
 ECE 445

 Senior Design Laboratory

 Final Report

 __

 AI Chess Robot with Computer Vision

 __

 Team 33

 (zalonzo2) Zack Alonzo

 (joseaf3) Jose Flores

 (jhur22) Joshua Hur

 TA: Zicheng Ma (zicheng5)

 May 1st, 2024

mailto:zalonzo2@illinois.edu
mailto:joseaf3@illinois.edu
mailto:jhur22@illinois.edu

 ⅱ

 Abstract

 This final report describes the problem we proposed, the solution developed, and the
 implementation for ECE 445. We provided detailed designs, features, and cost

 ⅲ

 1. Introduction .. 1
 1.1 Problem ... 1
 1.2 Solution .. 1
 1.3 Visual Aids ... 1
 1.4 High-Level Requirements .. 1

 2. Design ... 3
 2.1 Block Diagram ... 3
 2.2 Power Subsystem .. 4

 2.2.1 Overview ... 4
 2.2.2 Design Decisions .. 4
 2.2.3 Power Subsystem RV Table ... 5

 2.3 Processing Subsystem .. 5
 2.3.1 Overview ... 5
 2.3.2 Design Decisions .. 6
 2.3.4 Processing Subsystem RV Table .. 7

 2.4 Visual Subsystem .. 7
 2.4.1 Overview ... 7
 2.4.2 Design Decisions .. 8
 2.4.3 Visual Subsystem RV Table .. 9

 2.5 Magnetic Arm Subsystem .. 10
 2.5.1 Overview ... 10
 2.5.2 Design Decisions .. 10
 2.5.3 Magnetic Arm Subsystem RV Table ... 10

 2.6 Physical Design ... 11
 2.7 Tolerance ... 11
 2.8 Schedule .. 14

 3. Cost Analysis ... 16
 3.1 Parts/Materials ... 16
 3.2 Estimated Hours of Development .. 16
 3.3 External Materials and Resources ... 17
 3.4 Approximate Total Cost .. 17

 4. Conclusion ... 17
 4.1 Conclusion ... 17
 4.2 Ethics and Safety ... 18

 Appendix A Ethics & Safety .. 19
 A.1 Ethics ... 19
 A.2 Legal Precautions .. 19

 A.2.1 Python-Chess ... 19
 A.2.2 Raspberry PI ... 20
 A.2.3 MIPI Camera .. 20

 ⅳ

 A.2.3 Chess Piece CAD Models .. 20
 Appendix B Design & Subsystems ... 20
 Appendix C PCB Parts & Costs ... 20
 Appendix D Computer Vision .. 23

 D.1 Computer Vision Code Design .. 23
 D.2 Computer Vision Tests/Verifications .. 25

 References ... 25

 1

 1. Introduction

 1.1 Problem
 Our project’s goal is to address the need for a tangible and interactive chess-playing device,
 enabling users to play in the physical world against a chess AI rather than relying on digital
 platforms. Designed for both beginners and advanced players, the chess-playing robot would
 provide an engaging alternative to mobile apps, allowing for skill development and strategic
 thinking in a hands-on manner.

 1.2 Solution
 We plan to develop an autonomous chess-playing robot that eliminates the need for a human
 opponent by incorporating a chess algorithm with varying difficulty levels. Using a system
 involving a magnet and motors beneath the board, the computer opponent’s chess pieces will
 move autonomously while the human player will simply pick up and place their pieces. Then, our
 robot will analyze the current board position by capturing an image through a camera and will
 identify all the pieces on the board by identifying each piece's color, associating it with the
 corresponding chess piece. With this updated board, we will now be able to determine the
 optimal move based on the chosen difficulty level and current board position. When identified,
 our code will output the necessary information to the system with the magnet and the motors
 underneath the board to move its intended piece and wait for the subsequent human player’s
 move (additionally, a button press will “submit” the player’s move).

 1.3 Visual Aids
 We provide a high-level overview of the solution in Figure 1. The Raspberry PI camera will take
 an image and send it to the Raspberry PI where it will undergo image processing to determine
 chess pieces and positions. Then, it will inform the ESP32 microcontroller to move the stepper
 motors and toggle on and off the electromagnet as appropriate to execute the chess move.
 Figure 2 is a physical project from the ECE Machine Shop that we planned to repurpose.

 1.4 High-Level Requirements
 During the demo with Professor Viktor Gruev and TAs, we met the following goals:

 ● Computer vision algorithm correctly identifies chess piece positions and their identity on
 the board with 95% ± 5% accuracy.

 ● Chess AI is implemented in a way that is able to identify when the human player has
 cheated with 95% ± 5% accuracy.

 2

 ● Rail and magnet system grabs the intended chess piece to the intended location on the
 chess board with 95% ± 5% accuracy.

 Figure 1. High-level project overview

 Figure 2. Physical project from ECE Machine Shop

 3

 2. Design

 2.1 Block Diagram

 Figure 3. Block diagram of the chess-playing robot

 Our design consists of four subsystems, composed of both hardware and software aspects.
 These subsystems are visually shown in Figure 3.

 4

 2.2 Power Subsystem

 2.2.1 Overview
 The power subsystem is responsible for powering all electrical and mechanical pieces
 associated with our project, such as the stepper motors, electromagnet, MIPI camera, Raspberry
 PI 4, and ESP32 microcontroller. It is comprised of:

 ● (1) 12.0 V ± 0.5 V Barrel Jack
 ● (1) 5.0 V ± 0.5 V Barrel Jack
 ● (1) 5.0 V to 3.3 V Linear Regulator

 The main sources of power will come from a wall outlet where the AC to DC converters will
 output the 12 V and 5 V we need to power our project. The 12 V output will be connected
 straight to the BJTs in parallel that lead to the electromagnet and stepper motors, and the 5 V
 connected to the 3.3 V linear regulator to power the ESP32 microcontroller and stepper motor
 drivers; the Raspberry PI 4 connected with a 5 V, 2.1 A power adapter.

 2.2.2 Design Decisions
 We chose two AC to DC barrel jacks to supply power to our project because we did not consider
 efficiency as a part of our criteria. If we were to target efficiency, buck converters would be
 desirable as they could handle the power constraints required by the subsystem and are highly
 efficient in stepping down voltage. However, due to cost constraints and most importantly the
 complexity and scale of buck converters, we decided to not use them. The 3.3 V linear regulator
 was chosen because we did not need large amounts of current and because of its simplicity.
 Being a single chip to solder onto the PCB board, it reduces space and work costs to have it.
 All components connected to the power sources needed to be limited within certain limits of
 voltage and current. As a result, we needed to verify the actual voltage and current that flows
 through the PCB board to their respective components. The methods and criteria we wanted to
 meet are in Table 1 where we describe how we measured and verified the metrics.

 5

 2.2.3 Power Subsystem RV Table

 Requirements Verification
 __

 ● Maintain 12 ± 0.6 V from the AC/DC
 output

 ● Use an oscilloscope or multimeter
 and place the positive side terminal
 on the output of the AC/DC
 converter

 ● Next, place the negative side on the
 ground terminal of the pcb.

 ● Read the device display and verify
 that the output is within the
 expected ranges

 __
 ● Maintain 5 ± 0.6 V from the AC/DC

 output
 ● Use an oscilloscope or multimeter

 and place the positive side terminal
 on the output of the AC/DC
 converter

 ● Next, place the negative side on the
 ground terminal of the pcb.

 ● Read the device display and verify
 that the output is within the
 expected ranges

 __
 ● Maintain 3.3 ± 0.6 V from the linear

 regulator
 ● Use an oscilloscope or multimeter

 and place the positive side terminal
 on the output of the AC/DC
 converter

 ● Next, place the negative side on the
 ground terminal of the pcb.

