

ROBOTIC MICROPHONE STAND FOR
POGO STUDIOS

By

Alejandro Gomez

Dennis Yuan

Final Report for ECE 445, Senior Design, Fall 2012

TA: Igor Fedorov

12 December 2012

Project Group No. 24

ii

Abstract

We design, construct, and demonstrate a robotic microphone stand. Stepper motors drive three

linear actuators to provide motion along the x, y, and z axis. Instructions are provided by the user over

Bluetooth by a laptop using a PuTTY terminal interface. Instructions are then relayed to the ATMega328

microcontroller and used to control the speed and direction of rotation of each motor. Bump switches

are placed at the ends of the movement range for signaling back to the microcontroller. Two voltage

regulator circuits are designed to power the motors and the microcontroller. All circuit elements are laid

out on two printed circuit boards. Testing shows that stepper motors are appropriate for this

application, and we achieve the ability to transmit instructions wirelessly over sufficient distances for its

intended purpose.

iii

Contents
1. Introduction .. 1
2 Design ... 2

2.1 Structural Overview .. 2
2.2 Hardware Design Overview .. 2

2.2.1 Block Diagram .. 2
2.2.2 Power Supply and Voltage Regulation ... 3
2.2.3 Stepper Motors and Linear Actuators.. 5
2.2.4 Motor Control Circuit ... 6
2.2.5 Bluetooth RX .. 7
2.2.6 Bump Sensors ... 8
2.2.7 Microcontroller .. 9
2.2.8 Computer and Control Interface .. 10
2.2.9 PCB and Layout Considerations ... 10

3. Design Verification .. 12
3.1 Power Supply and Voltage Regulation .. 12

3.1.1 AC-DC 5V Power Supply ... 12
3.1.2 5V to 3.3V Step Down Voltage Regulator .. 12
3.1.1 5V to 12V Step Up Voltage Regulator .. 12

3.2 Stepper Motors, Motor Controllers, and Linear Actuators .. 13
3.2.1 Stepper Motors and Motor Controllers ... 13
3.2.2 Linear Actuators ... 13

3.3 Bluetooth RX ... 13
3.4 Bump Sensors.. 14
3.5 Microcontroller ... 14
3.6 Computer and Control Interface ... 14

4. Costs .. 15
4.1 Parts .. 15
4.2 Labor ... 16

5. Conclusion ... 17
5.1 Accomplishments .. 17
5.2 Uncertainties ... 17
5.3 Ethical Considerations ... 17
5.4 Future Work .. 17

References .. 18
Appendix A Requirement and Verification Table ... 19
Appendix B Circuit Simulation ... 21
Appendix C Arduino Code ... 22

1

1. Introduction
Mark Rubel, a music producer at Pogo Studios located in Champaign, Illinois and Audio Director for

Eastern Illinois University’s Doudna Fine Arts Center, desired a robotic microphone stand for use in his

studio.[1] His primary motivation for requiring such stand is to find a reliable way to position a

microphone from outside the recording booth in his studio for optimal recording characteristics.

The position of the microphone relative to a speaker or performer is crucial to how the recording

ultimately sounds. Finding this optimal microphone location is difficult due to the short audio of the

average person. This makes it hard to directly compare the sounds of two relative microphone positions,

since by the time a producer walks into the booth, adjusts the microphone, and walks back out, his

memory of what the previous sound was is no longer accurate. This remote control will allow for quicker

audio feedback and proper microphone positioning. A secondary motivation Mark has is to use this

stand to attract clients and enhance the recording environment. Almost anyone can record and produce

their own music at home and upload it to YouTube for mass distribution on the internet. Professional

studios must offer services or recording environments that cannot be achieved in a home studio setting,

and such a robotic microphone stand would give Pogo studios such a service. An additional benefit of

using this stand is that it provides protection of studio personnel from potentially harmful audio

environments. Finally, similar products currently on the market are quite expensive and do not meet all

of his requirements. Mark is looking for a low cost solution.

Our design has several features that Mark is looking for. It can move two feet along both the x and y

axis, and three feet along the vertical axis. Movement can either be in preset increments or by providing

a desired location. It is wirelessly controlled, and is controlled by a laptop using open source software.

Movement is provided by three stepper motors that each drive a linear actuator. We have programmed

the ability to store up to ten microphone positions and load them at any time. These stored positions

are saved even when the system is powered down. It uses an external power source, a wall outlet,

separate from that which supplies power to the microphone.

2

Microcontroller

Power supply and

voltage regulation

Computer and

control interface

Sensors Motor control

circuit

Power

Information

Bluetooth RX

Stepper motors

and linear

actuators

2 Design

2.1 Structural Overview
The stationary base of the stand is made of a single wooden board that measures 2ft. by 2ft. The first

linear actuator is mounted directly onto the wooden base along tracks for stability. We label the axis of

movement for the first linear actuator the y axis. The second linear actuator is then mounted to the first

set of tracks and provides movement along a direction perpendicular to the first actuator. We label this

second axis of movement the x axis. The third linear actuator is mounted vertically, 1 ft. above where it

is mounted, providing movement along the z axis. A rod to mount the microphone to is attached to the

third actuator.

Wires are strung from the three motors to the base of the stand for interfacing with the control

hardware. Four wires are required for each motor, two for each coil. Three wires are strung from the

bump sensors attached at the ends of the linear actuators to the base of the stand for interfacing with

the control hardware. The control hardware consists of two printed circuit boards attached to the base

of the platform. The microcontroller, Bluetooth chip, motor controller chips, and power regulators are

all distributed between these two PCBs.

2.2 Hardware Design Overview

2.2.1 Block Diagram

Figure 1 The high level block diagram of our robotic microphone stand

3

Table 1 Table of upper estimate for total power draw

Component Rated Voltage (V) Maximum Current (mA) Max Power Draw (W)

Microcontroller[2] 5 250 1.25

Motor controllers[3] 5 0.02 0.0001 (x3)

Bump sensors 5 5 0.025 (x6)

Bluetooth[4] 3.3 100 0.33

Motor[5] 2.7 2000 5.4 (x3)

Total 17.93

2.2.2 Power Supply and Voltage Regulation

The three components of the power supply and voltage regulation block are the commercial AC to DC

commercial power supply which outputs 5V DC, a step down voltage regulator to convert 5V DC to 3.3V

DC, and a step up voltage regulator to convert 5V DC to 12V DC.

2.2.2.1 AD-DC 5V Power Supply

We are using a commercial power supply to convert AC voltage to a 5V DC output. The manufacturer is

TKD-Lambda Americas, Inc. The specific model is the LS35-5, which is rated for up to 35W.[6] An upper

estimate for the power required is shown in Table 1. We purchased a power supply that can handle up

to 90 percent more power as a precaution to account for future design changes and possible

inefficiencies not taken into consideration during the initial design phase, like voltage regulator

efficiencies.

