

Remote Mic Stand for Pogo Studio

Design Review

Zachary Newell – Alexander Lincoln – Tyler Harrington

TA: Justine Fortier

01 October 2012

Page 2 of 30

I.) Introduction

The project was chosen to solve a problem for a local recording studio, Pogo Studio. The

motivation for the project is the quality of sound varies with the position and orientation of the

microphone (mic). The problem is forgetting the old sound after walking into the next room

and repositioning the mic. The wireless mic stand will solve this by enabling the sound recorder

to move the mic from the studio wirelessly. It is exciting to work on a project that will directly

solve a customer’s problem, and also learning that there is a large market for this product.

Objectives

 The overall scope of the project is to be able to move a microphone (mic) stand from inside the

recording room wirelessly such that sound-checks can be performed efficiently. Adjusting the

mic stand wirelessly eliminates the hassle of walking back and forth between rooms to adjust

the stand, as well as not forgetting the previous sound quality at the microphone’s previous

position.

 Functionality

o Move forward/backwards and left/right

o Adjust height up/down

o Adjust pan/tilt

 Goals

o Perform adjustments and movements wirelessly via smart phone app

o Store positions as presets

o Recall preset positions by location and orientation of mic

 Benefits

o Allows re-positioning of mic stand without leaving the booth

o Eliminates using an equalizer to “fix” the sound opposed to just moving the mic

 Features

o Opposed to a robotic arm, the user is not limited to a spherical range of motion;

that is, the range of motion is enhance by being able to move the entire mic

stand

Page 3 of 30

o The user can save preset locations and positions to be recalled for future use

II.) Design

Figure 1 Block Diagram

HardwareOverview

Table 1: Hardware Overview

Component(s) Function Block

5 DC Brush
Motors

Run 4 wheels and up/down
movement

Mic up/down, Robot
movement

Servo Motor Tilt mic stand Mic Tilt Movement

PIC
Microcontroller

"Brains" of Control Control

Buck Converter Steps 11.1V to 5V Power Supply

Linear Regulator Steps 5V from converter to 3.3V Power Supply

Motor Drive
Switches provide positive/negative

potential across motor for
forward/reverse motor operation

Power Supply

Battery
High energy density, but

lightweight
Power Supply

WiFly Module
Provides wireless connectivity
between mic stand and user

Control

Encoders
Provides feedback on position of

motors
Control

Page 4 of 30

Figure 2: 3D sketch of finished vehicle

Figure 3: Top view of finished vehicle

24”

24”

4”

1”

6”

Page 5 of 30

Figure 4: Side-view of finished vehicle

The block diagram in Figure 1is vital to the completion of the project. By separating the device

into different blocks, this will enable the progress of the project to be monitored, divide the

work amongst the group, and run tests to help determine the functionality of the robot.

Power Supply

An 11.1V 3000mAh LiPo battery will supply the robotic microphone. The 11.1V battery will need

to be stepped down to 5V and 3.3V. This battery was chosen due to its high energy density and

ability to supply the system well over an hour. The largest load the battery will need to supply

are two DC motors running simultaneously. This will be a load of 1.6A; given that the battery

can supply 3A continuously for one hour, the battery will have sufficient power to last through

a demo.

The five volts will be used to run the servo motor that moves the arm, the PIC microcontroller,

encoders, and the h-bridge motor drives. The 3.3V will power the WiFly module. The five DC

motors that move the robot will be using the 11.1V from the battery via an h-bridge motor

72”

4”

Page 6 of 30

drive. Each wheel(x4) will have its own motor and the fifth motor will be used to raise and

lower the stand; note that there will be at most two motors running at one time.

Vehicle Shell

The vehicle shell is defined as the platform or base for which all gear is mounted or originates

from. The main platform will be a 0.5 inch thick, 24-by-24”square plywood board. The corners

will be chamfered at a 45 degree angle so that there is room for the wheels to be mounted at a

45 degree angle to the edge of the platform. The chamfer will be a 2 inch by 2 inch triangle cut

away on each corner. The plywood was chosen because of its durability as well as the cost

benefits associated with wood. The wood will be able to bear a large load, much greater than

the load of around 35 pounds for the entire device. Attached to the vehicle shell will be the

motors and axles for the robot movement, the power supply, control hardware, the shaft and

motor for the up/down movement, and ties to keep the wires connecting the system tidy. Also

part of the vehicle shell will be two handles attached on opposite sides of the base to enable

the user to safely transport the robot.