 ● Read the device display and verify
 that the output is within the
 expected ranges

 Table 1. Power subsystem RV table

 2.3 Processing Subsystem

 2.3.1 Overview
 The processing subsystem is where all of the image processing, data analysis, and path
 planning, takes place. It is comprised of:

 6

 ● (1) Raspberry PI 4 Model B
 ● (1) ESP32 S3 Microcontroller
 ● (2) BJT (Magnet Switch)
 ● (2) Red LEDs

 The subsystem is split up between the 2 components, one is the Raspberry Pi, which handles
 the computer vision code, the python library used for the chess AI, and the path planning code
 used to find the best path for the chess piece to traverse through. The microcontroller is the
 second component which handles the execution of moves by moving the 3 stepper motors to
 the correct locations as indicated by the path found. These 2 devices communicate through
 serial via a female USB-A port on the Raspberry PI and a female Micro-USB on the ESP32 devkit
 connected to a USB-to-UART bridge also on the devkit. The Raspberry Pi is connected to an
 external camera to receive the images, and the microcontroller is connected to the motor drivers
 and magnet in order to execute the moves. Whenever a piece needs to be moved, the magnet
 will turn on by sending current straight from the power input. Whenever we need to turn the
 magnet off, a switch will cut off the current to the magnet which is controlled by the
 microcontroller.

 2.3.2 Design Decisions
 We chose a Raspberry PI 4 Model B to handle the computationally expensive operations since it
 was the most cost effective single board computer for the computational speed it provided. We
 chose the ESP32 as the microcontroller we used due to it also being the most powerful
 microcontroller we could use that was provided to us for free.

 Originally, we had planned to use a N-Channel MOSFET as our magnet switch. However, this did
 not turn out well and we damaged the MOSFET while adding it to our circuit. Luckily, Jason, the
 head TA, engineered a solution using 2 BJTs in parallel which had the functionality we wanted
 for our magnet switch and we were able to move forwards with our project.

 Lastly, we used the OpenCV and EasyOCR libraries to help us write the computer vision code to
 detect the chess board and the pieces. We originally were going to distinguish between the
 chess pieces solely on color instead of OCR, but we ran into trouble with distinguishing between
 the black and white pieces as the glare on the plexiglass from the lights ruined our original plan
 for this detection (since we were originally going to detect balance between the number of black
 and white pixels in the square). A very detailed and in-depth explanation of the design of the
 computer vision code can be found in Appendix D.1.

 7

 2.3.4 Processing Subsystem RV Table

 Requirements Verification
 __

 ● Computer vision algorithm correctly
 identifies chess piece positions and
 their identity on the board with 95 ±
 5% accuracy (results can be found in
 Appendix D.2)

 ● Randomly generate a chess board
 state using an online tool and place
 the pieces as shown.

 ● Once set up, press the button to
 signal to the algorithm to capture a
 screenshot of the board and begin
 processing.

 ● Check the internal representation of
 the chessboard and ensure that it is
 correct by Forsyth-Edwards Notation
 (FEN) standards .

 ● Repeat 100 times and ensure that
 the accuracy fall within expected
 performance

 __
 ● Microcontroller plans a path to move

 the necessary pieces and executes it
 with 95 ± 5% success rate

 ● Play chess games against the robot
 and keep track of its successes and
 failures.

 ● Continue to play until the robot
 reaches 100 moves performed and
 count up all the robot’s successes.
 Ensure that its accuracy falls within
 expected performance.

 Table 2. Processing subsystem RV table

 2.4 Visual Subsystem

 2.4.1 Overview
 The visual subsystem serves as the part of the project that the human interacts with and the
 part where the AI receives its visual input to the algorithm via the camera. The system is
 comprised of:

 ● (1) Chess Board created by machine shop

 8

 ● (1) Arducam for Raspberry PI
 ● (32) Colored chess pieces
 ● (1) User controlled button

 The chess board is provided by the machine shop, and it includes the magnetic arm subsystem
 underneath the board. Additionally, there is a camera that is hung above the board looking down
 that will be used as input to the Raspberry PI. What the camera sees is what our image
 processing code will work on and send to the chess AI. There is a button that the user will press
 at the end of every turn to signal that it is the end of their turn and the robot will begin analyzing
 the board. This will loop until a stalemate or victory.

 2.4.2 Design Decisions
 We initially chose to process chess pieces with OpenCV’s HSV color manipulations to view and
 determine piece locations. However, due to issues with the library and identification difficulties,
 we decided to use OCR. Because of the computer vision change, we decided to change from six
 colors, each side having their lighter and darker colors, for the chess pieces to white and black
 pieces with their chess piece type printed on the top of them. This allowed OCR to recognize the
 piece’s type and color. For the button, we decided to utilize the keyboard connected to the
 Raspberry PI to inform the computer side that the human player finished their turn because of
 its simplicity.
 For the chess board, it was returned by the ECE Machine Shop after a couple of modification
 requests. One is that the chess board had to span the range of the magnetic arm subsystem
 which is 23x23 inches. The Arducam needs to view the entire chess board so the Machine Shop
 constructed an adjustable arm to house the camera. In Figure 4, the top is the Arducam held
 onto by the adjustable arm, chess board, and the magnetic arm subsystem below the board.
 One last issue with the chess board was by itself, the middle of the board would sink
 downwards causing increased friction with the magnetic arm subsystem. To fix this problem,
 we inserted paper wedges underneath and above the bolts to induce a force to push the middle
 of the board upwards to counteract the downward bow. In Figure 4, this is seen as the white
 paper inserts in the four corners and two sides of the chess board.
 We followed a series of steps to check and verify that the visual subsystem was working as
 intended. These steps and verifications can be seen in Table 3.

 9

 Figure 4. Finished chess board by ECE Machine Shop

 2.4.3 Visual Subsystem RV Table

 Requirements Verification
 __

 ● Raspberry Pi can recognize the
 camera connection

 ● Plug the two device into each other
 ● Check the Raspberry Pi’s connection

 recognition
 ● If it does not recognize the camera,

 troubleshoot with a Raspberry
 Pi/MIPI camera manual

 __
 ● Camera only sees the board to avoid

 distractions
 ● Mount the camera to the centering

 apparatus
 ● Output what the camera sees onto a

 separate window or jpg/png
 ● Adjust the height of the apparatus

 accordingly until the outer edges of
 the camera sees the outer border of
 the chess board

 __
 ● Pictures of the board are able to be

 sent to the Raspberry Pi
 ● Power the Raspberry Pi and connect

 the camera to the Pi
 ● Once powered, check the read value

 from the Raspberry Pi

 Table 3. Visual subsystem RV table

 10

 2.5 Magnetic Arm Subsystem

 2.5.1 Overview
 The magnetic arm subsystem receives data from the processing subsystem which tells it where
 to move its motors and when to turn the magnet off or on in order to grab and move the AI’s
 pieces effectively. It is comprised of:

 ● (3) Mercury Motor SM-42BYG011-25 2 Phase 1.8° 32/20
 ● (1) KK-P35/30 30 kg Electromagnet

 There are two motors in parallel to each other and dedicated to operating in the same direction
 along the Y axis of the board. They are responsible for moving the third motor along the X axis
 of the board which rests perpendicular to the other two motors. This allows the rail system to
 move in 4-directions. The electromagnet rests on the third motor’s axis and it is fed voltage via
 the BJTs to turn on and off. The magnet picks up and drops off pieces by attracting the
 magnetic washers that are secured underneath each chess piece. To allow special movements
 from the knight chess pieces, the magnet can drag the pieces along the lines of the chess board
 to maneuver around them.

 2.5.2 Design Decisions
 The original dimensions of the chess board provided to us by the machine shop was 18 x 19
 inches with the magnetic arm rail system having a reach of about 18 x 18 inches. These
 dimensions were too small for our idea of moving the magnet along the lines of the chess
 board. We requested the board and reach of the magnetic arm to be 24 x 24 inches then
 decided to make the playing area 23 x 23 inches to give an inch of extra space around the edge
 for the camera detection and to have an area to move captured pieces to. We also decided to
 downsize our magnet to a smaller one that is about half the diameter of the original magnet to
 help with the problem of the arm accidentally grabbing unwanted pieces on its way to the
 destination.