2.2.2.2 5V to 3.3V Step Down Voltage Regulator

The Bluetooth module we are using takes a 3.3V DC input, requiring us to convert the 5V DC we receive

from the commercial power supply using a voltage regulator. One possibility would be to use an

adjustable linear regulator, like the TI LM117/LM317 series, but using linear regulators create thermal

concerns. The regulation is facilitated by burning off the rest of the power as heat. Switching regulators

are more efficient, and may not require many extra components. Instead, we use the TI PL497A

Switching Voltage Regulator in a step-down configuration. The design equations, as taken from the

application information, are

 ()

 ()

 () ()

 ()

(2.1)

(2.2)

(2.3)

(2.4)

4

 ()
 () [

]

 ()

where IPK is the peak input current, IO is the desires output current, ton is the switch-on time, Vripple(PK) is

the maximum desired ripple voltage, VI is the expected input voltage, and VO is the desired output

voltage.[7] L, CT, R1, RCK, and CO are all component values of the surrounding circuit elements as shown in

Figure 2. The Bluetooth chip has a maximum current draw of 100 mA, so we set IOmax = 100mA and IPK =

200mA in Equation (2.1). VI and VO are set to 5V and 3.3V, respectively, in Equation (2.2). We pick a

convenient L of 68µH, since Coilcraft provided inductor samples at this inductance, for a ton of 8µs. CT is

chosen to be 100pF, again a convenient value, from Equation (2.3). R1 = 2.1kΩ from Equation (2.4). RCL =

2.5Ω from Equation (2.5). CO should be at least 50µF for a maximum Vripple(PK) of 1 percent of the output

voltage. A larger CO will simply provide a smaller ripple voltage, so we are using a 100µF. We are also

using a 470µF bypass capacitor, labeled C_IN in Figure 2, at the input voltage to protect the chip from

any voltage spikes or transients.

2.2.2.3 5V to 12V Step Up Voltage Regulator

While the motors are rated for 2.7V, the motor control IC we are using requires a motor voltage of 8V-

35V for proper operation, and then uses active current limiting to make sure the current through the

stepper motors is not higher than what is rated. We are using the TI LM2585 3A Flyback Regulator in a

boost configuration, as taken from the application notes.[8] The use of a linear regulator here is not

possible, since we need to step the voltage up. While there are no design equations, TI does have the

Simple Switcher design software for picking component values. However, the level of current we want

to draw from this particular regulator is not supported by the application (the software suggests another

part for higher efficiency). Instead, we base our component values on the sample circuits in the

application notes. CIN2 = .1µF, RC = 3kΩ, and CC = .39µF. We use the same 68µH Coilcraft inductor that we

used in the step down regulator for convenience. A 1N5822 schottky diode is used since it is rated for 3A

(2.5)

(2.6)

Figure 2 Schematic of step-down voltage regulator to power Bluetooth chip. Converts 5V DC to 3.3V DC.

5

and a maximum reverse voltage of 40V, both less than the 2A and 12V that it will be operating at.[9]

Capacitor COUT1 is used to store energy to be discharged when the regulator is switched off. The

capacitor must be sufficiently large, and an 1800µF is used. COUT2 is added to filter out transients and

voltage spikes to protect the motor control board that is powered by this regulator. Again a 470µF

capacitor is used for CIN to protect the chip from voltage transients. The full schematic is shown in Figure

3. There are three copies of this circuit, one for each motor. This is for added modularity, simplifying

testing, and also allows us to use a lower power regulator instead of a large regulator that must handle

up to 6A of current.

2.2.3 Stepper Motors and Linear Actuators

We are using three stepper motors to each spin a screw rod that moves a platform along the screw rod.

This use of screw rods is called a linear actuator.

2.2.3.1 Stepper Motors

We are using stepper motors to drive the linear actuators. We decided on stepper motors over other

motors for the precision that this motor type provides over other DC motors. With stepper motors, we

can dictate exactly how many steps we want the motor to rotate. The specific motor we are using is the

Pololu Stepper Motor rated for 2.7V and 1000mA.[5] Each motor contains two coils that work to spin

the motor in discrete steps. There are 200 steps per revolution, and each motor is controlled

independently of the others.

2.2.3.1 Linear Actuators

Each linear actuator is comprised of a motor attached to a screw rod with a nut that is threaded onto

the rod. The orientation of the nut is held constant so that spinning the rod moves the nut, or anything

attached to it, along the rod. Depending on the incline of the threads, a faster or slower linear speed can

be achieved given a constant motor speed. We choose a rod that moves 1in per revolution for

movement along all three axes. This scheme of movement provides with a constant linear speed,

whereas using another scheme with pivoting arms might not provide a constant relationship between

motor speed and linear speed. For each step of the motor, we can expect to move 1/200 in = 5 mils. This

is our minimal linear resolution.

Figure 3 Schematic of step-up voltage regulator to power motors. Converts 5V DC to 12V DC.

6

2.2.4 Motor Control Circuit

The microcontroller cannot directly power the motors, since the motor currents would be too much for

the microcontroller to source. Instead, we are using the Pololu Stepper Motor Driver Carrier. It uses the

Allegro A4988 stepper motor controller IC, and simplifies our control scheme. It not only translates the

control signals from the microcontroller into the appropriate high power waveforms to power the

motors, it also has active current limiting so that we can use almost any stepper motor with it. This

controller has many features, including sleep mode, reset, enable, and the ability to drive the stepper

motors microsteps as small as a sixteenth step. The motors are always enabled and are never reset or

put into sleep mode in our design.[3]

We are using the controller in full step mode, since we feel that the 5 mil resolution is more than

adequate for this application. Using the controller in this way also reduces the number of components

required, since many of the inputs are internally pulled to default values. MS1, MS2, MS3, and NOT_EN

are pulled low, meaning the motors are always enabled and are in full step mode by default. NOT_SLP is

pulled up by default, so connecting NOT_RST to it means the motors are never put to sleep or reset. No

external components are required in our schematic, as shown in Figure 4. Each of the three controllers

control one motor and is powered by a single 12V regulator.

The motors are rated for 2.7V, but this controller only takes motor voltages of 8V-35V. To make our

motor compatible, we provide a 12V input as the motor voltage and the use the active current limiting

feature on the board to keep the current below 1A per phase to not overheat the controller board and

also stay within the rated current of the motors.

The only signals we have to provide are the STEP and DIR. When a rising edge is provided to STEP, the

motor will spin one step. DIR controls whether the motor spins clockwise or counter-clockwise.

Figure 4 Schematic of Pololu Stepper Motor Drive Carrier using the Allegro A4988 stepper motor controller IC. One of three
used to control the stepper motors.