Figure 5: Vehicle Platform

Robot Movement

Plywood Base

Omnidirectional
Wheel

Page 7 of 30

This block consists of four motors, four axles, four omnidirectional wheels, and mounting gear

for the axles. The robotic mic stand will be able to make small adjustments forwards,

backwards, left, right, and pan. The wheel configuration shown in Figure 5will allow for these

motions without having to raise and lower a pair of axels. Another added aspect of the robot

movement is its ability to spin. By turning two opposite wheels in opposite directions, the robot

will be able to spin on its axis; this provides the panning movement of the microphone. As

shown in Figure 5, the wheels are to be mounted on all four corners of the platform at 45

degree angles so that small movement can be made in any direction. The omnidirectional

wheels act as regular wheels, but allow for sliding at a perpendicular angle to the wheels. The

omnidirectional wheels contain rollers on the wheel surface to ease the friction and enable

smooth movement in any direction. The wheels are 4 inches in diameter and each will be able

to support 25 pounds. This will have ample support for the 35 pound device.

Figure 6: Omni-directional wheel [1]

Figure 6provides a visual of the desired omnidirectional wheels. The motors that will be used for

the robot movement will each be 12 VDC, 127.7:1 gear ratio Pittman DC motor. The maximum

continuous torque for this motor is 500 oz-in. An axle will be attached to each motor shaft with

mounted two-axle brackets attached to the main platform. To limit the torque on the motors,

the length of the axels will be minimized. In other words, for a wheel to properly operate, it

must bear less than 31.25 lbs (500/16 = 31.25). In most cases two motors will be running

simultaneously, therefore they are able to move ~62.50 lbs. This is far more than the estimated

weight of 35 pounds.

Up/Down Movement

http://www.vexrobotics.com/276-2185.html

Page 8 of 30

The parts in this section include a six-foot threaded pipe, a 6-foot aluminum shaft, a 12V DC

Pittman motor, and an internally threaded mount. The operation of the up/down movement

consists of a motor that will be mounted on the vehicle’s platform such that the rotor shaft is

perpendicular with the platform. Attached onto the rotor will be a threaded rod and is parallel

to an aluminum shaft. A metal mount with internal threads will be screwed onto the threaded

rod and attached to the aluminum shaft. The user will then control the height of the mic by

turning the motor such that the threaded pipe will spin. This causes the mounted hardware to

move vertically along the aluminum shaft. Attached to the mount will be a motor which

controls the tilt movement; this can be better visualized by inspecting Figure 2.

Microphone Tilt Movement

The tilt movement will enable the microphone to tilt to the desired angle for recording. The

parts necessary for this module is a 343oz-in servo motor, a hollow PVC pipe, and microphone

mounting equipment. The servo motor will be mounted onto the movable mount as described

in the up/down movement section. The servo motor will control the angle in which the arm is

located. The PVC pipe will be five inches long and be used as the arm that holds the

microphone. Calculating from the 343oz-in torque requirement, the motor will support a

weight of 3 pounds up to 7 inches away; that is, 3*16*7 = 336oz-in of torque.

Control

The control’s main component is the PIC Microcontroller (PIC), PIC16F887. It receives data

communicated through WiFi from the user on an iOS device (iPhone or iPad). The data

received is an opcode. This opcode is parsed into movements that are programmed into the

PIC. The movements and their respective opcodes are located in Table 2. Once the movement is

known, a signal is output from the PIC to two motor drives. Each motor drive is a DRV8837 by

Texas Instruments. It has two inputs, IN1 and IN2; IN1 will drive the motor forwards and IN2 will

drive it in reverse. The motor drive is shown in Figure 10; note that each DC motor has its own

motor drive. When the motor drive is not receiving a signal (nothing on its input) the motor will

not turn.

Page 9 of 30

The component that allows wireless connectivity between the iOS device and the PIC is Roving

Network’s RN-XV WiFly Module – Wire Antenna (WiFly). This module uses 802.11 b/g protocol

and has a built-in wire antenna. This protocol allows connectivity to Pogo Studio’s existing WiFi

network. The WiFly module is being used strictly as a pass-through device that allows data to

be transferred over an existing WiFi network between the PIC and the user’s commands on the

iOS device.