 2.5.3 Magnetic Arm Subsystem RV Table

 Requirements Verification
 __

 ● Rail system can move to specific
 chess board positions with 95 ± 5%
 accuracy

 ● First verify that it can move to
 specified chess board positions with
 the processing subsystem’s
 software which will be similar to
 computer numerical controller (CNC)

 ● Then, generalize the chess positions
 with a random number generator

 ● Run the program for 100 trials
 __

 11

 ● Rail system can move from one
 chess tile to another while holding
 onto a chess piece without bumping
 into other pieces with 95 ± 5%
 accuracy

 ● Use the program from the magnetic
 arm subsystem’s first verification
 process, but power the magnet when
 it travels from one tile to another

 ● Have a chess piece over the magnet
 to be dragged around, and place
 pieces around the board to test for
 bumps

 ● Run it for 100 trials
 __

 ● Magnet will grab and hold on to
 desired chess piece with 95 ± 5%
 success rate

 ● Use the program from the magnetic
 arm subsystem’s first verification
 process, but power the magnet while
 it travels from one tile to another

 ● Have a chess piece over the magnet
 to be dragged around

 ● Run it for 100 trials

 Table 4 . Magnetic arm subsystem RV table

 2.6 Physical Design
 Our design used one ⅛ inches plexiglass to act as the chess board and acrylonitrile butadiene
 styrene for the chess pieces, which is environmentally friendly and not toxic according to [6].

 2.7 Tolerance
 To calculate our tolerances, we need to decide on how we are going to power our chess-playing
 robot. From the power subsystem, we decided to use a 12 V and 5 V barrel jack alongside a 3.3
 V linear regulator.
 Other points of information to consider:

 ● Raspberry Pi 4 has a recommended input voltage of 5 V with a range of -0.5 to 6 V

 Voltage (V) Current (A) Min Power (W) Max Power (W)

 Stepper Motors 12 0.33 3.96 3.96

 Electromagnet 12 0.83 9.96 9.96

 Raspberry Pi 4 5 ± 0.1 3.0 14.7 15.3

 ESP32 S3 3.3 ± 0.3 0.5 1.5 1.8

 12

 Arducam
 IMX219

 3.0 ± 0.3 0.3 0.81 0.99

 Table 5. Power Draw Calculation Table

 As shown in Table 5, our maximum current draw will be 4.96 A. The 12 V barrel jack outputs 12
 V and 5 A or 60 W and the 5 V barrel jack outputs 5 V, 3 A or 15 W. From the calculated
 tolerances, both the 12 V and 5 V have satisfactory amounts of power for the various
 components of the project.

 Next, we will talk about the stepper motors. According to the datasheet for the Mercury Motor
 SM-42BYG011-25 2 Phase 1.8° 32/20, its time constant τ is inductance (H)/resistance(Ω).

 (2.1) 𝐼𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 : 46 ± 9 . 2 𝑚𝐻 (36 . 8 𝑡𝑜 55 . 2 𝑚𝐻)
 (2.2) 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 : 34 ± 3 . 4 Ω (30 . 6 𝑡𝑜 37 . 4 Ω)
 (2.3) τ (𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) = 𝑖𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒

 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 (2.4) τ
 𝑙𝑜𝑤𝑒𝑟

 = 0 . 0368
 37 . 4 = 0 . 984 𝑚𝑠

 (2.5) τ
 𝑢𝑝𝑝𝑒𝑟

 = 0 . 0552
 30 . 6 = 1 . 804 𝑚𝑠

 This means it will charge up the coil to 63% of its rated value in 0.984 ms to 1.804 ms.

 For comparisons, we viewed Sanyo Denki SS2422-5041 from [7] to observe the difference of
 capabilities.

 (2.6) 𝐼𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 : 2 . 9 𝑚𝐻
 (2.7) 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 : 5 . 4 Ω
 (2.8) τ (𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) = 𝑖𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒

 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 (2.9) τ = 0 . 0029
 5 . 4 = 0 . 537 𝑚𝑠

 (2.10) 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶ℎ𝑎𝑛𝑔 𝑒
 𝑙𝑜𝑤𝑒𝑟

 = (0 . 537
 1 . 8044

|| || − 1) * 100 = − 70 . 23%

 (2.11) 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶ℎ𝑎𝑛𝑔 𝑒
 𝑢𝑝𝑝𝑒𝑟

 = (0 . 537
 0 . 984

|| || − 1) * 100 = − 45 . 42%

 Comparing the time constant of our stepper versus the compared stepper, we see that the
 compared stepper has a time constant that is 57.83 ± 12.41% faster at charging its coil than
 ours. This difference does not matter for lower speed torques, as time constant does not matter
 as much for these values (“Stepper Motor Basics”). However, for higher speed torques, this does
 matter. Unfortunately, these are the stepper motors provided to us by the machine shop, and we
 do not have the budget for new ones, so our chess robot may move chess pieces slower than
 what is ideal.

 13

 Finally, we will talk about an analysis of our linear regulator. We want to make sure that our
 linear regulator, which is powering our stepper motors, is not overheating. We will be following
 the specifications provided in the linear regulator’s data sheet (“LM3940”). Here is a schematic
 of the linear regulator:

 Figure 5. Linear regulator schematic

 As preliminary knowledge, we chose the 3 A variant of the buck converter because the
 Raspberry Pi can draw a maximum of 3 A. Since the 5 V from the buck converter that goes to
 the Pi also goes to the linear regulator, our I In = 3 A. Now, let’s calculate the power dissipated by
 the regulator (Pd):

 I Out = 1 A (2.12)
 I In = 3 A (2.13)

 V In = 5 ± 0.5 V (4.5 V to 5.5 V) (2.14)
 V Out = 3.3 ± 0.099 V (3.201 V to 3.399 V) (2.15)

 Lower Pd:
 (2.16) 𝐼𝑖𝑛 = 𝐼𝑜𝑢𝑡 + 𝑙𝑔
 (2.17) 𝐼𝑔 = 𝐼𝑖𝑛 − 𝐼𝑜𝑢𝑡 = 3 − 1 = 2
 (2.18) 𝑃𝑑 = (4 . 5 − 3 . 399) * 1 + 4 . 5 * 2 = 10 . 101

 Upper Pd:
 (2.19) 𝐼𝑖𝑛 = 𝐼𝑜𝑢𝑡 + 𝐼𝑔
 (2.20) 𝐼𝑔 = 𝐼𝑖𝑛 − 𝐼𝑜𝑢𝑡 = 3 − 1 = 2
 (2.21) 𝑃𝑑 = (5 . 5 − 3 . 201) * 1 + 4 . 5 * 2 = 11 . 299

 Next, we will calculate TR(max), which is the maximum allowable temperature rise. We will do
 this using the formula:

 (2.22) 𝑇𝑅 (𝑚𝑎𝑥) = 𝑇𝐽 (𝑚𝑎𝑥) − 𝑇𝐴 (𝑚𝑎𝑥)

 14

 where TJ(max) is max ambient temperature (which we will assume to be 20°C in ECEB), and
 TA(max) is max allowable junction temperature, which for commercial grade parts is 125°C.
 Plugging into the formula, we get

 (2.23) 𝑇𝑅 (𝑚𝑎𝑥) = 125 − 20 = 105° 𝐶

 Lastly, we will use this formula to calculate the max allowable value for the junction-to-ambient
 thermal resistance:

 (2.24) 𝑅
 θ (𝐽𝐴)

=
 𝑇

 𝑅
(𝑚𝑎𝑥)

 𝑃
 𝐷

 For lower Pd:
 (2.25) 105

 10 . 101 = 10 . 400 ° 𝐶
 𝑊

 For upper Pd:
 (2.26) 105

 11 . 299 = 9 . 293 ° 𝐶
 𝑊

 Both of these values are lower than 23.3°C/W, which is the max allowable value for the
 junction-to-ambient thermal resistance for the TO-220 package of the LDO, which is what we
 used. This means we will need a heatsink. However, the datasheet recommends we use either a
 standard heat sink or a copper plane on our PCB. Since we already have this, we should be
 dissipating the extra heat that the linear regulator is not able to dissipate, meaning our stepper
 motor drivers will be powered with 3.3V by a device that will not be overheating.