7

2.2.5 Bluetooth RX

We are using Bluetooth to wirelessly control the stand. The specific profile being used is the Serial Port

Profile, which exactly simulates a serial cable between the laptop and the output of the Bluetooth

receiver.[10] The specific chip we are using is the Roving Networks RN-41 Bluetooth chip on a breakout

board provided by Sparkfun. All the specifics of the communication software stack are encapsulated

between the RN-41 and the laptop, greatly simplifying its usage. The chip requires a 3.3V input, making

necessary the 3.3V voltage regulator. Our circuit includes a reset button, an LED for pairing status, an

LED for incoming data, and a circuit to convert the 5V input the chip is receiving from the

microcontroller to 3.3V. Table 2 shows the list of IO pins, their functions, and their settings in our

implementation.[11]

The circuit to convert the 5V input to 3.3V can be seen in the schematic in Figure 5. If the incoming

signal is low, the diode will be forward biased and the voltage seen at the input of the Bluetooth RX pin

will be low. If the incoming signal is high, the diode will be reverse biased and the voltage seen will be

3.3V. Note that the RX pin of the RN-41 is connected to the TX pin, digital pin 0, of the microcontroller

and the TX pin of the RN-41 is connected to the RX pin, digital pin 1, of the microcontroller. A simulation

of this circuit is shown in Appendix B.

The actual data is received one byte at a time, with an initial start bit of 0 and then data pushed in from

lowest significant bit to highest significant bit.

Table 2 Table of RN-41 IO pin functions and settings

IO pin Functionality setting

RESET Resets chip (active low) Connected to button switch

CLK Used for SPI protocol Not used

MOSI Used for SPI protocol Not used

RTS Request to send Shorted to CTS

CTS Clear to send Shorted to RTS

CS Used for SPI protocol Not used

MISO Used for SPI protocol Not used

PIO2 Connection status (high = connected) Connected to LED

PIO3 Auto discovery = high Pulled down for no auto discovery

PIO4 Reset to factory default Pulled down for no reset capability

PIO5 Data status Not used

PIO6 Set Bluetooth master (high = auto master mode) Pulled down

PIO7 Baud rate (high = force 9600, low = 115k or firmware setting) Pulled up for baud rate of 9600

PIO10 Incorrectly labeled by Sparkfun; actually PIO9, provides extra IO pin Pulled down/not used

PIO11 Incorrectly labeled by Sparkfun; actually PIO8 provides RF data Connected to LED

8

Discuss general design alternatives. Give equations, simulations, general circuits. Describe design in

detail, addressing each major component. Include schematics with components, drawings, flowcharts,

etc. Some teams may wish to split this chapter in two: 2. Design Procedure, and 3. Design Details. This

template will not automatically update numbering systems for chapters, sections, figures, tables, etc., so

keep track of them as you develop and revise the text.

Following is a “template” for displayed math. Use the MathType extension of Word to generate your

own content, and note the use of the invisible table (no borders) to keep the optional number flush

right.

Insert math here using MathType (number)

2.2.6 Bump Sensors

We use six sensor elements for two purposes. The first is to stop the motors if the stand is pushed to the

limits of its movement range. Trying to spin the motors when the linear actuators can no longer move

could potentially damage the motors by driving them with too much current. The second is to let us

reset the microphone position counter to the correct value, since we are not using rotary encoders to

keep track of the microphone position. Each bump sensor has three connections. There is a common

lead (C), a lead that is normally open (NO) with respect to the common, and a lead that is normally

closed (NC) with respect to the common. The NO and NC leads never form a complete circuit.

Figure 5 Schematic for the Bluetooth transceiver using the Roving Networks RN-41 chip in SPP profile for wireless
communication with a laptop

9

In our circuit, we connect the common leads directly as an input to the microcontroller, shown in Figure

6, labeled as BUMP_X/Y/Z_MIN/MAX. Each NO lead is grounded and each NC lead is pulled up to 5V. In

this way, the signal coming from the sensor will change from high to low whenever the level on the

sensor is pushed.

2.2.7 Microcontroller

The microcontroller interprets the instructions sent by the user and sensor information into control

signals to send to the motor controller block. It also sends data back to the user via Bluetooth. The

specific microcontroller we are using is the ATMega328, the same one that is used in the very popular

Arduino series of hobbyist microcontroller boards. It is programmed in Arduino language and has

standard libraries to support serial communication. Another added benefit is that an external

programmer is not required. We can upload sketches, Arduino code programs, to the microcontroller

through the Arduino board over USB and then pop out the microcontroller from the headers.

Reset functionality and an external oscillator are provided on the PCB for proper operation, as described

by the tutorial for building a breadboard compatible Arduino.[12] The inclusion of a 16MHz oscillator

The microcontroller is powered directly by the 5V supply, without need any further voltage regulation.

Inputs come from the bump sensors and the Bluetooth transceiver while outputs go back to the

Bluetooth transceiver and to the motor controllers.

Figure 6 Schematic for the ATMega328 microcontroller. It interfaces with the Bluetooth, sensor, and motor control blocks.

10

2.2.8 Computer and Control Interface

We are using a laptop to control the microphone stand. It is assumed the laptop has Bluetooth

capabilities, either through an integrated radio or an external dongle. The only software required is

PuTTY, an open source terminal software. Under its license, anyone is granted permission to do anything

with it and its documentation except for removing the license itself.[13]

Once paired with the Bluetooth transceiver, commands are sent with the keyboard. The user can move

the microphone position, one direction at a time. The user can also store the current location in one of

ten memory slots and then recall those positions at any time to force the stand to move to a preset

location. Another feature is the ability to input a microphone position and force the stand to move to it.

Finally, there is a reset button to move the microphone back to the origin of the coordinate space. The

full list of commands is listed in Table 3. An example of the control interface is shown in Figure 7.

2.2.9 PCB and Layout Considerations

All the components except for the bump sensors and laptop are placed on PCBs. We use two separate

PCBs due to the size limitations of the free version of EagleCAD used. The first PCB,design shown in

Figure 8 contains the 3.3V step down regulator, the Bluetooth chip, and the microcontroller. The second

PCB, design shown in Figure 9, contains the 12V step up regulators and the motor controllers.

Both PCBs are two layered, top and bottom, and designed to accommodate the fabrication restrictions

of the UIUC ECE Service Shop.[14] Vias are used sparingly, since they are not plated through. Trace

isolation of 60 mils is used per request of the Service Shop. Traces were made a short as possible to

reduce noise and interference effects. All bypass capacitors are placed as close to the input of the ICs

are possible. The 220µF capacitors at the output of the 12V regulator are actually placed under the

motor controllers to save space. All ICs except for the 12V step up regulator are placed on headers

which are soldered onto the PCBs. This allows us to easily remove the ICs for testing or replacement.

Another consideration was to make sure the ceramic chip antenna of the Bluetooth chip was not over

any copper, as specified by the application notes.[11]

Table 3 Keyboard commands for controlling the microphone stand from a laptop

Keyboard input functionality

J/L Step in the +/- X direction

I/K Step in the +/- Y direction

Q/A Step in the +/- Z direction

C + (0-9) Save current location at memory location (0-9)

(0-9) Return to stored location (0-9)

G + (input number A) + space + (input number B) +
space + (input number C) + space

Move microphone stand to (A,B,C)

R Move microphone stand to (0,0,0)

11

Figure 8 PCB design containing the 3.3V step down
regulator, Bluetooth chip, and microcontroller

Figure 9 PCB design containing the 12V step up regulators
and motor controllers.