User Interface

The user interface will be an important aspect of the overall design. Having a logical interface

will prevent frustration on part of the end-user. The iPad will provide plenty of screen real-

estate. The application will be a tabbed application with one window for movement and a

separate window containing a table of saved locations. A rough copy of the user-interface is

shown in Figure 7. When a user taps or holds a button, a packet will be instantiated and sent

across the TCP connection on the network. The end-user will easily be able to save a location

and view/navigate to old locations by clicking the “Saved Locations” tab in the bottom right.

The interface will also inform the user that data is being sent to the device. For example, if the

user taps the forward button, the button will turn to a green color for the duration of the tap.

This interaction is critical for the user to be confident that the operation has occurred.

Page 10 of 30

Figure 7: User interface

Schematics

Page 11 of 30

Figure 8: 11.1V to 5V buck converter; [2]

Vin = 11.1V

Vout = 5V

Cin - 470F, 50V, Electrolytic

Cout - 220F, 35V Electrolytic

D1 – 5A, 40V Schottky Rectifier, 1N5825

L1 - 68H, L38

R1 - 1k

 (

) (

)

Figure 9: LM1117-3.3 regulator; [3]

Page 12 of 30

Vin = 5V from buck converter

Vout = 3.3V specified by the “XX” in Figure 2.

Figure 10: H-bridge motor drive’s block diagram [4]

Page 13 of 30

11V

Buck Converter Linear Regulator

+5V +3.3V

+

-

M
H
5

+

-

M
H
4

+

-

M
H
1

+

-

M
H
2

+

-

M
H
3

+5V

+5V

+5V

+5V

+5V

+5V

OUT1

OUT2

OUT1

OUT2

OUT1

OUT2

OUT1

OUT2

OUT1

OUT2

IN1,1

IN2,1

IN1,2

IN1,3

IN1,4

IN2,4

IN2,2

IN1,5

IN2,5

IN2,3

e1

e2

e3

e4

e5

+

-

S
M

S1
e6

+5V

+5V

e1

e2

e3

e4

e5

IN1,1

IN1,2

IN1,3

IN1,4

IN1,5

IN2,1

IN2,2

IN2,3

IN2,4

IN2,5

S1

e6

RX

TX

TX

RX

WiFly

45

46

39

10

20

14

28

47 49 1

34
+3

.3
V

+3.3V

+3.3V

Figure 11: Schematic of all electrical components. Note that the encoders require power and ground but are not

displayed. [5]

Page 14 of 30

Figure 12: PIC16F887 pinout[5]
III.) Software Design

The software portion of our project can be broken into two logical units: the embedded

microcontroller and the iOS client. The iOS client will relay a message through a TCP connection

via existing WiFi. The WiFly module receives the packet and passes through to the PIC. Based on

this signal, the microcontroller will determine the desired action and control the respective

motor appropriately. Figure 13 and Figure 14 demonstrate the iOS client and PIC microcontroller

software operations respectively.

Page 15 of 30

Figure 13iOS Client flow chart

Page 16 of 30

Figure 14: PIC Microcontroller software operations flow chart

Page 17 of 30

Wireless Communication:

As stated, a TCP connection will be made between the iOS device, the Wi-Fi connection, and

the WiFly module through a specified port. After the socket connection is created via the iOS

device, the WiFly TCP listener will instantiate and begin waiting for a signal.

Movement:

Each press of a movement will generate a specific opcode, i.e. a string, corresponding to a

movement. Each received packet will rotate the respective motors a specified distance. For

example, each forward motion will rotate the forward motors one revolution thus enabling

simplified location tracking. Table 2shows the list of potential movements and corresponding

opcodes:

Table 2: Opcodes for movement

Movement Opcode

Forward ‘F’

Backward ‘B’

Left ‘L’

Right ‘R’

Pan Right ‘PR’

Pan Left ‘PL’

Tilt Up ‘TU’

Tilt Down ‘TD’

Raise Mic ‘RM’

Lower Mic ‘LM’

Get Current Location ‘GL’

The data will be received as binary. After parsing, the desired movement will be determined

and the PIC microcontroller will then control the respective motor for a specified amount of

Page 18 of 30

time. This amount of time is determined by how much movement the motor should make per

control operation.

