

HEART RATE ALARM SYSTEM FOR
SWIMMER IN TRIATHLON

By

Yunye Gong

Zilin Dou

Final Report for ECE 445, Senior Design, Fall 2012

TA: Justine Fortier

12 December 2012

Project No. 26

ii

Abstract

The heart rate alarm system is designed to help triathlon swimmers get noticed when their heart rates

behave abnormally or when they feel uncomfortable during competition. The system consists of two

units. The swimmer unit is triggered by a microcontroller when either manual switch is pressed on or

pulse sensor detects an out-of-range heart rate. Then LEDs and buzzer on swimmer side will alert

surrounding swimmers. While in the rescuer unit, LEDs and buzzer are triggered by wireless transmitted

alarm signal to notify rescuers. The system can successfully function when the swimmer unit is placed

underwater and the rescuer unit is 60 meters away. And there is still room for improvements such that

the system can be implemented more professionally with surface mount PCB boards and a suitable

waterproof container for the swimmer unit. Additional functions such as monitoring sudden heart rate

changes can also be added via programming.

iii

Contents

1. Introduction .. 1

1.1 Purpose ... 1

1.2 Project Functions .. 1

1.3 Blocks Overview .. 2

2 Design ... 3

2.1 Design Procedure .. 3

2.1.1 Power Supply ... 3

2.1.2 Pulse Sensor ... 3

2.1.3 Manual Switch .. 3

2.1.4 Microcontroller .. 4

2.1.5 Xbee Modules .. 4

2.1.6 LED Arrays .. 4

2.1.7 Buzzer Alarm .. 4

2.1.8 Timer Circuit ... 5

2.2 Design Details .. 5

2.2.1 Power Supply ... 5

2.2.2 Pulse Sensor ... 7

2.2.3 Manual Switch .. 8

2.2.4 Microcontroller .. 8

2.2.5 Xbee Modules .. 9

2.2.6 LED Arrays .. 9

2.2.7 Buzzer Alarm .. 10

2.2.8 Timer Circuit ... 10

3. Design Verification .. 13

3.1 Power Supply .. 13

3.2 Pulse Sensor .. 13

3.3 Switch Board ... 14

3.4 Microcontroller ... 15

3.5 Xbee Modules ... 15

iv

3.6 LED Arrays ... 16

3.7 Buzzer Alarm ... 17

3.8 Timer Circuit .. 17

3.9 Complete System .. 18

4. Costs .. 19

4.1 Parts .. 19

4.2 Labor ... 19

4.3 Grand Total ... 19

5. Conclusion ... 20

5.1 Accomplishments .. 20

5.2 Uncertainties ... 20

5.3 Ethical considerations ... 20

5.4 Future work ... 20

5. References .. 21

Appendix A System Schematics .. 23

Appendix B Pictures.. 26

Appendix C Requirement and Verification Table ... 28

Appendix D Arduino Code .. 32

1

1. Introduction

1.1 Purpose
In recent years’ triathlon races, several sudden deaths of swimmers have occurred because of heart

attack or some other acute heart problems. If uncomfortable swimmers can get noticed by other

competitors or professional rescuers nearby, their chances of being helped before tragedy happens will

greatly increase. However, in real triathlon swimming competitions, it’s hard for athletes to notice

emergencies happening around and it’s hard for rescuers to find people needing help in crowded water.

Therefore the motivation for our project is to provide those swimmers a remote alarm system that will

alert surrounding swimmers as well as rescuers some distance away when either their heart rate goes

abnormal or they feel uncomfortable, such that they can get timely help which may possibly save their

lives.

1.2 Project Functions
The system consists of a swimmer unit and a rescuer unit. The pictures of finished units are shown as

Figure B.2 and B.3 in Appendix B. The swimmer unit is designed to be portable and waterproof such that

it can be carried by swimmers without affecting their performances during competition. Placed in a

transparent container specified as shown in Figure B.1, it contains a pulse sensor which can be installed

on earlobe and provides consistent real-time pulse signal. When the heart rate calculated based on the

pulse signal goes out of a preset range, the alarm will be automatically triggered. The swimmer unit also

contains a pushbutton switch such that the swimmer can manually call for help when they feel

uncomfortable. When the swimmer unit is triggered, the LED array will light up and the buzzer will alarm

to notify surrounding swimmers. At the same time, the Xbee transmitter on the swimmer unit will send

out a wireless signal. Once the signal is received by the Xbee receiver on the rescuer unit, it will be

extended by a timer circuit and thus keep the rescuer side LED array and buzzer on for 11 seconds, in

order to alarm rescuers who are at least 25 meters away from the swimmer.

2

1.3 Blocks Overview

Figure 1. System Block Diagram.

As specified in the block diagram (Figure 1), our system contains two separate units. The swimmer unit

is controlled by an Arduino Uno board, which accepts input from the pulse sensor and the manual

switch. Arduino feeds outputs to the 2x4 LED array, buzzer and the Xbee transmitter in the swimmer

unit, and triggers them on when either pulse sensor detects abnormal heart rate or manual switch is on.

Compared with the originally proposed design, a select circuit is removed since the logic to generate

high output according to both input signals can be efficiently done by Arduino programming.

Once the swimmer unit is triggered on, the Xbee receiver at rescuer unit will output an alarm signal

pulse according to the input of Xbee transmitter. A timer circuit built with LM555 chip is used to extend

the alarm pulse to 11 seconds. The output of timer circuit will be used to trigger the 3x3 LED array and

the buzzer in the rescuer unit.

3

2 Design

2.1 Design Procedure

2.1.1 Power Supply

Considering the power requirements and performing stabilities of the containing parts, each of the

swimmer unit and the rescuer unit is designed to be powered up by a 9 V battery. Since the Arduino Uno

board has a recommended input voltage range 7-12 V and a lowest input limit at 6 V [1], a 9 V battery

can support it to work appropriately before battery voltage drops to 6 V. The UA78M33C voltage

regulators are used in both units to regulate voltages to 3.3 V since Xbee modules require specific 3.3 V

VCC and logic high. Besides that, in rescuer unit, a LM7805 voltage regulator is used to regulate 9 V to 5

V since a 74LS04 inverter with 5 V VCC is used in the unit [2].

2.1.2 Pulse Sensor

Figure 2. Pulse Sensor [3].

A pulse sensor specified as Figure 2 is utilized in our design to provide real-time heart rate information.

Compared with other alternatives, although it is not specifically designed for underwater use, this

sensor is chosen due to its simple connections, easy installation and relative low price. Moreover, this

sensor is designed to be work together with Arduino board with clear open-source test codes provided.

2.1.3 Manual Switch

A SPST push-on-push-off button switch is used as the manual switch such that assuming heart rate is

normal, pushing it once will trigger the system and pushing it again will stop the alarm. Although a

momentary switch may be cheaper and easier to get, we need a push-on-push-off switch such that the

output could stay stable until the button is pushed again. Compared to another alternative, a 3-pin push

button particularly designed for Arduino, the chosen switch has simpler connections and lower price.