Figure 7 Screenshot of control interface via PuTTY terminal.

12

3. Design Verification
See Appendix A for full requirement and verification table.

3.1 Power Supply and Voltage Regulation
Testing took place in two stages. The first stage was on a breadboard to verify out design, and the

second was on PCB.

3.1.1 AC-DC 5V Power Supply

Testing and verification consisted of measuring the 5V output on an oscilloscope. Worked as advertised.

3.1.2 5V to 3.3V Step Down Voltage Regulator

This circuit was bread-boarded as in Figure 2 with the output measured on an oscilloscope, as shown in

Figure 10. After transferring the design to PCB, however, the regulator output was around 4V. Loading

the output with the Bluetooth chip lowered the output to around 3.8V, but would periodically drop

below 3.3V. This dropping would cause the laptop to lose pairing with the Bluetooth device. We did not

have time to find the problem, but we suspect that the capacitor CT has something to do with it, as it

controls the switching frequency. The quick fix for the demonstration was to instead use the 3.3V output

from the Arduino board to power the Bluetooth chip.

3.1.1 5V to 12V Step Up Voltage Regulator

Originally this part was a 5V to 2.7V step down voltage regulator using a different chip, because we

overlooked the fact that the motor controllers could only take 8v-35V as the motor voltage. Testing with

the 2.7V regulator proved problematic in itself, because a necessary diode was not included in the

design. Loading the incorrect design would pull down the voltage of other components connected to the

5V power supply being used at the time. Adding the diode remedied this issue, but we soon realized that

we needed an entirely new regulator circuit to step the voltage up above 8V.

Testing this new regulator circuit using the LM2585-12 on a breadboard did not go smoothly at first. The

COUT1 capacitor was not large enough, less than 1000µF, and turning on the regulator resulted in the chip

Figure 10 Output of 3.3V regulator during breadboard testing Figure 11 Output of 12V regulator during breadboard testing

13

being burned out. After increasing the COUT1 to over 1000µF, the output voltage became stable, with

measured output shown in Figure 11, and the design was quickly laid out on PCB. The somewhat high

voltage transient signaled to us that the bypass capacitor might need to be increase to protect the

motor controller, causing us to increase COUT1 further to 1800µF and add an extra 220µF bypass

capacitor, COUT2 to the design.

3.2 Stepper Motors, Motor Controllers, and Linear Actuators
While we had to wait until the UIUC ECE Machine Shop finished fabricating the stand and the linear

actuators, we were able to test the motors independently. A lot of the motor testing was done using the

motor controllers, since we otherwise would have had to provide two relatively high power sine waves

90 degrees out of phase with each other.

3.2.1 Stepper Motors and Motor Controllers

With the motor controllers bread-boarded, according to Figure 4, we were able to use the function

generator to spin the motors. The function generator was set to output a 5VP-P square wave with DC

offset +2.5V at 1Hz. The output of the function generator acted as the STEP input. The DIR input was

either grounded or pulled to 5V, and switched between the two to make sure the motor could be driven

both clockwise and counterclockwise.

We did have some problems causing us to burn out three motor controllers. We believe the problem

was a short circuit caused by a mistake in pulling up the SLEEP and RESET inputs in combination with

incorrectly pulling down the ENABLE input. The short caused a large current to be drawn, signaling to us

that the controller was burned out. The solution to this was to simply not externally pull up or down any

of the inputs. As previously mentioned, all of the inputs except for RESET are internally pulled up or

down. While the PCBs were designed with pull down and pull up resistors, we opted not to solder them

onto the board.

3.2.2 Linear Actuators

Testing the linear actuators was largely finding a sufficient current from the active current limiting

feature of the motor controller to spin the screw rods without risking damage to the controllers or

motors. The potentiometer on each motor controller had to be adjusted individually, since the

mechanical load on each motor is different.

3.3 Bluetooth RX
The original design had the QFN version of the chip soldered to the final PCB, and the Sparkfun breakout

board used for testing purposes only. We decided to replace the QFN packaged chip directly with the

Sparkfun board after having success during the bread-boarding phase. Testing the Bluetooth chip

involved several steps. We had to figure out how to pair the device with a laptop, learn what kind of

software was required to communicate, write test code to verify operation, and then redo everything

after the circuit was placed on PCB. Testing was successful, and we were able to view the data streaming

in on an oscilloscope, with an example shown in Figure 12.

14

3.4 Bump Sensors
Bump sensor testing was very simple. All that is required is an ohm meter to measure whether the

impedance between the common lead and the other two is high or low.

3.5 Microcontroller
Testing the microcontroller was also very simple. Since the microcontroller is from the Arduino Uno

board, running the provided example sketches was an easy way to test the functionality of the

microcontroller. We did have an Arduino Uno board burn out for an unknown reason over the

Thanksgiving holidays, but purchased a replacement quickly to continue testing.

3.6 Computer and Control Interface
Little testing was required to verify the operation of the laptop used to send instructions. Testing the

use of the PuTTY interface was required for testing the Bluetooth module, so they were basically tested

simultaneously.

“1” = x31 = 00110001 “a” = x61 = 01100001

“A” = x41 = 01000001 “!” = x21 = 00100001

Figure 12 Test data from the TX pin of the Bluetooth chip. Note that bits are received lowest significant bit first.

15

4. Costs
Total cost is $17500 (labor) + $537.14 (prototype parts) = $18037.14

Total cost of production model as design is currently = $244.81

4.1 Parts
Table 4 Cost of Parts

Part Manufacturer
Purchased (or acquired
by other means)

Used in
final design

Retail
Cost

Bulk
Cost

Cost of
prototype

Cost of
production model

Stepper Motor Pololu 3 3 $15.95 $15.95 $47.85 $47.85

A4988 stepper motor
controller Pololu 6 3 $12.95 $12.95 $77.70 $38.85

Snap-Action Switch Pololu 8 6 $0.75 $0.75 $6.00 $4.50

35W, 5V power supply TDK Lambda Americas Inc. 1 1 $19.00 $19.00 $0.00 $0.00

LM2585-12 switching
regulator Texas Instruments 6 (samples) 3 $6.75 $3.51 $40.50 $10.53

LM2596 buck regulator Texas Instruments 4 0 $1.78

$7.12 $0.00

1N5819 Schottky Diode Vishay Semiconductor 2 (service shop) 1 $0.15 $0.06 $0.30 $0.06