 2.8 Schedule

 Week Jobs Person

 February 26th - March 3rd

 Designed first PCB Everyone

 Fix design document with feedback from design
 review

 Josh, Jose

 Prototype 3D printed chess pieces with different
 sizes and different sized washers

 Zack

 Order all parts needed for project including
 backup parts

 Josh, Jose

 March 4th - March 10th
 Revise PCB if necessary Everyone

 15

 Begin coding an outline for interfacing our image
 processing code with Chess AI library

 Zack

 Design instructions to send to microcontroller
 from Raspberry Pi (almost like Gcode for 3D
 printers)

 Josh

 Paint prototyped chess pieces in preparation for
 testing computer vision once we get our
 parts/PCB

 Zack

 Gather data on how to communicate between
 microcontroller and motors/magnet switch Jose

 FIRST PCB ORDER MARCH 5TH Everyone

 March 11th - March 17th
 (Spring Break)

 Continue tasks from previous week if necessary
 or get a head start on next week’s tasks

 Everyone

 March 18th - March 24th

 Finalize physical chess board setup (sheet on top
 of plexiglass)

 Everyone

 3D print our finalized design for the 32 chess
 pieces, assemble with washers, and paint them

 Zack

 Begin work on image processing code to identify
 chess pieces

 Zack

 Begin work on chess AI implementation using the
 python-chess library.

 Josh

 SECOND PCB ORDER MARCH 19TH Everyone

 March 25th - April 2nd

 Begin working on programming microcontroller to
 decode Raspberry PI instructions to move motors
 and flip magnet switch

 Jose

 Test and finalize the chess AI implementation
 using the python-chess library.

 Josh

 Continue work on and test image processing code
 to identify chess pieces

 Zack

 THIRD PCB ORDER MARCH 26TH Everyone

 April 3rd -April 9th

 Added barrel jack and removed buck converter on
 PCB

 Everyone

 Begin work on the image processing to chess AI
 pipeline

 Josh

 16

 Test and finalize programming microcontroller to
 decode Raspberry PI instructions to move motors
 and flip magnet switch

 Jose

 Test and finalize work on image processing code
 to identify chess pieces

 Zack

 FOURTH PCB ORDER APRIL 4TH Everyone

 April 10th - April 16th

 Test and finalize the image processing to chess AI
 pipeline

 Zack

 Full project testing Everyone

 Made new PCB with new stepper motors Jose

 FIFTH AND FINAL PCB ORDER APRIL 11TH Everyone

 April 17th - April 23rd Integrated all individual parts and debugged each
 section

 Everyone

 April 24th - April 30th Final Demo Everyone

 Table 6. Schedule of project

 3. Cost Analysis

 3.1 Parts/Materials
 For this project, we made three PCB orders with stencils for each one. We used two PCBs
 combined with a breadboard for our final demo. One PCB supplied power to the second PCB
 which powered our microcontroller and 3.3 V level logic for cheat detection.

 For a complete overview of the parts we used on our PCBs and breadboard, please refer to
 Appendix C.

 3.2 Estimated Hours of Development
 We estimate that we averaged 15 hours per week on the project and a total of 40 hours for the
 final week leading up to the demo. Therefore, we estimate 250 hours per person for a total of
 750 hours.

 17

 3.3 External Materials and Resources
 We obtained a couple of components from the following resources provided to us by the ECE
 445 class.

 For a detailed overview of the components obtained and used in our final design, please refer to
 Appendix C.

 ● Machine Shop
 ○ 24 x 24 inch homemade chess board with camera mount and magnet rail system
 ○ 32 Washers for chess set.

 ● ECE E-Shop
 ○ All SMD and through hole resistors on PCB and breadboard
 ○ Barrel Jacks

 ● Senior Design Lab
 ○ We utilized the soldering irons and PCB oven to bake our PCB.
 ○ We utilized specific equipment for testing in the Senior Design Lab including a

 multimeter, oscilloscope, and DC power supply.

 3.4 Approximate Total Cost
 For the labor expenses, the estimate we received from the machine shop was 60 hours at
 $50/hour, totalling $3000. For the labor costs of our group, the average starting salary for a
 computer engineer at UIUC is $109,176. At 40 hours a week, this comes to $52.49/hour. We
 estimated that the project will took 250 hours per group member so the total cost of our labor is
 3 x 52.49 x 2.5 x 250 = $98,418.75.

 In total, the cost of materials plus the cost of labor would be approximately:
 Materials: $414.94
 Labor: $98,418.75
 Total cost = $98,833.69

 4. Conclusion

 4.1 Conclusion
 We were able to successfully implement our proposed solution to our problem statement, and
 we were able to satisfy our three high-level requirements. It is able to move intended pieces to
 and from specified locations and locate and verify chess pieces both with at least 90%
 accuracy. Because the cheating algorithm for the chess AI was solely based on output from
 computer vision, if computer vision operated with at least 90% accuracy, then the chess AI’s
 cheating algorithm could run with the same accuracy as the computer vision. All subsystems

 18

 were operating with intended functionality except the power subsystem. Originally, it was meant
 to run on a 5.0 V buck converter instead of a 5.0 V barrel jack and power adapter, but due to
 shipping delays for both components and PCB boards, we were unable to ultimately combine
 everything onto a PCB board in the end.
 If we were able to complete this project again, equipped with present-day knowledge, we would
 begin on the PCB design immediately and verify its functionality and design with teaching
 assistants and professors to ensure its logical soundness. Once the PCB is correct and
 finalized, the parts need to be thoroughly investigated to ensure proper compatibility between
 the different components and modules as using incompatible components could lead to the
 usage of deprecated versions of software that may have their own share of problems.

 4.2 Ethics and Safety
 As we worked on the project, we carried out the ethical guidelines from COPE’s code of ethics
 [1] which are not limited to:

 ● PRINCIPLES, Principle 1: PUBLIC, Section 1.01:
 ○ Accept full responsibility of the work

 ● PRINCIPLES, Principle 6: PROFESSION, Section 6.06:
 ○ Obey all laws governing the project and its components

 For full details regarding ethical practices and the legal precautions, please refer to Appendix A.

 19

 Appendix A Ethics & Safety

 A.1 Ethics
 Our group works in accordance with the Committee on Professional Ethics (COPE) [1] and they
 promote ethical conduct amongst the computing professionals with a code of ethics. In
 accordance to their code of ethics, which include but not limited to:

 ● PRINCIPLES, Principle 1: PUBLIC, Section 1.01:
 ○ Accept full responsibility of the work

 ● PRINCIPLES, Principle 1: PUBLIC, Section 1.03:
 ○ Approve software if it does not diminish the quality of life, privacy, or harm the

 environment
 ● PRINCIPLES, Principle 1: PUBLIC, Section 1.06:

 ○ Be fair and avoid deception in all statements, particularly public ones, concerning
 software or related documents, methods and tools.

 ● PRINCIPLES, Principle 3: PRODUCT, Section 3.02:
 ○ Ensure proper and achievable goals and objectives for any project on which they

 work or propose.
 ● PRINCIPLES, Principle 5: MANAGEMENT, Section 5.01:

 ○ Ensure good management for any project on which they work, including effective
 procedures for promotion of quality and reduction of risk

 ● PRINCIPLES, Principle 6: PROFESSION, Section 6.06:
 ○ Obey all laws governing the project and its components

 A.2 Legal Precautions

 A.2.1 Python-Chess
 Creating a chess algorithm from scratch to evaluate countless chess moves and how optimized
 they are for victory can be challenging and time-consuming; it may require time that is out of
 scope of a semester’s worth of time. As a result, we will be assisted by Python’s chess library
 “python-chess” [13] to compute moves and their varying efficiency. Because we are using a
 library, there is a need to be aware of the potential licensing conflicts. The library has a GPL v3
 license which means that it can be involved in commercial use. In accordance to a GPL v3
 license [2], but not limited to:

 ● Terms and Conditions, Section 4, Paragraph 2:
 ○ You may charge any price or no price for each copy that you convey, and you may

 offer support or warranty protection for a fee.
 ● Terms and Conditions, Section 7, Group C:

 ○ Prohibiting misrepresentation of the origin of that material, or requiring that
 modified versions of such material be marked in reasonable ways as different
 from the original version.