4

2.1.4 Microcontroller

An Arduino Uno board with ATmega328 microcontroller is used to control the functioning of the system.

Since the selected sensor is designed to fit Arduino Uno, they can work together smoothly and the

collected heart rate information can be used to determine Arduino outputs via programming. The

multiple digital pins also enable the Arduino board to control the LED array, buzzer and Xbee transmitter

separately at the same time. Compared with the original design, pin 3 instead of pin TX is used to output

signal to Xbee transmitter. Pin TX/RX should not be used unless necessary since they will function when

the programming is uploaded into the board. In the aspect of programming, the heart rate is calculated

based on code provided by pulse sensor producer and original code is used to determine outputs

according to input logics. Compared with the original logic flow chart, a specific issue of initial state is

stressed on and the first several heart beat data are discarded in heart rate calculation. And the original

proposed delay function is removed since the usage of delay in Arduino loop function would cause the

unintended halt of the entire Arduino function during the delay time [4]. The intended function of

extend alarm pulse is actually achieved by the timer circuit in the rescuer unit.

2.1.5 Xbee Modules

To realize wireless signal transmission from an underwater unit to another unit at least 25 meters away,

Xbee Pro modules are used since they are featured with relatively long transmission distance up to 1500

meters outdoor [5]. They also provide multiple baud rates to be chosen such that the two modules

could talk to each other without potentially influenced by other working modules in the same area.

Compared with the original proposed design, pin D3 instead of pin TX/RX is used as input/output of the

transmitter/receiver, since the alarm signal fed from Arduino is either high or low and no serial

input/output is required.

2.1.6 LED Arrays

In both the swimmer unit and the rescuer unit, LED arrays implemented with red LED are designed to

provide obvious light indicating emergency. A resistor is connected in series with each LED column. The

resistance needed is calculated by the Equation (2.1).

in dropV n V
R

I

 
 (2.1)

In Equation (2.1), Vin, n, Vdrop and I refer to the Input Voltage, number of LEDs in each column, voltage

drop of each LED and the current in each column respectively. Compared with the original design, in

both units, the resistances of the resistors are modified according to test results and calculation. The

size of LED array in the swimmer unit is changed from 3x3 to 2x4 since 5 V of voltage high from Arduino

cannot support efficient work for 3 LEDs in a column.

2.1.7 Buzzer Alarm

Each of the units utilizes a MCP320B2 buzzer to generate loud alarm when the system is triggered. The

input high is 5 V from Arduino in the swimmer unit, and 9 V from timer circuit in the rescuer unit. A

resistor is connected in series with each buzzer and the applied resistance is modified according to test

results. Particularly for rescuer unit, in the original design, the buzzer is connected to a capacitor used in

5

the timer circuit before it is grounded. Test results shows that the buzzer could not work appropriately

with a capacitor in series. Therefore the final design revises the connection such that the buzzer is

connected between timer outputs and ground only in series with a resistor.

2.1.8 Timer Circuit

In the rescuer unit, a timer circuit built with LM555 timer is designed to extend received pulse of alarm

signal before it is fed to LED array and buzzer, such that the alarm time can be kept long enough to get

rescuers’ attention. According to the reference tutorial [6], the delay time generated by the timer circuit

is calculated by the Equation (2.2).

 (2.2)

Therefore the delay time is determined by the resistor and capacitor used in the circuit. Compared with

the original design, the capacitor used is change from 50 µF to 100 µF to double the delay time. Two

control switches are added to make sure the 74LS04 inverter is turned on before the LM555 timer to

avoid the error high output pulse happens whenever the inverter and timer are turned on at the same

time.

2.2 Design Details

2.2.1 Power Supply

Considering safety, efficiency and availability, we use Duracell 9 V batteries as the power supply of the

design.

 Figure 3. Schematic of Overall Control Switch.

As specified in Figure 3, each unit is powered by 9 V VCC with an overall control switch. When the

pushbutton switch is pressed, the circuit will be connected such that the battery input will be used as

swimmer unit VCC and a green LED will light up indicating the switch is on. The resistor value needed in

series of each column of LEDs is calculated shown in Equation (2.3).

9V 2 2V

280
0.025A

in dropV n V
R

I

   
    (2.3)

According to test results, the voltage drop of each LED and forward current are assumed to be 2 V and

0.025 A respectively. 330 Ω resistors are used due to the availability in lab.

As specified in Figure A.1 and A.2 in Appendix A, in swimmer unit, the 9 V VCC is directly fed to Arduino

Vin, while a UA78M33C linear voltage regulator is used to regulate 9 V to 3.3 V which used as VCC for

6

Xbee transmitter. Another UA78M33C is used to regulate Arduino output at pin3 which can be 5 V for

logic high before it is fed to D3 input of Xbee transmitter since it has logic high at 3.3 V. Similarly, in

rescuer unit, 9 V is fed directly to timer circuit, and is regulated to 3.3 V by UA78M33C before used as

VCC of Xbee receiver. In addition, the 9 V VCC is regulated to 5 V by LM7805 before used as VCC for

74LS04 inverter. The detail connections of UA78M33C and LM7805 voltage regulators are shown in

Figure 4 and Figure 5 respectively. The circuit in Figure 4 is designed according to the data sheet of

LD1117 voltage regulator, which is used in original design but substituted by UA78M33C due to

availability. The connection in Figure 5 is based on data sheet of LM7805. Capacitors specified in the

schematics are used to avoid voltage ripples.

 Figure 4. Connection of UA78M33C [7].

Figure 5. Connection of LM7805 [8].

Based on the detailed schematics, the battery life is estimated according to the power consumption of

the system. Specifically, the 9 V battery utilized in our final design has a capacity of 565 mAh [9]. The

energy a battery can provide is calculated in Equation (2.4).

565mAh 9V 5.085Whbattery outE Capacity V     (2.4)

In swimmer unit, control switches with indicating LEDs, pulse sensor and microcontroller are working

under no alarm condition. According to the producer, the pulse sensor has around 3 mA at 5 V [10].

According to reference, the operating current of Arduino is about 25 mA [11]. Therefore the power

consumption is calculated in Equation (2.5).

_

2 5V 3mA 25mA 9V (120 330) (25mA) 2 2V 25mA

 601.25mW

no alarm VIP 

          




 (2.5)

7

When alarm is on, XBEE transmitter, alarm buzzer and LED array are all on. Based on test

measurements, the total power consumption is calculated in Equations (2.6) – (2.9).

24 [(25mA) 39 2 25mA 2V] 497.5mWLEDP        (2.6)

25V 2mA (2mA) 120 490mWBuzzerP       (2.7)

3.3V 215mA 709.5mWXbeeP    (2.8)

_ _

 601.25mW 497.5mW 490mW 709.5mW

 2.298W

full function no alarm LED Buzzer xbeeP P P P P   

   



 (2.9)

Assuming the alarm system is on with 9 V input, the battery life is calculated in Equation (2.10).

_

 = 2.21h
battery

full function

E
t

P
 (2.10)

Similarly, Equations (2.11) – (2.15) show the battery life calculation for the rescuer unit under same

assumptions.