1N5822 Schottky Diode Vishay Semiconductor 4 3 $0.46 $0.11 $1.84 $0.34

1800uF capacitor United Chemi-Con 5 3 $0.95 $0.30 $4.75 $0.90

470uF capacitor Panasonic 4 4 $0.41 $0.09 $1.64 $0.36

220uF capacitor Panasonic 4 3 $0.44 $0.10 $1.76 $0.30

100uF capacitor Panasonic 3 0 $0.33

$0.99 $0.00

150uF capacitor Panasonic 3 0 $0.51

$1.53 $0.00

TL497A regulator Texas Instruments 2 1 $2.02 $0.94 $4.04 $0.94

ATMega328 Atmel 2 1 $2.88 $1.60 $5.76 $1.60

1k surface mt resistor Panasonic 20 6 $0.10 $0.01 $2.00 $0.06

10k surface mt resistor Panasonic 22 2 $0.10 $0.01 $2.20 $0.02

1.2k surface mt resistor Panasonic 6 1 $0.10 $0.01 $0.60 $0.01

2.1k surface my resistor Panasonic 5 1 $0.10 $0.01 $0.50 $0.01

220ohm surface mt
resistor Panasonic 4 2 $0.10 $0.01 $0.40 $0.02

200uH SMD inductor Signal Transformer 2 0 $1.11

$2.22 $0.00

2.5ohm resistor Bourns Inc. 2 0 $3.64

$7.28 $0.00

RN-41 on breakout Sparkfun 1 1 $59.95 $59.95 $59.95 $59.95

TO-263-5 to DIP-10 SMT
adapter Proto Advantage 3 0 $4.49

$13.47 $0.00

ATMega328 with
bootloader Sparkfun 2 0 $5.50

$11.00 $0.00

RN-41 QFN Sparkfun 2 0 $24.95

$49.90 $0.00

33uH inductor Coilcraft 5 (samples) 0 $1.62

$8.10 $0.00

47uH inductor Coilcraft 5 (samples) 0 $1.62

$8.10 $0.00

68uH inductor Coilcraft 5 (samples) 4 $1.62 $0.67 $8.10 $2.68

100uH inductor Coilcraft 2 (samples) 0 $1.62

$4.86 $0.00

333uH inductor Coilcraft 2 (samples) 0 $1.62

$4.86 $0.00

200ohm resistor Vishay 3 (service shop) 3 $0.23 $0.01 $0.69 $0.03

16

.1uF capacitor Vishay 3 (service shop) 3 $0.44 $0.03 $1.32 $0.09

.39uF capacitor AVC Corporation 3 (service shop) 3 $0.40 $0.40 $1.20 $1.20

2.3ohm resistor Tageo 1 (service shop) 1 $0.33 $0.04 $0.33 $0.04

22pF capacitor Vishay 2 (service shop) 2 $0.34 $0.03 $0.68 $0.06

100pF capacitor Vishay 1 (service shop) 1 $0.34 $0.03 $0.34 $0.03

white LED Everlight Electronics 8 (IEEE Lab) 2 $0.59 $0.16 $4.72 $0.32

16MHz Crystal ECS Inc 1 (service shop) 1 $0.70 $0.70 $0.70 $0.70

Sub-Mini pushbutton All Electronics Corp 2 2 $0.33 $0.18 $0.66 $0.36

Arduino Uno Arduino 1 0 $27.18

$27.18 $0.00

female headers Sparkfun 6 (IEEE lab) 2 $1.50 $1.50 $9.00 $3.00

PCB fabrication ECE service shop 3 (service shop) 2 $35.00 $35.00 $105.00 $70.00

Parts total

$537.14 $244.81

4.2 Labor
Table 5 Cost of Labor

Labor wage time Total

Alejandro Gomez $35/hr 100hr $3500*2.5 = $8750

Dennis Yuan $35/hr 100hr $3500*2.5 = $8750

Labor Total $17500

17

5. Conclusion

5.1 Accomplishments
Our demonstration was a great success. We were able to demo the full functionality of the project we

set out to build, and even had a bonus in the form of stepper motor music. We both feel like we learned

a lot throughout this process. At the start, neither of us were familiar with really any of the hardware

components we successfully designed. Implementing Bluetooth seemed overwhelming, learning about

using motors in practice was new, and figuring out exactly what we could do with a microcontroller

were all things that seemed daunting at first. As we read the documentation and gained more

understanding of what was actually required, we realized elements that used to seem overwhelming are

actually straight forward. We both feel much more confident jumping into a project now than when we

started the semester.

5.2 Uncertainties
Since we were unable to perform testing inside Pogo Studios, the recording environment might not

support our Bluetooth implementation. While the Class 1 Bluetooth module has a large range, the actual

range is probably limited by the Bluetooth radio in the laptop. Unless the Bluetooth radio in the laptop is

also Class 1, the range will drop significantly. Soundproof walls also tend to attenuate electromagnetic

radiation as well, further degrading the signal.

5.3 Ethical Considerations
to accept responsibility in making decisions consistent with the safety, health, and welfare of the public,

and to disclose promptly factors that might endanger the public or the environment;

 All wireless communications devices we use in this project, the Class 1 Bluetooth module in

particular, are certified by the FCC.[11]

to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to

credit properly the contributions of others;

 Designs based off datasheets and application notes are properly credit. The use of PuTTY

software in our project is also ethical under the open source license that explicitly gives us permission to

use it.

5.4 Future Work
Immediate work to be finished include fixing the 3.3V step down regulator circuit and getting the

JavaScript code to work over Bluetooth. Fixing the voltage regulator would eliminate the need for using

the entire Arduino board, and the microcontroller would be placed on the PCB. Getting the JavaScript

code to work would improve the look and utility of the control interface, giving it more of a “cool” factor

that Mark desires.

Other potential improvements include enclosing the hardware components in some kind of box, adding

pan or tilt capability, and writing a program to take any MIDI file and automatically play it using the

stepper motors.

18

References
[1] About Pogo, Pogo Studio. [Online]. Available at:

http://www.pogostudio.net/aboutpogo.htm

[2] 8-bit AVR® Microcontroller with 4/8/16/32k Bytes In-System Programmable Flash, datasheet,

Atmel. [Online]. Available at: http://www.atmel.com/Images/doc8161.pdf

[3] A4988 DMOS Microstepping Driver with Translator and Overcurrent Protection, datasheet, Allegro

Microsystems, Inc. [Online]. Available: http://www.allegromicro.com/Products/Motor-Driver-And-

Interface-ICs/Bipolar-Stepper-Motor-Drivers/~/media/Files/Datasheets/A4988-Datasheet.ashx

[4] RN-41/RN041-N Class 1 Bluetooth Module, datasheet, Roving Networks. [Online]. Available:

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Wireless/Bluetooth/rn-41-ds-v3.3r.pdf

[5] Pololu Robotics and Electronics, Stepper Motor: Bipolar, 200 Steps/Rev, 35x36mm, 2.7V, 1000mA.

[Online]. Available: http://www.pololu.com/catalog/product/1209/specs

[6] LS Series Single Output General Purpose Power Supplies, datasheet, TDK-Lambda. [Online].