 20

 ● Terms and Conditions, Section 8, Paragraph 1:
 ○ You may not propagate or modify a covered work except as expressly provided

 under this License.

 A.2.2 Raspberry PI
 We are utilizing a Raspberry Pi to act as a microcontroller in our project’s design and with it
 comes their terms for usages [4]. Under Raspberry Pi trademark rules and brand guidelines, they
 explicitly mention a list of allowances and prohibitions that deal with Raspberry Pi and all they
 own. If our project ever decides to commercialize, we will need to contact them to obtain a
 license. We can use the Raspberry Pi’s word mark to refer to products or services, or to describe
 that there is compatibility between products. We cannot use the logo unless it is connected to
 sale or distribution of genuine products. The Raspberry Pi marks must be less prominent than
 what it is used for/connected to.

 A.2.3 MIPI Camera
 For the MIPI camera, we can use the product for personal use according to the MIPI Alliance’s
 Frequently Asked Questions [3] for the ECE 445 project, but if any desires for commercialization
 occur, we will stay within their boundaries for intellectual property and more.

 A.2.3 Chess Piece CAD Models
 For the CAD models of the chess pieces, the designs we used can be found at [5] and are under
 a BY-NC-ND 4.0 DEED creative commons license. Since we are not selling this chess robot, will
 give credit, and will not distribute our modifications, we are following the terms of the license
 agreement. If we were to sell this commercially, we would end up hiring someone to design the
 chess pieces or find a different design online that would allow for commercial use.

 Appendix B Design & Subsystems

 Appendix C PCB Parts & Costs
 The following table, table 7, is a list of all the components we purchased using the budget
 provided to us by the ECE department for ECE 445.

 Description Manufacturer Quantity Unit Price Link

 Raspberry Pi 4 Model B - 4 GB RAM Raspberry Pi Ltd 1 $55.00 Link

 USB-C to 2 Pin Bare Wire Maixbomr 1 $8.99 Link

https://www.adafruit.com/product/4296
https://www.amazon.com/Pigtail-Equipment-Installed-Replacement-Repair/dp/B0CCYZTRHJ?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A1CK03RVBS2NYU

 21

 Arducam for Raspberry Pi IMX219
 Camera Module with ABS Case, 1080P
 IMX219 Camera Module

 Arducam 1 $17.99 Link

 ESP32-S3 Microcontroller Espressif Systems 1 $1.85 Link

 12V 5A Desktop AC Adapter TT Electronics 1 $16.79 Link

 Buck Switching Regulator IC Positive
 Adjustable 0.8V 1 Output 3A SOT-583

 Texas Instruments
 Incorporated

 2 $1.00 Link

 Universal 90 Degree Power Cord TNP 1 $7.89 Link

 Black and White PLA 1.75mm Filament Dikale 2 $6.99 Link

 MicroSD card for raspberry PI SanDisk 1 $7.35 Link

 First order Stepper Drivers Texas Instruments 3 $3.93 Link

 5 V to 3.3 V Linear Regulator Texas Instruments 1 $1.74 Link

 N-Channel MOSFET Nexperia 1 $0.40 Link

 6.8 µH Inductor Murata Electronics 1 $0.32 Link

 Total Cost $144.35

 Table 7. List of parts purchased using ECE 445 team budget

 Table 8 is a list of components that we acquired for free using ECE resources such as the

 Machine Shop, ES-Shop or the Senior Design Lab in ECEB, 2070. Table 9 is a different list of

 components that we had to acquire using our own money.

 Description Supplier Quantity Unit
 Price

 Our
 Price

 Link

 Zinc Flat Washers Machine Shop 32 $0.06 Free Link

 30kΩ resistor ECE ES Shop 1 $0.12 Free Link

 1.3kΩ resistor ECE ES Shop 1 $0.13 Free Link

 51.0kΩ resistor ECE ES Shop 1 $0.06 Free Link

 1.5kΩ resistor ECE ES Shop 1 $0.06 Free Link

 10kΩ resistor ECE ES Shop 2 $0.06 Free Link

https://www.amazon.com/Arducam-Raspberry-Megapixel-Compatible-RPI-CAM-8MP/dp/B09VSS74L2/ref=sr_1_5?keywords=mipi%2Bcamera&qid=1707358212&sr=8-5&th=1
https://www.mouser.com/ProductDetail/Espressif-Systems/ESP32-S3?qs=Rp5uXu7WBW%2FNWuUy%252bBihNw%3D%3D
https://www.mouser.com/ProductDetail/Power-Partners-TT-Electronics/PSAD65-12-B1?qs=uwxL4vQweFMR11tsB79Y6Q%3D%3D
https://www.digikey.com/en/products/detail/texas-instruments/TPS62933ODRLR/17878401
https://www.amazon.com/TNP-Universal-IEC320C13-Connector-Computer/dp/B07FFP2Z54/ref=sr_1_7_sspa?dib=eyJ2IjoiMSJ9.-JozGdT2FCKUCG6-lq1zYMGhlGJdJi3kZ4LLZn3jEYyDe59Bgs9573rrQRrUWBK_5u9_i8v-vV9gycEKJmmX7DvDclw6XDnBSk5DBH4BHe3duazVtpbE0fkPr_Ep7xIcIuE6eHuxMuo1PaQYvarPuGjvyjle1PSD9Ob_Wr6lpoosDzVV1Lv1uhuSqCzMWOQ0kXMbDU5uPFihr-eLxDVLG21ynejTpjyyCvC5c3TDJsk.5PbxZe51KFsFqx8_-G_dfr660cYP6r3XfYNkurhRDSk&dib_tag=se&keywords=iec%2Bc13&qid=1712183942&sr=8-7-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9tdGY&th=1
https://www.amazon.com/Dikale-Printer-Filament-1-75mm-Tangle/dp/B0BZHY1R1K/ref=asc_df_B0BZHY1R1K/?tag=hyprod-20&linkCode=df0&hvadid=673776915052&hvpos=&hvnetw=g&hvrand=8481328624487219075&hvpone=&hvptwo=&hvqmt=&hvdev=m&hvdvcmdl=&hvlocint=&hvlocphy=9022185&hvtargid=pla-2270696253250&mcid=30f741c92f723e15a8c29759c043a22a&th=1
https://www.amazon.com/SanDisk-Ultra-SDSQUNB-032G-GN3MN-UHS-I-microSDHC/dp/B010NE3QHQ/ref=sr_1_1?crid=2RVIMURYD8GO8&dib=eyJ2IjoiMSJ9.lrDFCG17-J4o7bxa8YPE11YKehLd6Nn-8wdN2ygqrKfd6U-p0kZZ5ChsmNo2gmkfS98PnpW-TsRtVhu-4qQfjBWW5GK4MINpiz4yR9PAJCH5h_drLEOHyPKY6LkKWzUV-zx8taC-kdslqoXNcQY8e0tCIF1R5WvC9S_-8IQ9Is_sm_agUSjFwArItZO6ZpNawOJIJUSuJXBWB4_-l9Vy6AsHt7wIDAuYlVAULY3EvqQuDy9rOlFX_ehZ5JEeA_G2W-uH8Ak63eA4MI9pZnYdY5_ynpmHldgpp0oJ68cXQi4.a3svEzuTb1WUQ2hdINrSP3z-EW_A6VAsC7kGntAjmMU&dib_tag=se&keywords=micro+sd+card+32+gb&qid=1710896981&refinements=p_123%3A110452%7C46655%2Cp_85%3A2470955011%2Cp_36%3A100-800&rnid=386442011&rps=1&s=pc&sprefix=microsd+card+32+gb%2Caps%2C111&sr=1-1
https://www.mouser.com/ProductDetail/Texas-Instruments/DRV8434SPWPR?qs=iLbezkQI%252BsiOqqJi%252BFDv4g%3D%3D
https://www.mouser.com/ProductDetail/Texas-Instruments/LM3940IT-33-NOPB?qs=QbsRYf82W3FGrjqcSAbcdA%3D%3D&utm_id=9042821733&gad_source=1&gclid=CjwKCAiAi6uvBhADEiwAWiyRdp97krOLM2szXOgZ7bp-JR7_z2hRlB3vDGgCbCNp3tzD5YsnfonqUxoCS6AQAvD_BwE
https://www.mouser.com/ProductDetail/Nexperia/BSH103BKR?qs=GCAb4wyKXLKD%2FWt2ta8c7Q%3D%3D
https://www.mouser.com/ProductDetail/Murata-Electronics/DFE252012F-6R8M%3dP2?qs=sGAEpiMZZMv126LJFLh8y%2FC3XcLc5QOIbkZv8nDz7tI%3D
https://www.amazon.com/Beduan-Stainless-Washer-Nominal-Thickness/dp/B07MR9GV8L/ref=sr_1_1?crid=2X2N0HXSL2YP4&dib=eyJ2IjoiMSJ9.REg9R_E0SpkZJhPxmLoE07d26EEkqSoqMyiuQ_chgqGa6UXcuuaLfe20faC_i3zkSrQhlF-edujNNRq13lKLpZNmzU3iZ9wvJM0N6WKMmdLC7hxaIX-F-itkTkNvUf-AZtUyS4Qm9T7f0Z-_Y5PFvvT-XfT30SxhRwkfs-YhTIWTOyMnqi-kYrKZmPOvkxCARpesY95zB95begSTpw38C6Za-5GEWuUArVm3lMNS2wQ.olX2k4VuvSBHmxBKdbbszRLSqpgvz2CvTcE-qo2EgEE&dib_tag=se&keywords=washers&qid=1708649948&sprefix=washers%2Caps%2C261&sr=8-1-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1
https://www.amazon.com/100-Resistors-30K-Ohms-OHM/dp/B00KVGLHEG
https://www.amazon.com/uxcell-Tolerance-Resistance-Electronic-Experiments/dp/B07PPVDHN8
https://www.amazon.com/Projects-Resistors-Watt-Choose-Quantity/dp/B0185FHLH6?th=1
https://www.amazon.com/Projects-1-5k-Resistors-Choose-Quantity/dp/B0185FGTOM?th=1
https://www.amazon.com/EDGELEC-Resistor-Tolerance-Multiple-Resistance/dp/B07QJB31M7/ref=sr_1_3?dib=eyJ2IjoiMSJ9.ZFTY_8RiZZgLi8YFfNVaHJgPNngjeWvX94QvOO_PTRaXM2GBOBv7jRZPSb70xtMBNlhuejQi1rRX1YwSMjDh4mHKBG0XC_N_RAR03nJPFVQTDa1Km-Ve_tOp_3V2mnWwUPxgPuqKDbtzfzhKoqjha4Z-IrsIv5RhAn7vgRfw0yupAobiSS_f2gYdxSjJuOx9xpD-ULhctYgr2iJq_Nw1rtKD3p5YuAD6HyPbkx9d0BY.bCR6ejSMOVHLpAroqzP9yMXQe3TQ4IDwdO2pOZe7UJQ&dib_tag=se&keywords=10k%2Bohm%2Bresistor&qid=1708650995&sr=8-3&th=1