Location Tracking:

As requested by Pogo Studio, it would be desirable to remember old locations. This will be done

via the iOS device and the Core Data framework. As the user executes a direction, the five-

dimensional grid of locations will be update. This grid will be in the format:

The positions and movements will be recorded by the number of presses by the user. The

number of presses is not a physical count of presses by the user, but by how many times a code

is sent from the iOS device. For example, if the user holds the forward button for one second,

and there are 10 ‘forward movement’ codes sent per second, this would be recorded as 10

forward movements. If the user would like to navigate to a saved location, it will calculate the

distance between the current location and the saved location. Once the differences are

calculated, movements will be instantiated. For this to be possible, the iOS client will need to be

able to know its current location, which will be determined instantaneously by sending a

‘getCurrentLocation’ packet.

The getCurrentLocation method will send a call to the PIC. The PIC will recall the current

number of pulses that each encoder has sent and subsequently send a packet back to the iOS

device containing the position of the device in the format shown above.

Movement Boundaries:

The boundaries will be set and controlled via the PIC microcontroller. For example, if the iOS

client attempts to raise the microphone beyond the vertical boundary, the PIC will prevent the

motion and return an error message to the client. These boundaries will be checked prior to

each movement being carried out.

Preset locations:

Page 19 of 30

The preset will be stored by the user using the iOS device. Shown in Figure 7, the button labeled

“Save Location” will be pressed to store a preset. The user will be prompted to optionally

describe the location such that when attempting to recall a preset location, it is easily

distinguishable from other presets. To recall a preset, the user must use the “Saved Locations”

page. The saved presets will be listed in chronological order.

IV.) Requirements and Verification

Each component of our project will be developed and tested individually so that full

functionality is present. Finally, we will assemble all of the pieces so that our device meets our

expectations along with the customer’s. Table 2 contains the list which details the testing

process we will take.

Table 3: Requirements and verifications

Block Sub-block
Req

Requirement Verification

1.) Power Supply

1.1) Battery 1.1a
Device must run
for 1 hour at full
load

Run two DC motors (highest
current draw) at the same time
(~1.6A total) until the battery dies.
Record the duration the battery
ran and verify it was greater than 1
hour.

1.2) Buck
Converter
(LM2956-ADJ)

1.2a
Load voltage is at
5V +-0.2V

Use a voltmeter to measure across
output capacitor.

1.3) Linear
Regulator
(LM1117-3.3)

1.3a
Load voltage is at
3.3V +- 0.3V with
5V supply from kit

Use a voltmeter to measure
voltage across Vout and Ground.

1.3b

Load voltage is at
3.3V +- 0.3V with
5V supply from
LM2596-ADJ

Use a voltmeter to measure
voltage across Vout and Ground

2.) Control 2.1) WiFly

2.1a

Power up the
WiFly and enable
it to be
recognized by the
iOS device

Use iOS's WiFi radio and scan for
WiFly's default SSID.

2.1b
Receive data from
iOS device

Place LED on RX (Pin 45) to verify
data is being received.

Page 20 of 30

2.2) PIC

2.2a
Complete PIC
tutorial

Light up an LED within the tutorial.

2.2b

Receive data from
iOS device and
output signal from
the PIC

Program the PIC to receive a signal
from the WiFly module and output
a signal to power an LED on the
output.

2.2c
Transmit data
from PIC to iOS
device

Program a GPIO on the PIC to
output data to the WiFly module's
TX (Pin 46).

2.3) H-Bridge
(DRV8837)

2.3a
Run motor
forward through
the H-bridge

Power H-bridge and attach motor.
Place a 'high' signal on IN1 and
verify motor is turning forward. If
unsure of direction, check for +11V
across OUT1 and OUT2.

2.3b
Run motor in
reverse through
the H-bridge

Power H-bridge and attach motor.
Place a 'high' signal on IN2 and
verify motor is turning in reverse.
If unsure of direction, check for -
11V across OUT1 and OUT2.

2.3c
Use iOS device to
run motor
forward

Use iOS device to output a forward
signal to the WiFly module.
Program the PIC to send this signal
to IN1 of the H-bridge and verify
motor is rotating forward.