Available at: http://us.tdk-lambda.com/lp/ftp/Specs/ls.pdf

[7] TL297A 500-mA Peak Step-up, Step-down, Inverting Switching Voltage Regulator, datasheet, Texas

Instruments. [Online]. Available at: http://www.ti.com/lit/ds/symlink/tl497a.pdf

[8] LM2585 Simple Switcher® 3A Flyback Regulator, datasheet, Texas Instruments. [Online]. Available

at: http://www.ti.com/lit/ds/symlink/lm2585.pdf

[9] 1N5820-1N5822, datasheet, Fairchild Semiconductor. [Online]. Available at:

http://www.fairchildsemi.com/ds/1N/1N5822.pdf

[10] Bluetooth Special Interest Group, Serial Port Profile (SPP). [Online]. Available:

https://www.bluetooth.org/Building/HowTechnologyWorks/ProfilesAndProtocols/SPP.htm

[11] RN-41/RN041-N Class 1 Bluetooth Module, datasheet, Roving Networks. [Online]. Available at:

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Wireless/Bluetooth/rn-41-ds-v3.3r.pdf

[12] Building an Arduino on a Breadboard, Arduino. [Online]. Available at:

http://arduino.cc/en/Main/Standalone

[13] Simon Tatham, PuTTY Licence. [Online]. Last modified Jan 27, 2012. Available at:

http://www.chiark.greenend.org.uk/~sgtatham/putty/licence.html

[14] Design Requirements For Our Milled PCBs, ECE Electronics Service Shop. [Online]. Available at:

http://www.ece.illinois.edu/eshop/pcbdesign/DesignReq.htm

19

Appendix A Requirement and Verification Table
Table 6 System Requirements and Verifications

Requirement Verification Verification
status

(Y or N)

Power Supply and Voltage Regulation
1) Commercial power supply will deliver 5V
2) Output of switching regulator to power

Bluetooth will deliver 3.3V at up to 100mA
3) Output of individual switching regulator to

power stepper motors will deliver 12V at up to
2A

1) Hook up oscilloscope to output of the commercial
supply. Plug in commercial supply to wall socket
and turn on supply.
a) Measure 5V output on scope.

2) Use the bench DC generator as a 5 Volt input
voltage for 3.3V step down circuit. Output should
be 3.3V.
a) Load the 3.3V output with a 33 ohm load

and measure that the current is 100 mA
b) Repeat after parts laid out on PCB

3) Use the bench DC generator as a 5 Volt input
voltage for 12V step up circuit. Output should be
12 Volts
a) Load the 12V output with a 1.3 ohm load

and measure that the current is 2 Amps
b) Repeat for each of the three 12V regulator

circuits
c) Repeat after parts laid out on PCB

Y

Y
Y

Y

N
Y

Y

Y

Y

Motor Controller
1) Control motor movement step by step
2) Must turn both clockwise and counter

clockwise

1) Set DIR to high. Connect output leads to
oscilloscope OUT1A with OUT1B to one channel
and OUT2A with OUT2B to a second channel,
with B’s being grounds. Connect STEP lead to a
debounced switch so that you can toggle the
input to STEP.
a) Toggle switch on and off manually and

observe the output on the oscilloscope to
verify that each step corresponds with a
rising edge. Repeat 20 times

2) Set DIR to high. Connect the output leads to an
oscilloscope OUT1A with OUT1B to one channel
and OUT2A with OUT2B to a second channel,
with B’s being grounds. Connect the STEP lead to
a function generator and send a square pulse
with a frequency of 100Hz.
a) Observe that the output signals are 2 square

waves with OUT2 having a 90 degree phase
lag.

b) Connect DIR to ground. Observe that the
output signals are 2 square waves with
OUT1 having a 90 degree phase lag.

Y

Y

Y

Y

Y

Stepper Motors
1) Motor should not skip steps, should give a step

every time it’s instructed to
2) One revolution should match lead screw spec

for linear motion
3) Move both clockwise and counterclockwise

1) Set DIR to high. Run test program from
microcontroller to give a square wave of period
5us with 1600 cycles as an input to the STEP pin
of the motor drivers so the motor will give 200
steps.
a) The motor should move one revolution.

2) Move a full revolution using test program from
above
a) Measure the linear distance traveled on the

lead screw with ruler. it should be 1”
3) Repeat above tests, but set DIR low for opposite

direction of rotation.

Y

Y
Y

Y

Y

20

Bluetooth RX
1) Needs to establish connection with computer
2) Needs to be able to receive data to computer
3) Needs to be able to send data back to

computer
4) Data transfer should be accurate
5) Should communicate through a wall from at

least 5 meters away

1) Establish connection with computer. Connection
status LED indicator should light up, showing that
connection has been made

2) After establishing connection with computer,
send characters in the terminal interface. Data
status LED indicator should be flashing, showing
that data has been received by the Bluetooth
module

3) Program the microcontroller to send arbitrary
location data to the computer, and echo the
received data to the screen. Compare for
correctness and repeat 20 times

4) See verification for Computer and Control
Interface block

5) Place computer at least 5 meters away through a
wall and repeat all above test procedures

Y

Y

Y

Y

Y

Computer and Control Interface
1) Send accurate serial data to the

microcontroller over Bluetooth

1) After receiving inputs keyboard, echo transmitted
data on the screen before they’re sent through
Bluetooth to make sure they are read correctly
a) Verify data is sent by checking connection

and data status LEDs on Bluetooth RX
module

b) Verify data is correctly sent by reading
output of Bluetooth RX module on
oscilloscope

Y

Y

Y

Sensor Elements
1) Pushing down the lever on the pumper switch

should change the output from low to high.

1) Construct the circuit as shown in the schematic
and supply a voltage to the pull up resistors. The
voltage should show high.
a) Press and hold the lever down. The voltage

should now show low on the oscilloscope.
b) Let go of the lever. The voltage should now

again read high on the oscilloscope

Y

Y

Y

Microcontroller
1) Properly send and receive signals from the

Bluetooth RX block
2) Properly send signals to motor control block
3) Properly receiving signals from sensor block

1) See verification for Computer and Control
interface block

2) Place microcontroller in Arduino development
board. Use LEDs to read I/O pins corresponding
to motor control outputs. Run test program that
sends a square wave of period 1 second to STEP
output, checks for clockwise and
counterclockwise operation, and phase reset
functionality.
a) Verify for each set of motor controls for x,y

and z axis motor control outputs
3) Connect bumpers to microcontroller and run

microcontroller test program.
a) Motor control output signals should indicate

position reset when they receive a signal
from their respective bumpers

Y

Y

Y

Y

Y

21

Appendix B Circuit Simulation

Figure B.1 Schematic and diode parameters of circuit to convert 5V logic input into 3.3V

