user moves their finger on the touchpad to when they hear the audible effects. By calculating the number of cycles the DSP is using, and by knowing the DSP processor speed, we can calculate the delay time, which must be less than 100ms when tested with the whole system. The entire system delay will be tested as noted above. The biggest problem we anticipate, however, is dealing with the pressure sensor sensitivity in the touchpad. We anticipate physical calibration problems with the pressure sensors used in the touchpad, which will need to give consistent voltage outputs in order for our system to be able to calculate the appropriate filter values; otherwise the system will not be stable. By testing the voltages with a multimeter, we can determine what sort of levels we are getting and what we are need. In order to control the sensitivity, we may build some additional circuitry. We estimate we will need a consistent voltage output from the sensors which is to be less than .5% error to ensure stability. There are various sensitivities for different pressure sensors, and we need to test and see which pressure sensors would fit our needs best.

IV. Cost and Schedule

Cost Analysis

Labor:

Alex: ($50/hour)×2.5×(20hours/week)×(13weeks)= $32,500

Farsheed: ($50/hour)×2.5×(20hours/week×(13weeks)= $32,500

Anthony: ($50/hour)×2.5×(20hours/week) ×(13weeks)= $32,500

Total Labor Cost: $97,500
Parts:
	Part
	#
	Unit Price
	Subtotal

	DSP (TI-54x)
	1
	25.00
	25

	PIC16F877A microcontroller
	1
	10.00
	10

	Pressure Sensors
	10
	5.00
	50

	Frame for touchpad
	1
	10.00
	10

	Surface material for touchpad
	2
	3.00
	6

	Capacitors
	20
	0.20
	4

	Resistors
	20
	0.10
	2

	Processor support boards
	2
	20.00
	40

	Total Parts Cost
	
	
	$147

Grand Total (LABOR+PARTS) = $97,647

Schedule
	Week of
	Activity
	Alex (PIC)
	Anthony (Sensors)
	Farsheed (DSP)

	Feb 13
	Get basic design down, determine parts list, order parts
	Work on understanding the PICs,

determine what features are available, buy PIC
	Work on understanding the PICs, test pressure sensors, buy sensors
	Figure out how to interface the microcontroller output to DSP input

	Feb 20
	Receive parts
	Try programming PIC
	Determine sensor sensitivity voltage output range
	Try getting serial input into DSP chip

	Feb 27
	Initial Testing
	PIC to sensor interface
	Attempt to set up touchpad representation, examine sensitivity
	Have a functional filter and program ideas for collecting data from serial in

	March 6
	Receive More Parts and Test
	PIC to DSP interface
	Design box for touchpad, communicate with machine shop
	Implement filter algorithm

	March 13
	Design and Test
	Algorithm Testing
	Construction of touchpad
	DSP programming

	March 20
	Spring Break
	Think

	Think
	Think

	March 27
	Have Sub systems together and functional, Prepare mock-up Demo
	More PIC programming
	Integration of touchpad with PIC
	More DSP

	April 3
	Integrate Subsystems
	Test for functionality
	Test for functionality
	Test for functionality

	April 10
	Debug
	PIC debug
	Sensor Debug, sensitivity tolerance testing
	DSP debug, delay testing

	April 17
	Debug
	PIC debug
	Calibration of sensors
	Optimization of DSP algorithm

	April 24
	Demo, Final Tests
	Final System Test
	Final System Test
	Final System Test

	May 1
	Report
	Work on Report
	Work on Report
	Work on Report

Parametric Equalizer Filter

(DSP)

Touchpad

Amplifier

Microcontroller (PIC)

Pre-Amplifier

Audio Out

Audio In