2.3d
Use iOS device to
run motor in
reverse

Use iOS device to output a reverse
signal to the WiFly module.
Program the PIC to send this signal
to IN2 of the H-bridge and verify
motor is rotating in reverse.

2.4) Encoder
(62a22-02-P)

2.4a

Receive pulses
from the encoder
when the motor
turns a known
amount (x) of
revolutions

Program PIC to count the pulses
received. Compare with encoder's
specified pulses per revolution
(PPR).

2.4b

Have the motor
turn x revolutions
using data
gathered from the
encoder

From 2.4a, use stored count of
pulses and output signal to the h-
bridge to turn the motor x
revolutions

Page 21 of 30

3.) Vehicle Shell

3.1) Weight 3.1a
The platform must
be able to support
35lbs of weight

Confirm all joints are still attached
and no warping or bending has
occurred after leaving 35lbs on the
platform overnight

3.2) Balance 3.2a

The platform must
be stable enough
to support the
arm and servo
motor

After the pivoting arm and servo
motor is attached to the base,

extend the arm at 90 at peak
height. Next, push on the top of
the device and measure how much
force it requires to push over the
device using a scale. Verify it does
not tip with a force less than 5lbs.

4.) Up/Down
Movement

4.1) Up

4.1a

The motor must
be able to move
up the shaft
without the
platform rotating

After the wheels and vertical shaft
has been mounted, apply 11V
across the motor terminals and
verify there is no rotation.

4.1b

The motor must
stop before it
reaches the top of
the rod

1st, program the PIC to receive
and count the pulses from the
encoder on the vertical motor.
Next, place the mount at the
lowest point on the vertical shaft.
Apply power to the motor moving
the mount up the shaft to the top.
Once it's at the top, recall the
counter's value and program the
PIC to never allow up-movement
past the newfound distance. Verify
this works by attempting to move
the mount past the top of the
shaft.

4.1c
Use the iOS device
to perform the up
movement

Program the PIC to receive the
'RM' opcode from the WiFly
module. Next, output the ‘up’
signal to IN1 of the h-bridge drive
on the vertical motor. Verify when
the up button is pressed by the
user, the motor moves the mount
up and stops at the top.

4.2) Down 4.2a

The motor must
be able to move
down the shaft
without the
platform rotating

After the wheels and vertical shaft
has been mounted, apply -11V
across the motor terminals and
verify there is no rotation.

Page 22 of 30

4.2b

The motor must
stop before it
reaches the
bottom of the rod

Using the data gathered in 4.1b,
place the motor halfway between
the top and bottom of the shaft.
Verify this location by moving the
(already working) motor up and
confirm it takes half the pulses to
get to the top. Next Program the
PIC to never let the motor lower
further than the bottom of the
shaft. Verify it will stop rotating
when it reaches the bottom.

4.2c
Use the iOS device
to perform the up
movement

Program the PIC to receive the
'LM' opcode from the WiFly
module. Next, output the ‘down’
signal to IN2 of the h-bridge drive
on the vertical motor. Verify when
the down button is pressed by the
user, the motor moves down and
stops at the bottom.

Robot
Movement

5.1) Right/Left 5.1a

The robot must
move right/left in
a straight line via
the iOS device

Program the PIC to receive the ‘R’
and ‘L’ opcodes from the WiFly
module. Next, program the PIC to
output a 'right' signal to IN1 of the
two h-bride drives that move the
robot right, and output a ‘left’
signal to IN2 of h-bridge drives to
the same motors. Verify this works
by lying tracks parallel to the
wheels with 1.5" of room on each
side to allow for error; confirm by
moving the vehicle and it remains
in-between the two parallel tracks.

Page 23 of 30

5.1b

The robot must be
able to recall its
right/left location
from an initial
point

Program the PIC to receive and
count the pulses from the
encoders on the right and left
motors. Use the right #pulses as
positive integers and left #pulses
as negative. When the user saves
the location, the integers will be
saved in a 2-D array. Verify that
the robot returns to the saved
location by first marking a
reference point on the iOS and on
the floor. Next, the user will move
from the initial spot and save its
location. Next move the robot to a
new location. Have the user
restore the saved location and
verify all four wheels are within a
2" radius of the saved location.