Figure B.2 Simulation results of circuit to convert 5V logic input into 3.3V

22

Appendix C Arduino Code

23

Code
 #include <EEPROM.h>

 int stepSignalX = A0;//12;

 int stepSignalY = A2;//11;

 int stepSignalZ = A4;//10;

 int dirX= A1;//9;

 int dirY= A3;//8;

 int dirZ= A5;//7;

 int bumperX1=2;

 int bumperX2=3;

 int bumperY1=4;

 int bumperY2=5;

 int bumperZ1=6;

 int bumperZ2=7;

 int countX=0;

 int countY=0;

 int countZ=0;

 int limX=4800;

 int limY=4800;

 int limZ=7200;

 int display = 1;

 int key=0;

 int gdelay=2000;

int vcount=1;

 void setup(){

 Serial.begin(9600);

 pinMode(bumperX1,INPUT);

 pinMode(bumperX2,INPUT);

 pinMode(bumperY1,INPUT);

 pinMode(bumperY2,INPUT);

 pinMode(bumperZ1,INPUT);

 pinMode(bumperZ2,INPUT);

 pinMode(stepSignalX,OUTPUT);

 pinMode(stepSignalY,OUTPUT);

 pinMode(stepSignalZ,OUTPUT);

 pinMode(dirX,OUTPUT);

 pinMode(dirY,OUTPUT);

 pinMode(dirZ,OUTPUT);

 //goToOrigin();

 displayPosition();

 }

 void note(int length, int note){

 if (vcount==-1)vcount=1;

 if (vcount==1)vcount=-1;

 int delay;

 int x=1;

 int y=1;

 int z=0;

 if(note =='c'){ delay = 500000/130.81;}

 if(note =='C'){ delay = 500000/138.59;}

 if(note =='d'){ delay = 500000/146.83;}

 if(note =='D'){ delay = 500000/155.56;}

 if(note =='e'){ delay = 500000/164.81;}

 if(note =='f'){ delay = 500000/174.61;}

 if(note =='F'){ delay = 500000/185;}

 if(note =='g'){ delay = 500000/196;}

 if(note =='G'){ delay = 500000/207.65;}

24

 if(note =='a'){ delay = 500000/220;}

 if(note =='A'){ delay = 500000/233;}

 if(note =='b'){ delay = 500000/246;}

 if(note =='c'+1000){ delay = 500000/261;}

 if(note =='C'+1000){ delay = 500000/277;}

 if(note =='d'+1000){ delay = 500000/293;}

 if(note =='D'+1000){ delay = 500000/311;}

 if(note =='e'+1000){ delay = 500000/329;}

 if(note =='f'+1000){ delay = 500000/349;}

 if(note =='F'+1000){ delay = 500000/369;}

 if(note =='g'+1000){ delay = 500000/392;}

 if(note =='G'+1000){ delay = 500000/415;}

 //if(countX+countY>0) x=-1;

 //if(countX-countY>0) y=-1;

 motorSteps(length,delay, 1,vcount,vcount,0);

 }

 void loop(){

 int steps=100;

 if (Serial.available() >0){

 display=1;

 key=Serial.read();

 if(key=='=') gdelay+=200;

 if(key=='-') gdelay-=200;

 int delay=gdelay;

 steps=200;

 if(key=='j') motorSteps(steps,delay ,1,-1, 0, 0);

 if(key=='l') motorSteps(steps,delay ,1, 1, 0, 0);

 if(key=='q') motorSteps(steps,delay*2,1, 0, 0, 1);

 if(key=='a') motorSteps(steps,delay ,1, 0, 0,-1);

 if(key=='k') motorSteps(steps,delay ,1, 0,-1, 0);

 if(key=='i') motorSteps(steps,delay ,1, 0, 1, 0);

 if(key=='c') {storeLocation();};

 if(key=='g') {goToInputLocation();};

 if(key>='0' && key <='9') goToLocation(getX(key),getY(key),getZ(key));

 if(key=='r') goToOrigin();

 //while(Serial.available()>0){Serial.read();}

 Serial.flush();

 }

 else{

 if(display){

 Serial.println(gdelay);

 displayPositionAndStored();

 display=0;

 }

 }

 }

 int motorSteps(int steps, int revs, int secs , int x , int y , int z){ // speed of revs/sec, fraction with revs being the

numerator and secs being the denominator

 /* int loops=floor(steps/revs);

25

 int rem= steps%revs;

 int moving=0;

 for(int i=0;i<loops;i++){

 moving = step(revs,x,y,z); //200*revs

 // if(moving==1) delay(5*secs); //1000*secs

 }

 moving = step(rem,x,y,z);

 // if(moving==1) delay(5*secs);

 //displayPosition();

 */

 step(steps,revs,x,y,z);

 }

 int step(int steps , int delay, int x,int y,int z){

 int count=0;

 for(int i=0;i<steps;i++){ // move loops*revs steps

 int bumperX1r = digitalRead(bumperX1);

 int bumperX2r = digitalRead(bumperX2);

 int bumperY1r = digitalRead(bumperY1);

 int bumperY2r = digitalRead(bumperY2);

 int bumperZ1r = digitalRead(bumperZ1);

 int bumperZ2r = digitalRead(bumperZ2);

 if(bumperX2r && x== 1){ countX = limX;}

 if(bumperX1r && x==-1){ countX = 0;}

 if(bumperY2r && y== 1){ countY = limY;}

 if(bumperY1r && y==-1){ countY = 0; }

 if(bumperZ2r && z== 1){ countZ = limZ;}

 if(bumperZ1r && z==-1){ countZ = 0;}

 int moving = 0;

 if(x==1 && !bumperX2r) {//&& countX<limX

 digitalWrite(dirX, HIGH);

 countX++;

 digitalWrite(stepSignalX, HIGH);

 moving=1;

 }else if(x==-1 && !bumperX1r){//&& countX>0

 digitalWrite(dirX, LOW);

 countX--;

 digitalWrite(stepSignalX, HIGH);

 moving=1;

 }

 if(y==1 && !bumperY2r) { //&& countY<limY

 digitalWrite(dirY, HIGH);

 countY++;

 digitalWrite(stepSignalY, HIGH);

 moving=1;

 }else if(y==-1 && !bumperY1r){ //&& countY>0

 digitalWrite(dirY, LOW);

 countY--;

 digitalWrite(stepSignalY, HIGH);

 moving=1;

 }

 if(z==1 && !bumperZ2r) { //&& countZ<limZ

 digitalWrite(dirZ, HIGH);

 countZ++;

 digitalWrite(stepSignalZ, HIGH);

 moving=1;

26

 }else if(z==-1 && !bumperZ1r){ //&& countZ>0

 digitalWrite(dirZ, LOW);

 countZ--;

 digitalWrite(stepSignalZ, HIGH);

 moving=1;

 }

 if(moving==0){

 return 0; //stopped moving so stop delaying

 }

 delayMicroseconds(delay);

 digitalWrite(stepSignalX, LOW); // turn the LED off by making the voltage LOW

 digitalWrite(stepSignalY, LOW); // turn the LED off by making the voltage LOW

 digitalWrite(stepSignalZ, LOW); // turn the LED off by making the voltage LOW

 delayMicroseconds(delay);

 //if(count++==10){displayPosition();count=0;}

 }

 return 1;

 };

 int getX(int location){

 if(EEPROM.read(location*7) == 255) return countX;

 return EEPROM.read(location*7+1)*100+EEPROM.read(location*7+2);

 }

 int getY(int location){

 if(EEPROM.read(location*7) == 255) return countY;

 return EEPROM.read(location*7+3)*100+EEPROM.read(location*7+4);