 22

 4.7uH Inductor ECE ES Shop 1 $1.50 Free Link

 6.8uH Inductor ECE ES Shop 1 $1.80 Free Link

 33uF Capacitor ECE ES Shop 4 $0.70 Free Link

 N-channel MOSFET Senior Design Lab 1 $0.80 Free Link

 2.1mm Female Barrel Plug ECE ES Shop 2 $0.70 Free Link

 5V 1A DC Power Supply Adapter ECE 110 Honors
 Lab Project
 (Already Owned)

 1 $7.59 Free Link

 2 oz. 12-Color Acrylic Craft Paint
 Set

 Already Owned 1 $7.98 Free Link

 LED (for displaying cheat
 detection)

 ECE ES Shop 2 $0.17 Free Link

 Button ECE ES Shop 1 $2.30 Free Link

 Mercury Motor
 SM-42BYG011-25 2 Phase 1.8°
 32/20

 Machine Shop 3 $17.99 Free Link

 KK P-50/27 50 kg
 Electromagnet

 Machine Shop 1 $21.37 Free Link

 Schottky Diode Senior Design Lab 2 $0.42 Free Link

 1/4 Inch Thick Plexiglass Sheet
 18” x 24”

 Machine Shop 2 $18.83 Free Link

 Camera Mount Machine Shop 1 $39.99 Free Link

 FT232R USB 2.0 to UART
 Interface Evaluation Board

 Senior Design Lab 1 $17.50 Free Link

 ESP32-S3-DEVKITC-1-N8 Senior Design Lab 1 $15.00 Free Link

 USB-A to USB-Mini Cable Senior Design Lab 1 $2.98 Free LInk

 Total Cost $218.23

 Table 8. Components acquired for free through ECE 445 resources

https://www.digikey.com/en/products/detail/bourns-inc./RL875-472K-RC/3782264?utm_adgroup=Fixed%20Inductors&utm_source=bing&utm_medium=cpc&utm_campaign=Shopping_Product_Inductors%2C%20Coils%2C%20Chokes_NEW&utm_term=&utm_content=Fixed%20Inductors&utm_id=bi_cmp-420511934_adg-1295225061838896_ad-80951641409877_pla-4584551178245635:aud-813320050_dev-c_ext-_prd-3782264&msclkid=4b85c3bb6fef1627f901a66c9af2185c
https://www.digikey.com/en/products/detail/kemet/MPX1D0830L6R8/10070894?utm_adgroup=Fixed%20Inductors&utm_source=bing&utm_medium=cpc&utm_campaign=Shopping_Product_Inductors%2C%20Coils%2C%20Chokes_NEW&utm_term=&utm_content=Fixed%20Inductors&utm_id=bi_cmp-420511934_adg-1295225061838896_ad-80951641409877_pla-4584551178245635:aud-813320050_dev-c_ext-_prd-10070894&msclkid=eca25a0af76b16724ddd3fdd02c34657
https://www.digikey.com/en/products/detail/tdk-corporation/C2012X5R0J336M125AC/2443464
https://www.amazon.com/BOJACK-RFP30N06LE-MOSFET-N-Channel-Transistor/dp/B07WR86ZGS/ref=sr_1_1?crid=1UM5Y9HZ4X6YU&dib=eyJ2IjoiMSJ9.JZKs7r1QMBd7ak2RT84vmx9T8ts6fAokwegJ2-ZvGxVu3KvROtxNsj0IyFULIwmlmcC6USiXWCwLwVJSsU3okGpQFZPp-qcmQNpqMPdY3a6SSJPWMAlvhR9guUox0Ud8ottT04E6adulwd8ujtPtQsYW0auGlaaRoPRcz6m5FmftIG1JOcbezTfeCWOzs3wqxD8DJnwblze0pdLujuXh2zpsMP76YWLCsAVsP6AeJNs.XJEwfUY9xUYOBnJyXWP5Y_NA-lwPIZIwCNIEkmhbOb4&dib_tag=se&keywords=MOSFET+n+channel+12v&qid=1708651091&sprefix=mosfet+n+channel+12v%2Caps%2C132&sr=8-1-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&psc=1
https://www.addicore.com/products/2-1mm-dc-female-barrel-jack
https://www.amazon.com/Arkare-100V-240V-Replacement-Security-Raspberry-Pi/dp/B09W8X9VGK/ref=sr_1_1_sspa?dib=eyJ2IjoiMSJ9.1mTcAC82nIYAhcVb9YiIgEfYgejzwg2Pl0hVsT3Zq_eKb8ikUU7iOoNxhHGhmiq7z6jLFkNtQLKowxR8lZCVSi928MzN8Ag-eKQG-Xo-f137yQrrrTdx8VnMos_rqmmBvAttLTmr9vQsipOkqVr-KFaDSmQw5eUf5uOPueugXUoI1g07vjU8IKA1YzR1I2z1yUz91SMgHUt2ANkQWX3_dwcaCcwbWjOl0AKMKwqhtIk.I76wHZPyjMSM2gSpvDQ30cITH-9_qrOouO7b1dits3w&dib_tag=se&keywords=5v+1a+power+supply&qid=1714594664&sr=8-1-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&psc=1
https://www.homedepot.com/p/DecoArt-2-oz-12-Color-Acrylic-Craft-Paint-Set-DASK353-B/205803542?mtc=SHOPPING-BF-CDP-BNG-D24-024_003_SPRAY_PAINT-NA-NA-NA-PLALIA-NA-NA-NA-NA-NBR-NA-NA-NA-2023&cm_mmc=SHOPPING-BF-CDP-BNG-D24-024_003_SPRAY_PAINT-NA-NA-NA-PLALIA-NA-NA-NA-NA-NBR-NA-NA-NA-2023-71700000106707882-58700008275401880-92700075193168299&gclid=7d2a68c20455123efa0f0d106e4fc788&gclsrc=3p.ds&msclkid=7d2a68c20455123efa0f0d106e4fc788
https://www.digikey.com/en/products/detail/w%C3%BCrth-elektronik/151031VS06000/4489988
https://www.digikey.com/en/products/detail/e-switch/PR144C1900/2116178
https://www.ebay.com/itm/402521295112
https://heschen.com/products/p50-27-12v-24v
https://www.digikey.com/en/products/detail/stmicroelectronics/1N5822/2674533?utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_Medium%20ROAS%20Categories&utm_term=&utm_content=&utm_id=go_cmp-20223376311_adg-_ad-__dev-c_ext-_prd-2674533_sig-Cj0KCQjw0MexBhD3ARIsAEI3WHK57XQR5ZzLpVgxT4DKq8-9BTIvsSWS5qXOGxssnIZjvKXD9S5gtmYaAieWEALw_wcB&gad_source=1&gclid=Cj0KCQjw0MexBhD3ARIsAEI3WHK57XQR5ZzLpVgxT4DKq8-9BTIvsSWS5qXOGxssnIZjvKXD9S5gtmYaAieWEALw_wcB
https://www.amazon.com/Clear-Acrylic-Plexiglass-Sheet-Thick/dp/B01N28NIQR?th=1
https://www.amazon.com/FOUTOUKEEP-Adjustable-Photography-Videography-Livestream/dp/B0B3WRHYXK/ref=asc_df_B0B3WRHYXK&mcid=e82e052cee2a3f08a6f77f0049c265d8?tag=bingshoppinga-20&linkCode=df0&hvadid=79920843355984&hvnetw=o&hvqmt=e&hvbmt=be&hvdev=c&hvlocint=&hvlocphy=&hvtargid=pla-4583520406011851&th=1