23 [(25mA) 120 3 25mA 2V] 675mWLEDP        (2.11)

29V 0.65mA (0.65mA) 10 10.075mWBuzzer kP      
 (2.12)

_

2 709.5mW 9V 6mA 2 330 (25mA) 2 2V 25mA

 1.276W

timer switchcno alarm xbee ircuitP PP P  

        


 (2.13)

_ _ 675mW 10.075mW 1.276W 1.961Wno alfull function LED Buzzer armP P P P       (2.14)

 = 2.59h
battery

full function

E
t

P 

 (2.15)

In general, the batteries can support the system work with alarm on for more than 2 hours, which is long

enough for one triathlon swimming competition, although the power consumption of the finalized

design is larger than the estimation of the originally proposed design.

2.2.2 Pulse Sensor

An optical sensor detecting blood pulse is used to collect heart rate information for Arduino. As shown

in Figure 2 on page 3, the three pins of the sensor are 5 V Power (Red), Ground (Black) and Signal Output

(Purple), and they are connecting to 5 V, GND and A0 (Analog Input 0) on Arduino Uno respectively.

Once the sensor is powered on, it will transmit pulse signal to pin A0 when the circle sensor is contacting

8

people’s skin. The small sensor is supposed to be insulated by hot glue for safety. In addition, the sensor

can be clipped on ear easily without influencing swimmer’s movement.

2.2.3 Manual Switch

 Figure 6. Schematic of Manual Switch.

As specified in Figure 6,a SPST pushbutton switch is connected between Arduino 5 V and Arduino pin 2.

When it is pushed, the circuit is connect and pin 2 will received high input. The circuit will be open and

pin 2 will get low input if the button is pressed again. Since the pushbutton switch looks the same when

it is on and off, we add a yellow LED in series with a resistor between pin 2 and ground to indicate

whether the switch is on or off. Equation (2.16) shows the resistance calculation.

5V 2V

120
0.025A

in dropV V
R

I

 
    (2.16)

The data of 2 V voltage drop and 25 mA forward current are based on the test results such that LEDs will

light obviously in such condition.

2.2.4 Microcontroller

An Arduino Uno in swimmer unit is used to control the alarm system. The inner connections and

mapping of pins from microcontroller ATmega328 to pins on Arduino board is specified in Figure A.3.

The circuit connection of Arduino is specified in the schematic Figure A.1. Specifically, it accepts an

analog pulse signal at pinA0 and a digital input from manual switch. These two inputs are analyzed and

processed in Arduino to generate an alarm signal output according to the code in Appendix D. In detail,

an open source test code provided by pulse sensor producer is revised and utilized to convert pulse

signal from sensor to heart rate value [12] . Specifically, the interrupt function is used to update BPM

value every 10 pulses. Several boolean data named as “firstbeat” and “secondbeat” are intialized as

true. They cause direct return at the first time, then are called in program, thus they create empty loops

to avoid inaccurate data of the first several heart beat. In the following programming, the BPM value is

compared with preset thresholds and Arduino outputs will go high when either input from mannual

switch is high or the BPM value is out of range. The same high or low output will be fed to LED array,

buzzer and XBEE transmitter (through a 3.3 V voltage regulator) at pin 8,4,3 respectively.

9

2.2.5 Xbee Modules

Figure 7. Schematic of FTDI [13].

Two Xbee Pro modules are used to build a wireless transceiver system to enable the rescuer unit to

respond the alarm signal from swimmer unit. As specified in Schematics (Figure A.1 and A.2), two 10-pin

headers are used for each Xbee module to avoid direct soldering on them. A FTDI connector is used to

connect Xbee modules to computer where they are initially configured. The specific connection is

showed in Figure 7, the 6 wires on FTDI are connected to pin 10 (GND), 12 (CTS#), 1 (VCC), 3 (DIN), 2

(DOUT) and 16 (RTS#) respectively. Using X-CTU software, two modules are set with same channel,

panID and baud rate and opposite address parameters to make sure they are talking to each other. D3 is

chosen as the input/output pin such that the transmitter receives Arduino output at its pin D3 and this

value will determine the D3 output of receiver module through wireless transmission. Moreover, in

order to have stable functions, according to default setting specified in datasheet [5], the pin NOT RESET

at each module is connected to VCC with a 10 kΩ pull-up resistor and the VREF pin is connected to VCC.

2.2.6 LED Arrays

A LED array is implemented in each unit to indicate alarm with obvious red light. In swimmer unit, the

LED array is controlled by input from Arduino pin8 which will be at 5 V logic high when the system is

triggered. In the original design, each column of LED array needs a 30 Ω resistor in series. Equation

(2.17) shows the calculation of the resistance 1.2 V voltage drop and 50 mA forward current [14].

5V 3 1.2V

28 30
0.005A

in dropV n V
R

I

   
      (2.17)

However, according to test result, the voltage drop and forward current of the LED at desired behavior

are 2.0 V and 25 mA respectively. Therefore 5 V cannot support 3 LEDs in series to work appropriately at

same time. Since amplifying the voltage will increase complexity of the design, we change the

implementation of the array to be 2x4, and the resistance calculation is shown in Equation (2.18).

5V 2 2V

40
0.025A

in dropV n V
R

I

   
    (2.18)

In actual implementation, four 39 Ω resistors are used due to the availability.

10

For rescuer unit, the originally proposed 3x3 LED array receives 9 V high input from timer circuit.

Equation (2.19) shows the resistance calculation with same initial assumptions.

9V 3 1.2V

108 100
0.005A

in dropV n V
R

I

   
      (2.19)

Equation (2.20) shows the resistance calculation in actual implementation with revised connection.

9V 3 2V

120
0.025A

in dropV n V
R

I

   
    (2.20)

The final design is specified in Schematics (Figure A.1 and A.2) in Appendix A.

2.2.7 Buzzer Alarm

Both units contain a MC320B2 buzzer which will alarm loudly when the system is triggered. In swimmer

unit, the connection of buzzer is specified in Figure 8.

Figure 8. Connection of Buzzer in Swimmer Unit.

When Arduino pin4 outputs high at 5 V (±0.5 V), the buzzer will alarm to notify surrounding swimmers

and when pin4 goes low at 0 V (±0.3 V), the buzzer will be off. A 120 Ω resistor is connected in series

with the buzzer instead of a proposed 100 Ω due to availability.

In rescuer unit, the connection of buzzer is specified in Figure 9.

Figure 9. Connection of Buzzer in Rescuer Unit.

This buzzer receives input from timer pin3, and alarms when timer outputs high at 9 V (±0.5 V) and be

off when timer outputs low at 0 V (±0.3 V). A 10 KΩ resistor is connected according to test data to

support appropriate alarm behavior.

2.2.8 Timer Circuit

A timer circuit, originally called “alarm circuit” in proposed design, is implemented in the rescuer unit to

extend the pulse alarm signal received from XBEE receiver, such that the LEDs and buzzer in rescuer unit

11

can be turned on for time that long enough to get attention from rescuers, even the received signal is a

small pulse. The circuit design shown in Figure 10 is based on datasheet of NE555 timer [6], we finalized

the design to use LM555 timer due to the availability of parts in the part shop. The test results verify

that the revised circuit worked well with the same configuration. The output of XBEE receiver is fed to

inverter and the signal at pin3 of timer is fed to LED array and buzzer.