 }

 int getZ(int location){

 if(EEPROM.read(location*7) == 255) return countZ;

 return EEPROM.read(location*7+5)*100+EEPROM.read(location*7+6);

 }

 int goToInputLocation(){

 int temp;

 int x=0;

 int y=0;

 int z=0;

 int count=0;

 int xcounter=0;

 int ycounter=0;

 int zcounter=0;

 Serial.println("");

 delay(1);

 while(Serial.available()==0){ if(count==0){Serial.println("Enter coordinates");count++;}delay(1); }

 delay(1);

 for(xcounter;xcounter<4;xcounter++){

 while(Serial.available()==0){ delay(100); }

 temp=Serial.read();

 if(temp>='0' && temp <='9'){

 Serial.write(temp);

 x=x*10+(temp-48);

 }

 if(temp == ' '){

 Serial.write(temp);

 break;

27

 }

 else{

 xcounter--;

 }

 // if(xcounter==3) Serial.print(' ');

 }

 for(ycounter;ycounter<4;ycounter++){

 while(Serial.available()==0){ delay(100); }

 temp=Serial.read();

 if(temp>='0' && temp <='9'){

 Serial.write(temp);

 y=y*10+(temp-48);

 }

 if(temp == ' '){

 Serial.write(temp);

 break;

 }

 else{

 ycounter--;

 }

 // if(ycounter==3) Serial.print(' ');

 }

 for(zcounter;zcounter<4;zcounter++){

 while(Serial.available()==0){ delay(100); }

 temp=Serial.read();

 if(temp>='0' && temp <='9'){

 Serial.write(temp);

 z=z*10+(temp-48);

 }

 if(temp == ' '){

 Serial.write(temp);

 break;

 }

 else{

 zcounter--;

 }

 // if(zcounter==3) Serial.print(' ');

 }

 if(x>4800) x=4800;

 if(y>4800) y=4800;

 if(z>7200) z=7200;

 Serial.println();

 Serial.print("Going to ");

 Serial.print(x);

 Serial.print(' ');

 Serial.print(y);

 Serial.print(' ');

 Serial.println(z);

 goToLocation(x,y,z);

 }

 int goToLocation(int x,int y,int z){

 int stepsX = x - countX;

 int stepsY = y - countY;

 int stepsZ = z - countZ;

28

 int signX = stepsX > 0 ? 1 : stepsX == 0 ? 0 : -1; //m

 int signY = stepsY > 0 ? 1 : stepsY == 0 ? 0 : -1;

 int signZ = stepsZ > 0 ? 1 : stepsZ == 0 ? 0 : -1;

 stepsX = abs(stepsX);

 stepsY = abs(stepsY);

 stepsZ = abs(stepsZ);

 int speed=2000;

 if(stepsX <= stepsY && stepsX <= stepsZ){

 motorSteps(stepsX, speed, 1 , signX , signY , signZ); //m

 if(stepsY <= stepsZ){

 motorSteps(stepsY-stepsX, speed, 1 , 0 , signY , signZ); //m

 motorSteps(stepsZ-stepsY,speed,1,0,0,signZ);

 }

 else{

 motorSteps(stepsZ-stepsX, speed, 1 , 0 , signY , signZ); //m

 motorSteps(stepsY-stepsZ,speed,1,0,signY,0);

 }

 }

 else if(stepsY<=stepsX && stepsY<=stepsZ){

 motorSteps(stepsY, speed, 1 , signX , signY , signZ); //m

 if(stepsX <= stepsZ){

 motorSteps(stepsX-stepsY, speed, 1 , signX , 0, signZ); //m

 motorSteps(stepsZ-stepsX,speed,1,0,0,signZ);

 }

 else{

 motorSteps(stepsZ-stepsY, speed, 1 , signX , 0 , signZ); //m

 motorSteps(stepsX-stepsZ,speed,1,signX,0,0);

 }

 }

 else{

 motorSteps(stepsZ, speed, 1 , signX , signY , signZ); //m

 if(stepsY <= stepsX){

 motorSteps(stepsY-stepsZ, speed, 1 , signX , signY , 0); //m

 motorSteps(stepsX-stepsY,speed,1,signX,0,0);

 }

 else{

 motorSteps(stepsX-stepsZ, speed, 1 , signX, signY , 0); //m

 motorSteps(stepsY-stepsX,speed,1,0,signY,0);

 }

 }

 };

 /*

 int abs(int n){

 return n<0?0-n:n;

 }*/

 void displayPosition(){

 Serial.print("\n\n\n\n\n\nPosition: ");

 Serial.print(countX);

 Serial.print(" ");

 Serial.print(countY);

 Serial.print(" ");

 Serial.println(countZ);

29

 };

 void displayPositionAndStored(){

 displayPosition();

 for(int i='0';i<='9';i++){

 if(EEPROM.read(i*7) != 255){

 Serial.print("\t\t\t\t\t\t");

 Serial.print("(");

 Serial.write(i);

 Serial.print(")");

 Serial.print("\t");

 Serial.print(EEPROM.read(i*7+1)*100+EEPROM.read(i*7+2)) ;

 Serial.print(" ");

 Serial.print(EEPROM.read(i*7+3)*100+EEPROM.read(i*7+4)) ;

 Serial.print(" ");

 Serial.print(EEPROM.read(i*7+5)*100+EEPROM.read(i*7+6)) ;

 Serial.println("");

 }

 }

 };

 int storeLocation(){

 int location;

 int count=0;

 Serial.println("");

 delay(1);

 while(Serial.available()==0){ if(count==0){Serial.println("Enter a number from 0 to 9");count++;}delay(1);

 }

 delay(1);

 Serial.write(location=Serial.read());

 if(location<'0' || location>'9') return -1;

 EEPROM.write(location*7, 1);

 EEPROM.write(location*7+1, floor(countX / 100));

 EEPROM.write(location*7+2, countX % 100);

 EEPROM.write(location*7+3, floor(countY / 100));

 EEPROM.write(location*7+4, countY % 100);

 EEPROM.write(location*7+5, floor(countZ / 100));

 EEPROM.write(location*7+6, countZ % 100);

 displayPosition();

 return location;

 };

 void goToOrigin(){

 countX=0;

 countY=0;

 countZ=0;

 digitalWrite(dirX,LOW);

 digitalWrite(dirY,LOW);

 digitalWrite(dirZ,LOW);

 if(digitalRead(bumperX1)==1 && digitalRead(bumperY1)==1 && digitalRead(bumperZ1) == 1) return;

 if(digitalRead(bumperX1)==0) digitalWrite(stepSignalX,HIGH);

 if(digitalRead(bumperY1)==0) digitalWrite(stepSignalY,HIGH);

 if(digitalRead(bumperZ1)==0) digitalWrite(stepSignalZ,HIGH);

 delay(1);

30

 digitalWrite(stepSignalX,LOW);

 digitalWrite(stepSignalY,LOW);

 digitalWrite(stepSignalZ,LOW);

 delay(1);

 goToOrigin();

 }