https://www.digikey.com/en/products/detail/sparkfun-electronics/BOB-12731/5673781?utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_Low%20ROAS%20Categories&utm_term=&utm_content=&utm_id=go_cmp-20243063506_adg-_ad-__dev-c_ext-_prd-5673781_sig-Cj0KCQjwztOwBhD7ARIsAPDKnkDdyQLfPMswAe7upfT3mQAG8dAopjT2slUXNmG05Xp-J4lRcyWVgAcaAh5uEALw_wcB&gad_source=1&gclid=Cj0KCQjwztOwBhD7ARIsAPDKnkDdyQLfPMswAe7upfT3mQAG8dAopjT2slUXNmG05Xp-J4lRcyWVgAcaAh5uEALw_wcB
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-DEVKITC-1-N8/15199021?utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_Low%20ROAS%20Categories&utm_term=&utm_content=&utm_id=go_cmp-20243063506_adg-_ad-__dev-c_ext-_prd-15199021_sig-Cj0KCQjw0MexBhD3ARIsAEI3WHLcXd84FeTwCo9972qz2HwLM-s_hjkiGe-9maUS3F4bSEVFqffIArgaApFpEALw_wcB&gad_source=1&gclid=Cj0KCQjw0MexBhD3ARIsAEI3WHLcXd84FeTwCo9972qz2HwLM-s_hjkiGe-9maUS3F4bSEVFqffIArgaApFpEALw_wcB
https://www.digikey.com/en/products/detail/qualtek/3021003-03/1531289?utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_High%20ROAS%20Categories&utm_term=&utm_content=&utm_id=go_cmp-20222717502_adg-_ad-__dev-c_ext-_prd-1531289_sig-Cj0KCQjw0MexBhD3ARIsAEI3WHKih5Y6OSAGNTnvFXhLHpN6Dfpy5ngDF7hmGaxa-OKVMDYzUuXHT24aAlOYEALw_wcB&gad_source=1&gclid=Cj0KCQjw0MexBhD3ARIsAEI3WHKih5Y6OSAGNTnvFXhLHpN6Dfpy5ngDF7hmGaxa-OKVMDYzUuXHT24aAlOYEALw_wcB

 23

 Description Manufacturer Quantity Unit Price Link

 DRV8428PWPR Stepper Driver Texas Instruments 3 $3.27 Link

 Buck Switching Regulator IC Positive
 Adjustable 0.8V 1 Output 3A SOT-583

 Texas Instruments
 Incorporated

 2 $1.00 Link

 SCHOTTKY DIODE 40V 5A Comchip
 Technology

 1 $0.44 Link

 0.47 µF Ceramic Capacitor YAGEO 4 $0.27 Link

 Bipolar (BJT) Transistor NPN Comchip
 Technology

 2 $0.29 Link

 Tactile switches Omron Electronics
 Inc-EMC Div

 2 $0.75 Link

 DRV8825 Stepper Motor Driver
 Module

 HiLetgo 1 $14.49 Link

 Power Cord - NEMA 5-15P to IEC
 60320

 Monoprice 1 $6.48 Link

 300 pcs Multilayer Monolithic
 Ceramic Capacitor Assortment kit

 EEEEE 1 $9.99 Link

 Micro HDMI to HDMI Cable 6 Feet iBirdie 1 $5.99 Link

 Total Cost $52.36

 Table 9. List of parts purchased using team member’s own funds

 Appendix D Computer Vision

 D.1 Computer Vision Code Design
 Here is an in depth explanation on the most technically complicated part of the code for our
 project, that being the computer vision portion. Though the OpenCV [11] and EasyOCR [12]
 libraries are doing a lot of the heavy lifting, this was a very challenging portion of the project to
 complete, and the code we wrote can be found in the python file ‘board_detector.py’ [15]. We will
 discuss how it works and the design choices made while writing the code.

https://www.digikey.com/en/products/detail/texas-instruments/DRV8428PWPR/13563046
https://www.digikey.com/en/products/detail/texas-instruments/TPS62933ODRLR/17878401
https://www.digikey.com/en/products/detail/comchip-technology/CDBA540-HF/5226175
https://www.digikey.com/en/products/detail/yageo/CC0402KRX7R5BB474/16797555
https://www.digikey.com/en/products/detail/comchip-technology/SS8050-G/6138901
https://www.digikey.com/en/products/detail/omron-electronics-inc-emc-div/B3S-1000/20686
https://www.amazon.com/dp/B01NCE3ZW1?psc=1&ref=ppx_yo2ov_dt_b_product_details
https://www.amazon.com/dp/B07BBWWXSP?ref=ppx_yo2ov_dt_b_product_details&th=1
https://www.amazon.com/dp/B094HRK8QX?ref=ppx_yo2ov_dt_b_product_details&th=1
https://www.amazon.com/dp/B08ZY3RR9X?ref=ppx_yo2ov_dt_b_product_details&th=1

 24

 First, the main part of the code was board detection. A couple different attempts were made,
 including one using shi-tomasi corner detection, one using Douglas-Peucker algorithm, and the
 probabilistic Hough Lines Transform, but we ultimately decided on the non-probabilistic Hough
 Line Transform [10] offered by OpenCV, with the help of a discussion of using the function for a
 similar use on a sudoku puzzle [9]. It is more demanding on the Raspberry Pi than the
 probabilistic Hough Lines, but is necessary to get the lines of the board and to extend them all
 the way to the edges of the image to make sure all 81 corners could be detected as the
 probabilistic one would not finish the line sometimes. Some filtering was also required, as we
 could assume the lines were going to be roughly the same every time since the camera was
 fixed. Therefore, we ensure the lines are mostly vertical and horizontal, and also the midpoints
 are far enough away, where these thresholds were found just by tuning based to make it work
 with our specific image and camera distance away from the board. With the lines found, we
 remove the lines that go past the edges of the board through contour manipulation, get the
 intersection points of the lines, and warp the image based on the 4 outermost corners of the
 board. We only perform this board detection once so that each subsequent image is being
 warped the same each time based on the first image’s corners, which will become important
 later when we take the difference between the current and previous images.