Figure 10. Timer Circuit [6].

The prelimanry simulation is done by PSPICE and the result is showed in Figure 11.

 Figure 11. Timer Circuit Simulation.

Red signal is the XBEE output pulse while the green signal is inverted pulse. The resulting purple signal

indicates that the pulse is extended to 11 s, corresponding to the result of preliminary calculation based

on reference tutorial [15] shown in Equation (2.21).

1.1 1.1 100k 100μF 11st RC     (2.21)

Additional revision is done on the timer circuit such that two pushbutton switches are added as

specified in rescuer unit schematic shown in Figure A.2. The first switch is connected between 9 V power

12

input from battery and 9 V input to two voltage regulators. Therefore when it is pressed, it will turn on

the Xbee module which gets 3.3 V VCC from UA78M33C and 74LS04 inverter which gets 5 V VCC from

78LM05. The second switch is connected between the first switch and the VCC for LM555 timer such

that the timer will be turned on only after this switch is pressed. A yellow and a green LED with 330 Ω

resistors in series are added into the circuit to indicate the switch behavior. The calculation of resistance

is done in Equation (2.3) on page5. This revision is necessary to avoid the error high output generated at

condition that the timer circuit receives initial low input while the inverter and timer are turned on at

the same time. Assuming an initial low input is given from Xbee receiver, the timer input will also be low

when inverter is off (i.e. no voltage inverting) and the voltage will be flip once it is turned on. If the timer

is turned on at the same time of inverter, it will capture this voltage flip and will generate an 11 second

high output. Simulation result in Figure 12 corresponds to this error condition such that when input to

timer(green line) is low, the timer will generate high output (purple line).

 Figure 12. Simulation of Timer Circuit Error.

Therefore we need sperate control switches to make sure the inverter is turned on before the timer to

get expected result, which is shown in Figure 13 where red, green and purple lines refer to Xbee output,

inverter output and timer output respectively.

 Figure 13. Simulation of Ideal Timer Circuit Performance.

13

3. Design Verification
The detail requirements and verification procedures are spepcified in Table C.1 in Appendix C.

3.1 Power Supply
To test the appropriate input range of Arduino, we uploaded a simple test code of blinking LED [16] to

the board. Power supply was used to simulate battery voltage connected to Arduino pin Vin and voltage

output at pin 13 was measured by multimeter. Specifically, when Vin is supplied with 6 V, 7 V and 9 V,

the LED on board corresponding to pin 13 blinked correctly. The logic high at pin 13 was measured to be

4.975 V while the logic low is around 0.003 V. Therefore the Arduino board is verified to work

appropriately when power input is in the range from 6 V to 9 V, where 9 V is the ideal voltage input

supplied by batteries in our design and 6 V is the low limit for input voltage as specified in its datasheet

[1]. The high and low outputs are within the required ranges of 5 V (±0.5 V) and 0 V (±0.3 V) respectively.

To verify the function of voltage regulator, we built the circuit as stated in Figure 4 on page 6. Power

supply was used to provide voltage input from 0 V to 9 V for UA78M33C and the detail test results are

specified in Table 1.

 Table 1 UA78M33C Voltage Regulator Test Results

VCC
(Power Supply)

0 V 1 V 2 V 3 V 4 V 5 V 9 V

Vout 0.0001 mV 0.01 mV 0.05 mV 2.42 mV 3.20 V 3.29 V 3.29 V

According to the test results, when input voltage is smaller than 3 V, the voltage regulator gives low

output. For 5 V and 9 V inputs, which are required in our design, the outputs are all at 3.29 V which fulfill

the requirement at 3.3 V (±0.5 V).

3.2 Pulse Sensor
Function of the pulse sensor was tested by the open source test code provided by sensor producer [12].

After loading the code into Arduino, the 3 pins of pulse sensor were plugged into the corresponding pins

on Arduino which is powered with 9 V at pin VIN. The other side of the sensor was placed on finger and

the LED on Arduino for pin 13 blinked corresponding to the heart beat appropriately when finger

pressed onto the sensor with a moderate strength. There were interrupts and abnormal blinks when the

finger was initially placed on sensor and removed from it, which indicated that the detected sensor

output signal for the first several beats may not be accurate. Therefore in Arduino programming, the

first several pulses are discarded and the BPM value will not be used until the pulse signal become

stable.

14

Figure 14. Visualizer Window of Pulse Sensor Signal.

The test result was also visualized via software processing as Figure 14 shows, utilizing the code from

sensor producer [17]. The stable wave in the main window verified that the pulse sensor could provide

stable heart beat information to Arduino. HRV showed in right lower corner referred to time interval

between last two pulses detected and is used in calcualting heart rate. The continuous updated BPM

value visualized in the right upper window would be analyzed in Arduino program to determine alarm

signal.

3.3 Switch Board
In actual implementation, we integrated the circuits of overall control switch for the swimmer unit and

the manual switch onto a single small PCB board. The board accepts a 9 V from battery and a 5 V VCC

from Arduino as the inputs of two switches respectively, and their outputs are fed to the swimmer unit

board as 9 V VCC and pin 2 input. The detail test result of the switch board is shown in Table 2.

 Table 2 Switch Board Test Results

Test Procedure Output voltages LED behaviors

1.Provide overall switch 9V input 0.02 mV for both switches No LED lights up

2.Press overall switch 8.99 V for overall switch Green LED lights up

3.Provide manual switch 5V input;
press manual switch

4.99 V for manual switch Yellow LED lights up

4. Press manual switch again 0.03 mV for manual switch Yellow LED off

5. Press overall switch again 0.03 mV for overall switch Green LED off

15

The results verified that the SPST switches could appropriately control the circuit. When switches were

not pressed, the circuit was open, and the requirement of low outputs at 0 V (±0.3 V) was satisfied.

When either the switch was pressed once, the corresponding output turned high satisfying either 9 V

(±0.5 V) or 5 V (±0.5 V) requirements. When either the switch was pressed again, the output returned to

low. The accompanying LEDs also functioned appropriately to light up only when corresponding switch

was on.

3.4 Microcontroller
To test the function of Arduino Uno, we simulated different heart rate behaviors by loading different

range thresholds in program. Since it is hard to generate abnormal heart rate in actual test, we set a

BPM range from 0 to 200 ensuring that test heart rate would be within the range to simulate normal

behavior, and then we change the range to 0-20 such that the test heart rate would fall out of the range

to simulate abnormal behavior. Connecting Arduino board as specified in Figure A.1, we test the

program function with different heart rate ranges and manual switch status by measuring outputs at

pin3, 4 and 8 using multimeter. The results are showed in Table 3.