5.2) Forward/
Reverse

5.2a

The robot must
move forward/
backward in a
straight line via
the iOS device

Program the PIC to receive the ‘F’
and 'B' opcodes from the WiFly
module. Next, program the PIC to
output a ‘forward' signal to IN1 of
the two h-bride drives that move
the robot forward, and output a
‘reverse’ signal to IN2 of the h-
bridges that drive the same
motors. Verify this works by lying
tracks with 1.5" parallel with each
wheel and confirm it is within
these tracks after the movements
have been made.

Page 24 of 30

5.2b

The robot must be
able to recall its
right/left location
from an initial
point

Program the PIC to receive and
count the pulses from the
encoders on the forward and
reverse motors. Use the forward
#pulses as positive integers and
reverse #pulses as negative. When
the user saves the location, the
integers will be saved in a 2-D
array. Verify that the robot
returns to the saved location by
first marking a reference point on
the iOS and on the floor. Next, the
user will move from the initial spot
and save its location. Next move
the robot to a new location. Have
the user restore the saved location
and verify all four wheels are
within a 2" radius of the saved
location.

5.3) Pan
right/left

5.3a Right/CW

Program the PIC to receive the 'PR'
opcode from the WiFly module.
Next, program the PIC to output a
‘pan-right’ to IN2 of the front
motor and IN1 of the opposite
motor. Verify this works by
drawing a circle on the floor with a
diameter of 27" and confirm the
robot is within the circle after 2
revolutions.

5.3b Left/CCW

Program the PIC to receive the 'PL'
opcode from the WiFly module.
Next, program the PIC to output a
‘pan-left’ signal to IN1 of the front
motor and IN2 of the opposite
motor. Verify this works by
drawing a circle on the floor with a
diameter of 27" and confirm the
robot is within the circle after 2
revolutions.

Page 25 of 30

5.3c
Recall home
location after
panning

Program the PIC such that when in
"pan mode", the robot cannot
leave pan mode until it returns to

its home/0rotations. Verify that
the robot returns to pan mode by
placing a mark at its home/0°
location. Next, pan left/right and
try to move left/right/ forward/
backward. The robot should recall
to its 0° mark before it performs a
movement.

5.4) All
movements

5.4a

Perform all
left/right/
forwards/
backwards
movements and
recall them

Place the robot in an initial
position and set it as the initial
position on the iOS device. Using
this device, move the robot left
and right, and forwards and
backwards with different
combinations. Next save the
location on the iOS device and
physically by marking the wheels.
Continue to randomly move the
robot and recall the saved
location. Verify all the wheels are
within a 2" radius of the saved
location.

Tilt Movement 6.) Up/down 6.1a
The servo must
move via PWM

Program the PWM control to
receive a signal from the PIC and
output a square wave to the servo
motor's 'signal' input. Verify that
the arm is moving via the iOS
device.

Page 26 of 30

6.1b
The servo must be
able to store and
recall its position

Program the PIC to receive and
count the pulses from the encoder
on the servo motor. Use the 'up'
#pulses as positive integers and
'down' #pulses as negative. When
the user saves the location, the
integers will be saved in a 1-D
array. Verify that the robot
returns to the saved location by
first marking a reference point
(parallel to the ground). Next, the
user will move from the initial spot
and save its location. Next move
the robot to a new location. Have
the user restore the saved location
and verify that the arm has
returned to the saved location.

6.1c
The servo must be
able to support
3lbs at 6in.

Measure 3lbs of weight and place
on the end of the arm. Verify the
servo motor can still rotate.

If every requirement is met in Table 3, the project can be officially labeled as complete.