 With the board detection and warping done, we can now move on to piece detection. First, we
 convert the image to HSV color space and threshold to get the brightest and most saturated
 parts of the image, which will be the colored letters on top of the chess pieces. Again, this
 simply required tuning based on test images in the lab room. We then take the difference
 between the previous image’s letters and the current image’s letters, which allows us to
 essentially define the squares that we want to run our OCR detection on. This is important
 because this ensures we do not have to run OCR on every single square with a letter in it, as that
 is how we were doing it originally and it was incredibly slow on the Raspberry Pi (roughly a
 minute and 30 seconds per turn originally, down to about 10 seconds per turn using this new
 optimization). With our 81 corner intersections found, we can now loop through all the squares
 of the board. When a square is found to have a large enough contour from the difference
 between the two images, we mark it with a flag to run OCR detection on it and decide which
 color the contour is based on the average hue (this contour, since we are thresholding on size,
 should be the letter in the square).

 The process for OCR detection is as follows: get the contour in the square (which is the letter),
 straighten the contour based on its bounding box [14], run OCR (making sure to only look for the
 letters ‘KQRNBP’), rotate by 90 degrees, run OCR again, and use whichever OCR result was
 better. The reason we are running OCR detection twice is because when we set the OCR
 detection to run on the 0, 90, 180, and 270 degrees axes, it would confuse the letters sometimes
 (such as it detecting a Q when there was actually a P). It ran much better only using the 0 and
 180 degree axes, but also when we straightened the letter, it would sometimes rotate it to the 90
 and 270 degree axes, making it sideways. Essentially, we’re artificially including all 4 axes
 ourselves because we were having trouble getting it to work with EasyOCR and having trouble

 25

 making it only rotate to be rightside up or upside down (0 and 180). Regardless, we take the
 best of the 2 results as our piece, which will either be one of the letters ‘KQRNBP’ or nothing, and
 we mark the color. Later, the board becomes updated, where we add the piece based on its color
 and letter (or remove the piece at that board location if OCR detected no letter).

 D.2 Computer Vision Tests/Verifications
 This section includes a brief description of some of the demo tests used to confirm that the
 computer vision was working correctly, which can be found in the Computer Vision Demo Tests
 folder [16]. This is not representative of all tests, as we had many more while we were finalizing
 the code leading up to our demo. Each test shows a game starting from the initial state of a
 board with the white pieces moving first (the player) and switches back and forth between the
 player and the chess robot. Also, these images have the real state of the board after the magnet
 moved the piece around. However, these images were saved and ran through our code again, so
 it is worth noting that the move selected by stockfish will not be the same as the move played
 by the chess robot since it will probably not pick the same move as when we took the images.
 From these images we’ve obtained and the extensive tests where we did not save the images,
 we believe under ideal conditions (not bumping the board/camera or touching pieces that are
 not part of the actual move being played), the piece detection is very accurate and above our
 goal of 90% accuracy. In fact, these test images have an accuracy of 100%, and our tests that
 we did not save had similar results. The only issues were castling and en passant, which we
 omitted from the project for the final demo due to time constraints and bugs we could not finish
 before the demo.

 References

 [1] “Software engineering code - ACM ethics,” ACM Ethics - The Official Site of the
 Association for Computing Machinery’s Committee on Professional Ethics,
 https://ethics.acm.org/code-of-ethics/software-engineering-code/ (accessed May 1,
 2024).

 [2] “GNU general public license v3.0,” Choose a License,
 https://choosealicense.com/licenses/gpl-3.0/ (accessed May 1, 2024).

 [3] “Frequently asked questions,” MIPI,
 https://www.mipi.org/resources/frequently-asked-questions#f (accessed May 1, 2024).

 [4] Raspberry pi trademark rules and brand guidelines - raspberry pi,
 https://www.raspberrypi.com/trademark-rules/ (accessed May 1, 2024).

 [5] Thingiverse.com, “Chess set - print friendly by tetralite,” Thingiverse,
 https://www.thingiverse.com/thing:378322 (accessed May 1, 2024).

 26

 [6] “Home,” Mueller Corp, https://muellercorp.com/abs-plastic-and-how-we-use-it/
 (accessed May 1, 2024).

 [7] “SS2422-5041 - stepper motor, single shaft, 42 mm, bipolar, 1.8 °, 0.186 N-M, 1 a,”
 Farnell,
 https://uk.farnell.com/sanyo-denki-sanmotion/ss2422-5041/42mm-slim-pancake-stepp
 er-motor/dp/1708573 (accessed May 1, 2024).

 [8] “OpenCV-Python: Sudoku Solver - Part 2.” OpenCV-Python , 3 June 2012,
 opencvpython.blogspot.com/2012/06/sudoku-solver-part-2.html. (accessed 28 Mar.
 2024)

 [9] “How to Remove Convexity Defects in a Sudoku Square?” Stack Overflow ,
 stackoverflow.com/questions/10196198/how-to-remove-convexity-defects-in-a-sudoku-
 square/11366549#11366549. (accessed 28 Mar. 2024)

 [10] “Line Detection in Python with OpenCV | Houghline Method.” GeeksforGeeks , 9 May
 2017, www.geeksforgeeks.org/line-detection-python-opencv-houghline-method/.

 [11] “OpenCV: OpenCV-Python Tutorials.” Docs.opencv.org ,
 docs.opencv.org/4.x/d6/d00/tutorial_py_root.html .

 [12] “Jaided AI: EasyOCR documentation,” www.jaided.ai.
 https://www.jaided.ai/easyocr/documentation/

 [13] “Python-Chess: A Chess Library for Python — Python-Chess 1.5.0 Documentation.”
 Python-Chess.readthedocs.io , python-chess.readthedocs.io/en/latest/ .

 [14] “How to straighten a rotated rectangle area of an image using OpenCV in Python?,”
 Stack Overflow.
 https://stackoverflow.com/questions/11627362/how-to-straighten-a-rotated-rectangle-a
 rea-of-an-image-using-opencv-in-python (accessed April 22, 2024).

 [15] “board_detector.py,” Google Docs.
 https://drive.google.com/file/d/1DBpt3vKHdgMPGldsZKuyxcVkKDZcNjf9/view?usp=sha
 ring (accessed May 02, 2024).

 [16] “Computer Vision Demo Tests - Google Drive,” drive.google.com .
 https://drive.google.com/drive/folders/1DDXIVdKum35UD4oqHp7FucpXLTzem7w_?usp
 =sharing (accessed May 02, 2024).

http://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
https://www.jaided.ai/easyocr/documentation/
http://python-chess.readthedocs.io/en/latest/
https://drive.google.com/file/d/1DBpt3vKHdgMPGldsZKuyxcVkKDZcNjf9/view?usp=sharing
https://drive.google.com/file/d/1DBpt3vKHdgMPGldsZKuyxcVkKDZcNjf9/view?usp=sharing
https://drive.google.com/drive/folders/1DDXIVdKum35UD4oqHp7FucpXLTzem7w_?usp=sharing
https://drive.google.com/drive/folders/1DDXIVdKum35UD4oqHp7FucpXLTzem7w_?usp=sharing