 Table 3 Arduino Test Results

Preset BPM Range Manual Switch (pin2) Vout at pin3,4,8

0-200 (Normal) Off (Low) 3.77 mV

0-200 (Normal) On (High) 4.97 V

0-20 (Abnormal) Off (Low) 4.98 V

The test results verified that the Arduino could appropriately trigger the system when either the heart

rate was out of range or the manual switch was on. The outputs satisfying the requirement with logic

high at 5 V (±0.5 V) and logic low at 0 V (±0.3 V) at pin3, 4 and 8.

3.5 Xbee Modules
To test Xbee transceiver system, the modules were firstly connected to computer via FTDI cable with

connection specified in Figure 7. Using X-CTU software, the two modules were configured based on

tutorials with parameters specified in Table 4.

 Table 4 Xbee Configurations

 Channel PanID ATMY ATDL ATBD D3 IU

Transmitter C 3137 10 11 6 DI /

Receiver C 3137 11 10 6 Do Low Disabled

According to one online tutorial [18], the two modules were set with same channel, panID and baud rate

(ATBD). The PanID was changed to a random number from the default value to make sure no other

working modules in the lab would affect our system. ATMY and ATDL referring to the source address

and destination address were set as showed in Table 4 to make sure two modules talk to each other.

16

According to another tutorial [19], the D3 pins were set as input/output pin. Do Low for receiver

indicated that D3 output at receiver will be default low without a transmitter. The setting of IU

parameters ensured that D3 output of receiver would be determined by D3 input of transmitter.

Then we powered up two Xbee modules as specified in Figure A.1 and A.2. The output at receiver D3

was measured using multimeter with different D3 inputs at transmitter. The detail test results are

showed in Table 5.

 Table 5 Xbee Test Results

D3 Input of
Transmitter

No
transmitter

GND 0 V - 1.7 V 1.8 V 3.3 V(VCC)

D3 Output of
Receiver

Low
(Default)

3.72 mV Low High 3.28 V

According to Table 5, the function of Xbee modules are verified that when transmitter received input

low (GND) at D3, the receiver would output low satisfying 0 V (±0.3 V) requirement; when transmitter

received input high (3.3 V) at D3, the receiver would output high satisfying 3.3 V (±0.5 V) requirement.

The test results also showed that the low input tolerance could increased to 1.7 V since when

transmitter input was between 0 and 1.7 V the receiver would always output low. When the transmitter

was not functioning, the D3 output of receiver would be low corresponding to the setting in Table 4.

3.6 LED Arrays
For LED array in swimmer unit, tests were firstly performed based on the original 3x3 design. The initial

test results were showed in Table 6.

 Table 6 Initial Test Results for Swimmer Unit LED Array

Vin
(Power Supply)

Current in Each
Column

LEDs Observation Voltage Drop for
Single LED

0 V - 4.6 V / Very dim /

5 V 0.002 A Visible from above in daylight 1.66 V

5.5 V 0.025 A Obvious in daylight 1.99 V

According to the results of initial tests, the original design failed since the ideal 5 V input could not

support appropriate LED performance. Therefore, the forward current of 0.025 A and voltage drop

around 2 V stated in Table 6 which were measured when the LED produced satisfying light intensity

were used in all calculations and revisions relevant to LED in our final design. Specifically swimmer unit

array was revised into 2x4 layout. Rescuer unit was revised using 120 Ω. The Tests then performed with

revised circuit shown in Figure A.1 and A.2. Table 7 gives the results of final tests.

Table 7 Revised LED arrays Test Results

Swimmer Unit (2x4 array) Rescuer Unit (3x3 array)

Vin LEDs Observation Vin LEDs Observation

0 V – 4.4 V Off 0 V – 4.6 V Off

17

Table 7 (continued)

4.5 V Start to light up 4.7 V Dim

5 V Obvious in daylight 8.5 V Obvious in daylight

5.5 V Obvious in daylight 9 V Obvious in daylight

/ / 9.5 V Obvious in daylight

According to Table 7, the revised design satisfied the requirements such that when input voltages were

low at 0 V (±0.3 V), the LEDs were off; when input votages were high at either 5 V (±0.5 V) or 9 V (±0.5 V)

for swimmer unit and rescuer unit respectively, the LEDs could provide obvious light display without

being burned out.

3.7 Buzzer Alarm
The buzzers in swimmer unit and rescuer unit were tested with connections specified in Figure 8 and

Figure 9 on page 10 respectively. To satisfy the requirements such that the buzzers should be off when

input voltages are low at 0 V (± 0.3 V) and alarm loudly when input voltages are high at 5 V (± 0.5 V) for

swimmer unit and 9 V (± 0.5 V) for rescuer unit, the resistors in series were determined according to the

test results showed in Table 8.

 Table 8 Buzzer Circuits Test Results

Unit Resistor in Series Vin Buzzer Performance

Swimmer 120 Ω 0 V – 0.6 V Off

0.7 V Audible

4.5 V-5.5 V Noisy

Rescuer 10 kΩ 0 V – 0.9 V Off

1V Audible

8.5 V – 9.5 V Noisy

20 kΩ, 40 kΩ,100 kΩ 9 V Not loud enough

3.8 Timer Circuit
Initial tests were performed with original design circuit specified in Figure 10. The circuit was required to

provide consistent high timer output for 5.5 s once a short high input 3.3 V was provided by Xbee

receiver. However, the test failed such that once 9 V VCC of circuit was turned on, without any input at

to circuit, there is a small period corresponding to correct delay time that timer gave high output to light

LEDs, although the circuit worked appropriately after this initial error.

Circuit is then revised to double the delay time. The initial error problem was solved based on analysis

related to simulations in Figure 12 and Figure 13 on page 12. Then the tests were performed based on

final design specified in Figure A.2. Specifically, the timer produced output at pin 3 with 4.35 mV for

logic low and 8.7 V for logic high. Once provided 3.3 V for 3 seconds as input, the circuit outputs high at

18

pin3 would show on oscilloscope for about 12 seconds before disappeared, which satisfied the

requirement of extend short pulse input to 11 s (±1 s).

3.9 Complete System
The overall requirement for the complete system is that the two units should work efficiently when they

are 25 m (± 5m) away from each other, while the swimmer unit is placed underwater. This function is

verified by our test result. When swimmer unit was placed in waterproof case and placed underwater,

manual switch was turned on to trigger the swimmer unit where LED arrays provided obvious light and

buzzer provided audible alarm underwater, although the loudness was decreased compared with that in

air. It turned out that the rescuer unit worked efficiently with light LEDs, loud buzzer and correct delay

time when it was placed 60 m away from the swimmer unit.

19

4. Costs

4.1 Parts
 Table 9 Cost of Parts

Part Manufacturer Quantity Retail
Cost ($)

Bulk Purchase
Cost ($)

Actual Cost
($)

Pulse Sensor Pulsesesnor.com 1 25 25 25

Waterproof case Snapway 1 3.8 3.8 3.8

SPST On/Off
Pushbutton

All Electronics 6 1.35 1.35 8.1

XBEE PRO 802.15.4 Digi International 2 38 38 76

Arduino UNO Arduino 1 21 21 21

Voltage Regulator
UA78M33C

Texas Instruments

3 0.525 0.356 1.575

Voltage Regulator
LM7805AC

Fairchild
Semiconductor

1 0.568 0.475 0.568

9V Battery Duracell 2 1.5 1.33 3

LEDs Kingbright 21 0.65 0.42 8.82

Buzzer MCP320B2 Mallory 2 3.42 3.42 6.84

LM555CN Timer Fairchild
Semiconductor

1 0.375 0.375 3.375

SN74LS04N invertor Texas Instruments 1 0.602 0.602 0.602

Resistors Vishay 15 0.05 0.05 0.75

Capacitors Kemet 11 1 1 11

Total 170.43

4.2 Labor
Table 10 Cost of Labor

Name Rate Hours Total = Rate x 2.5 x Hours

Zilin Dou $40/hr 150 $15000

Yunye Gong $40/hr 150 $15000

Total $30000

4.3 Grand Total
Table 11 Cost of Grand Total

Labor $30000

Parts $170.43

Grand Total $30170.43

20

5. Conclusion

5.1 Accomplishments
The project was able to work as expected with three PCB boards performing all required functions

successfully. All three boards were well-designed with tidy layouts and small sizes to achieve portability.

The system was able to provide effective alarm in response to real-time heart rate behavior and manual

request. In addition, the efficient wireless communication led to our greatest success such that the

system was able to function properly when swimmer unit was underwater and rescuer unit was 60

meters away. This distance is more than twice of the proposed value.

5.2 Uncertainties
For the distance test, we started from 25 meters and kept increasing the distance up to 60 meters. Since

the two units were able to work efficiently 60 meter apart and no test was performed with larger

distance, there is no accurate data of the maximum distance that the project could work with.

5.3 Ethical considerations
During the whole experiment process, we have abided following the IEEE Code of Ethics [20]

3. to be honest and realistic in stating claims or estimates based on available data;

All estimating calculations were conducted based on formulas and values from datasheet with proper

citation. Claims about system efficiency and functioning distance were made according to real test data.

7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to

credit properly the contributions of others;

During the whole semester, we got advises from Professors, TA and the review teams to improve our

project. We made necessary changes to our original design for proper functions. Working as a two

people group, we didn’t hesitate to point out each other’s mistakes to make sure we were in the correct

direction.

9. to avoid injuring others, their property, reputation, or employment by false or malicious action;

We use waterproof case to insulate swimmer unit to avoid electric shock since it will work underwater.

5.4 Future work
There is still room for improvements for our project. Firstly the system can be implemented with

professional surface mount boards instead of through hole boards for reduce size and weight. A more

suitable waterproof case for swimmer unit will also be helpful considering practical use. Arduino

programming can also be improved to enrich the system with more functions, such as detecting sudden

heart rate changes. Adding positioning device into the project can also be a good choice such that it will

help the rescuer to locate the swimmer triggering the alarm in a faster and easier way.

21

5. References

[1] "Arduino Uno," [Online]. Available: http://arduino.cc/en/Main/ArduinoBoardUno. [Accessed 28 9

2012].

[2] "HEX INVERTERS," Texas Instruments, 1 2005. [Online]. Available:

http://www.ti.com/lit/ds/symlink/sn74ls04.pdf. [Accessed 10 12 2012].

[3] "Pulse Sensor Getting Started Guide," [Online]. Available:

https://docs.google.com/document/d/1iOZv-ubb-cbfhLEYUawFpGXLxOGqULidrHE5UD5vx9s/edit.

[Accessed 28 September 2012].

[4] "How and Why to avoid delay()," Arduino, [Online]. Available:

http://playground.arduino.cc/Code/AvoidDelay. [Accessed 10 12 2012].

[5] "XBee™/XBee-PRO™ OEM RF Modules," [Online]. Available:

http://www.libelium.com/squidbee/upload/3/31/Data-sheet-max-stream.pdf. [Accessed 28 9

2012].

[6] "NE555 General Purpose Single Bipolar Timers," [Online]. Available:

http://www.datasheetcatalog.org/datasheet/SGSThomsonMicroelectronics/mXvzqv.pdf. [Accessed

28 9 2012].

[7] "Low Drop Fixed And Adjustable Positive Voltage Regulators," [Online]. Available:

http://www.datasheetcatalog.org/datasheet/SGSThomsonMicroelectronics/mXuqtqv.pdf.

[Accessed 28 9 2012].

[8] "LM78XX/LM78XXA 3-Terminal 1A Positive Voltage Regulator," FAIRCHILD SEMICONDUCTOR, 8

2012. [Online]. Available: http://www.fairchildsemi.com/ds/LM/LM7805.pdf. [Accessed 10 12

2012].

[9] "DURACELLl-PC1604BKD-ALKALINE MN02 BATTERY, 9V," [Online]. Available:

http://www.newark.com/duracell/pc1604bkd/alkaline-mno2-battery-9v/dp/88M0921. [Accessed

10 12 2012].

[10] "Battery Life on Pulsesensor?," [Online]. Available:

http://pulsesensor.proboards.com/index.cgi?board=allaboutatoms&action=display&thread=6.

[Accessed 5 10 2012].

[11] "Power Consumption Arduino," [Online]. Available:

http://arduino.cc/forum/index.php/topic,5536.0.html. [Accessed 28 9 2012].

22

[12] "Latest Arduino code for Pulse Sensor Amped," [Online]. Available:

http://pulsesensor.myshopify.com/pages/code-and-guide. [Accessed 9 10 2012].

[13] "Setting up an Xbee Network for a Project," [Online]. Available:

http://courses.engr.illinois.edu/ece445/wiki/?n=Topics.MaxstreamXbee.. [Accessed 28 9 2012].

[14] "How to make LEDs glow not blow!," [Online]. Available: http://letsmakerobots.com/node/4948.

[Accessed 4 10 2012].

[15] "555 Timer Tutorial," [Online]. Available: http://www.electronics-

tutorials.ws/waveforms/555_timer.html. [Accessed 4 10 2012].

[16] "Blink," [Online]. Available: http://www.arduino.cc/en/Tutorial/Blink. [Accessed 9 10 2012].

[17] "Lastest Processing code for Pulse Sensor Amped," [Online]. Available:

http://pulsesensor.myshopify.com/pages/code-and-guide. [Accessed 9 10 2012].

[18] "XBEE Basics," 21 6 2009. [Online]. Available: http://forums.trossenrobotics.com/tutorials/how-to-

diy-128/xbee-basics-3259/. [Accessed 13 11 2012].

[19] "Xbee Radios," 17 10 2012. [Online]. Available: http://www.ladyada.net/make/xbee/arduino.html.

[Accessed 13 11 2012].

[20] "IEEE Code of Ethics," [Online]. Available: http://www.ieee.org/about/corporate/governance/p7-

8.html. [Accessed 8 12 2012].

[21] "Arduino Uno," [Online]. Available: http://arduino.cc/en/uploads/Main/Arduino_Uno_Rev3-

schematic.pdf. [Accessed 28 9 2012].

23

Appendix A System Schematics

Figure A.1 Swimmer Unit Schematic.

24

Figure A.2 Rescuer Unit Schematic.

25

Figure A.3 Arduino Uno Schematic [21].

26

Appendix B Pictures

Figure B.1 Picture of Swimmer Unit Container.

Figure B.2 Picture of Swimmer Unit Without Container.

27

 Figure B.3 Picture of Rescuer Unit.

28

Appendix C Requirement and Verification Table

 Table C.1 System Requirements and Verifications

Block Requirements Verification Process Verification
status

(Y or N)

Power
Supply

1. The batteries need to provide a
stable voltage at 9 V, with a -3 V
tolerance, since 6 V is the low
limit of input voltage required by
arduino.

2. UA78M33C voltage regulator
need to convert 9 V and 5 V to
3.3 V (±0.5 V).

3. LM7805AC voltage regulator
need to convert 9V to 5 V (±0.5
V).

1. Measure the voltage across
battery using multimeter.

2. Build voltage regulator circuit on

breadboard with 9 V and 5 V as
VCC respectively, measure the
output voltage using multimeter.

3. Build voltage regulator circuit on
breadboard with 9 V VCC,
measure the output voltage using
multimeter.

Y

Y

Y

Pulse
Sensor

1. Pulse sensor should continuously
read heart rate data to Arduino
under 5 V VCC, when
appropriately installed on
people.

2. The provided code should be

able to convert analog pulse data
into BPM value used in arduino
programming.

1. Connect red, black and purple pins
of sensor to 5 V, GND and A0 pins
on arduino respectively. Run
provided test code, the pulse
signal should be stable and
continuous showing on the
visualize window when sensor is
touched by finger.

2. Run test code in Processing
software; verify that pulse signals
are calculated into BPM value
showing in visualizer window
when sensor is touched by finger.

Y

Y

Manual
Switch

1. The manual switch should output
low 0 V (±0.3 V) when it is not
pressed.

2. The manual switch should output

high 5 V (±0.3 V) when it is
pressed.

3. The manual switch should output
low 0 V (±0.3 V) when it is
pressed again.

1. Connect the switch between 5 V
VCC and GND following a 120 Ω
resistor in series. Measure the
voltage across the resistor using
multimeter when the switch is not
pressed.

2. Measure the voltage across the
resistor using multimeter when
the switch is pressed one time.

3. Measure the voltage across the
resistor using multimeter when
the switch is pressed again.

Y

Y

Y

29

Table C.1 (continued)

Arduino
Uno

1. Arduino Uno should function
appropriately when voltage supply is
in the range between 6 V to 9 V. The
logic high output should around 5 V
(±0.5 V) and the logic low output
should around 0 V (±0.3 V).

2. Arduino should control the alarm

system with following functionalities:

2.1. When manual button switch is
not pressed and heart rate data
from pulse sensor is normal, the
Arduino should output low 0 V
(±0.3 V) at digital pin 3, 4 and 8.

2.2. When manual button switch is

not pressed but the heart rate
goes out of preset range, the
Arduino should output high 5 V
(±0.5 V) at digital pin 3, 4 and 8 to
turn on the alarm system.

2.3 When heart rate is normal but

manual button switch is pressed,
the Arduino should output high 5
V (±0.5 V) at digital pin 3, 4 and 8
to turn on the alarm system.

2.4 The outputs should be able to go
back low when the inputs indicate
there is no need to alarm.

1. Connect pin Vin to power supply set
of 6 V, 7 V and 9 V. Verify the
Arduino with a simple test code.
Connect power supply to Vin and
GND pins as input; verify output low
and high by multimeter.

2. Set the heart rate range to 0 – 20

BPM for abnormal heart rate and 0
– 200 BPM for normal heart rate.

2.1 Load program to Arduino with

normal heart setting. Touch the
sensor while remaining the switch
button unpressed, verify the
output at pin 3, 4 and 8 are low
0 V (±0.3 V) using multimeter.

2.2 Load program to Arduino with

abnormal heart setting. Touch the
sensor while remaining the switch
button unpressed, verify the
output at pin 3, 4 and 8 are high
5 V (±0.5 V) using multimeter.

2.3 Load program to Arduino with

normal heart setting. Touch the
sensor and press the switch
button, verify the output at pin 3,
4 and 8 are high 5 V (±0.5 V) using
multimeter.

2.4 Following step 2.3, press the

switch button again, verify the
output at pin 3, 4 and 8 are low
0 V (±0.3 V) using multimeter.

Y

Y

Y

Y

Y

Y

30

Table C.1 (continued)

XBEE
Transmitter
and
Receiver

1. The XBEE module should function
appropriately on an adapter with
3.3 V (±0.5 V) VCC.

2. When transmitter D3 pin has low

input at 0 V (±0.3 V), the
transmitter and receiver should
not send out or receive any
alarm signal. The D3 pin of
receiver should be low at 0 V
(±0.3 V).

3. When transmitter D3 pin has
high input at 3.3 V (±0.3 V), the
transmitter should sends out
alarm signal to the receiver. The
D3 pin of receiver should be high
at 3.3 V (±0.3 V).

4. The receiver should be able to
receive signal efficiently 25 m (±5
m) away from the transmitter.

1. Plug the XBee module onto the
adapter, connect output pin 1-6
on adapter header to FTDI
cable, the XBEE should be able
to be programmed on
computer.

2. Use power supply to give low
input of 0.3 V to D3 pin of
transmitter, verify receiver D3
pin outputs low 0 V (±0.3 V)
using multimeter.

3. Use power supply to give a high

input of 3.3 V to D3 pin of
transmitter, verify receiver D3
pin outputs high 3.3 V (±0.3 V)
using multimeter.

4. Put receiver 25 m away from
transmitter and repeat the
verification step 3.

Y

Y

Y

Y

Timer
Circuit

1. The LM555 chip should work
appropriately with 9 V VCC.

2. The circuit should not trigger the

buzzer and LEDs when input from
XBEE is low. Therefore output
should be low 0 V (±0.3 V) when
low input 0 V (±0.3 V) is fed to
inverter.

3. The circuit should extend the
high input pulse and turn on the
buzzer and LED for extended
time (11 s) when XBEE received
alarm signal and output high 3.3
V (±0.3 V) to the timer circuit.

1. Connect VCC of LM555 to
power supply 9 V. Give high
input 3.3 V to inverter, feed
inverter output to pin2 TRG of
timer, verify that the output
pulse at pin3 OUT at is high 9 V
(±1 V)using multimeter.

2. Give 0.3 V low input to inverter
using power supply, verify that
the timer output at pin3 is low
0 V (±0.3 V) using multimeter.

3. Use 100uF capacitor and 100k
ohm resistor in timer circuit.
Simulate pulse signal at 3.3V for
1s as input for timer circuit.
Verify that the pin OUT should
be a high pulse at 9V (VCC)
extended to 11 s (±1 s).

Y

Y

Y

31

Table C.1 (continued)

Buzzer 1. The buzzer should not sound
when input voltage is low 0 V
(±0.3 V).

2. The buzzer should alarm when

input voltage is high at 5 V
(±0.5 V) in swimmer unit.

3. The buzzer should alarm when

input voltage is high at 9 V
(±0.5 V) in rescuer unit.

1. Use power supply to generate a 0.3
V input voltage, connect to buzzer
in series with 120 ohm resistor, and
ground the other pin of buzzer.
Verify the buzzer doesn’t sound.

2. Use power supply to generate input
voltage at 4.5 V and 5 V, connect
120 ohm resistor to buzzer in series,
and ground the other pin of buzzer.
Verify the buzzer sounds loudly.

3. Use power supply to generate input

voltage at 9 V connecting a 10 k
ohm resistor to buzzer in series,
and ground the other pin of buzzer.
Verify the buzzer sounds loudly.

Y

Y

Y

LED
arrays

1. All LEDs in two arrays should
be off when input is low at 0 V.

2. For swimmer unit, all 8 LEDs

should be on but not burned
when input is high at 5 V (±0.5
V). A 39 ohm resistor is
connected in series with each
column.

3. For rescuer unit, all 9 LEDs

should be on but not burned
when input is high at 9 V (±0.5
V). A 120 ohm resistor is
connected in series with each
column.

1. Use power supply to generate input
voltage at 0.3 V, verify that all LEDs
are off.

2. Use power supply to generate input
voltage at 5 V (±0.5 V), verify that
all LEDs are turned on and can light
consistently.

3. Use power supply to generate input
voltage at 9 V (±0.5 V), verify that
all LEDs are turned on and can light
consistently.

Y

Y

Y

Whole
System

1. Underwater test. The system
should be able to work
efficiently underwater.

2. The complete system should

be able to work when two
units are 25 m (±5 m) away
from each other.

1. Put the empty waterproof case
underwater to verify that no water
will leak into it before install circuit
into the box. Put the swimmer unit
into water, trigger the alarm and
check if rescuer unit’s alarm is on.

2. Put the swimmer unit into water,
move the rescuer unit to 25m away
from swimmer unit. Trigger the
alarm and check if rescuer unit’s
alarm is on.

Y

Y

32

Appendix D Arduino Code

int pulsePin = 0; // pulse sensor input; analog pin 0

int upthres = 200; // uplimIt of heart rate in BPM

int lowthres = 0; // lowlimit of heart rate in BPM

volatile boolean pulseselect = false;

volatile boolean switchselect = false;

// following are volatile because they are used during the interrupt!

volatile int BPM; // used to hold the pulse rate

volatile int Signal; // holds the incoming raw data

volatile int HRV; // holds the time between beats

volatile boolean Pulse = false; // true for high, false for low

volatile boolean QS = false; // becomes true when pulse rate is determined

void setup(){

pinMode(13,OUTPUT); // pin 13 will blink to your heartbeat!

pinMode(2,INPUT); // pin 2 accepts switch inuput

pinMode(4,OUTPUT); // pin4 outputs to buzzer

pinMode(8,OUTPUT); // pin8 outputs to leds

pinMode(3,OUTPUT); // pin3 outputs to XBEE

Serial.begin(115200); // we agree to talk fast!

interruptSetup(); } // sets up to read Pulse Sensor signal every 1mS

void loop(){

select(); // OR logic of two inputs

delay(20); } // take a break

void switchcontrol(){

if (digitalRead(2) == HIGH){switchselect = true;} // manual switch is on

else{switchselect = false;} } // manual switch is off

void pulsecontrol(){

if ((BPM > upthres) || (BPM < lowthres)){pulseselect = true;} // out of range

else{pulseselect = false;} } // normal

void select(){

switchcontrol();

pulsecontrol();

if (pulseselect||switchselect){ // trigger alarm

digitalWrite(3,HIGH);

digitalWrite(4,HIGH);

digitalWrite(8,HIGH);}

33

else{

digitalWrite(3,LOW); // output low

digitalWrite(4,LOW);

digitalWrite(8,LOW);} }

volatile int rate[10]; // get running average of HRV values

volatile unsigned long lastBeatTime = 0; // find the time between beats

volatile int sampleCounter; // determine pulse timing

volatile int runningTotal; // keep track of pulses

volatile boolean firstBeat = true; // seed rate array

volatile boolean secondBeat = true; // startup with reasonable BPM

void interruptSetup(){ // Initializes Timer1 to throw an interrupt every 1mS.

TCCR1A = 0x00; // DISABLE OUTPUTS AND PWM ON DIGITAL PINS 9 & 10

TCCR1B = 0x11; // 'PHASE AND FREQUENCY CORRECT' MODE, NO PRESCALER

TCCR1C = 0x00; // DON'T FORCE COMPARE

TIMSK1 = 0x01; // ENABLE OVERFLOW INTERRUPT (TOIE1)

ICR1 = 8000; // TRIGGER TIMER INTERRUPT EVERY 1mS

sei(); } // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED

// THIS IS THE TIMER 1 INTERRUPT SERVICE ROUTINE.

ISR(TIMER1_OVF_vect){ // triggered every time Timer 1 overflows

// Timer 1 makes sure that we take a reading every millisecond

Signal = analogRead(pulsePin); // read the Pulse Sensor

sampleCounter++;// keep track of the time with this variable (ISR triggered every 1mS

// NOW IT'S TIME TO LOOK FOR THE HEART BEAT

int H = sampleCounter-lastBeatTime; // monitor the time since the last beat to avoid noise

if ((Signal > 520) && (Pulse == false) && (H > 500)){

// signal surges up in value every time there is a pulse

Pulse = true; // set the Pulse flag when we think there is a pulse

digitalWrite(13,HIGH); // turn on pin 13 LED

HRV = sampleCounter - lastBeatTime; // measure time between beats in mS

lastBeatTime = sampleCounter; // keep track of time for next pulse

if(firstBeat){ // if it's the first time we found a beat

firstBeat = false; // clear firstBeat flag

return;} // HRV value is unreliable so discard it

if(secondBeat){ // if this is the second beat

secondBeat = false; // clear secondBeat flag

for(int i=0; i<=9; i++){rate[i] = HRV;}} // seed the running total; get a realisitic BPM at startup

// keep a running total of the last 10 HRV values

for(int i=0; i<=8; i++){rate[i] = rate[i+1];} // shift data in the rate array; drop the oldest HRV value

rate[9] = HRV; // add the latest HRV to the rate array

runningTotal = 0; // clear the runningTotal variable

34

for(int i=0; i<=9; i++){runningTotal += rate[i];} // add up the last 10 HRV values

runningTotal /= 10; // average the last 10 HRV values

BPM = 60000/runningTotal;} // how many beats can fit into a minute? that's BPM!

QS = true; // set Quantified Self flag when beat is found and BPM gets updated.

// QS FLAG IS NOT CLEARED INSIDE THIS ISR

if (Signal < 500 && Pulse == true){ // when the values are going down, it's the time between beats

digitalWrite(13,LOW); // turn off pin 13 LED

Pulse = false; } // reset the Pulse flag so we can do it again!

} // end isr