V.) Cost and Schedule

Table 4: Cost
Part Quantity Cost Total

Pittman 12 VDC Brush Motor -
#GM9213C177-R1

5 $158.00 $790.00

343 oz-in Servo Motor #HS-805BB 1 $40.00 $40.00

11.1V LiPo Rechargeable Battery 1 $40.00 $40.00

PIC Microcontroler #PIC16F887 1 $2.50 $2.50

Linear Regulator #LM1117 1 $1.00 $1.00

Buck Converter #LM2596 1 $1.00 $1.00

WiFly 1 $85.00 $85.00

62a22-02-P 6 $45.00 $270.00

Page 27 of 30

Motor Drive #DRV8837 8 $1.75 $14.00

Omnidirectional Wheel 4 $12.50 $50.00

4 ft. x 4 ft. Plywood 1 $3.00 $3.00

Axle 4 $3.00 $12.00

Mounting Screws 40 $0.10 $4.00

6 ft. threaded pole 1 $3.00 $3.00

6 ft. aluminum shaft 1 $3.00 $3.00

Steel Arm Mount 1 $4.00 $4.00

4 in. PVC pipe 1 $0.40 $0.40

Wire 100 ft. $10.00 $10.00

Labor 3*2.5*
195

hours
$35.00 $51,187.50

Total $52,520.40

Table 5: Schedule

 Duties

Week of
(Sun):

Note(s) Zach Alex Tyler

16-Sep

Proposal Due 9/19
Meet with Mark

Rubel

Intro and Schedule.
Order Parts .

Design and
Requirements/Verifications.
Speak with Shop Workers on

mech design.

Cost Analysis.
Research/

Choose
Transceiver.

23-Sep

DR Sign-up Opens Program PIC to send/
receive data through

transceiver

Coordinate wheels
(mechanical design)/consult

with shop workers for
mounting

 Program basic
app functionality

30-Sep

Design Reviews Design electrical
schematic

Design mechanical schematic.
Verify vehicle shell platform is

capable of supporting load.

software layout
and piece
everything
together

7-Oct

 Coordinate with Tyler on
Wifly receive message
from iPad. Verify Wifly
correctly receives and

outputs all signals.

Bring together all hardware.
Create AutoCad model of

device. Submit layout/plan for
shop-workers.

Finish app for
Ipad. Coordinate
and begin testing

transmission
signals with

Wifly

Page 28 of 30

14-Oct

 Test H-bridge
functionality in

coherence with Tyler.
Test all signals and the H-
bridge response to those

signals.

Receive finished device from
machine shop. Perform all

physical testing and
verification on finished

device. Test loads on wheels,
platform, mount, shafts,

axles. Verify all up to
requirements.

Program Pic.
Test and verify
that all signals

are inputted and
outputted
properly.

21-Oct

Ind. Progress
Reports Due 10/24

Progress Report and
testing motor

functionality. Verify that
the H-bridge accurately

controls all motors.

Test loads and torque
requirements on all motors.

Verify every motor meets
every requirement.

Finish
programming

the store
location

capability for the
app.

28-Oct

Continue Testing and
begin to introduce

store/restore positions
logic into PIC. Verify

entire control system,
using 5 trial frame.

Verify entire control system
from the motor standpoint.

Verify each motor's response
to the input signals. Begin to
record the movement that

each signal gives to the
motors for precision notes

Help to test and
verify the entire
control system

from the
application side.
Make sure that

the signals
transmit

properly. Verify
user friendliness

of app.

4-Nov

Mock-up Demos
and Presentation

Sign-ups
Test and validate

position store/restore
functionality. Test all 5
trials and verify results.

Test and verify the
store/restore results from a
motor standpoint. Test and

verify all aspects of the power
supply.

Test and verify
the store/restore
functionality of

the store/restore
functions in the

app.

11-Nov

Mock-up
Presentations

Mock-up Presentation
planning and incorporate

store/restore
functionality with

pan/tilt

Mock-up Presentation
planning. Test and verify the

pan/tilt functionality.

Mock-up
Presentation

planning.
Completely
debug app.

Make sure app
presentation is

useable.

18-Nov Thanksgiving Break

25-Nov

Demo and
Presentation Sign-

ups

Validate proper
functionality on all

counts of control and
power supply and

prepare for final demo

Validate proper functionality
on all counts of vehicle

hardware and motors and
prepare for final demo.

Validate proper
functionality on

all counts of user
interface and

prepare for final
demo

2-Dec
Demos Play with toy and give

demo
Play with toy and give demo Play with toy and

give demo

9-Dec

Presentations, Final
Papers Due 12/12

Write control and power
supply final paper

portion.

Write all movements and
vehicle shell final paper

portion.

Write user
interface final
paper portion.

Page 29 of 30

VI.) Ethical Analysis

While creating the robotic mic stand, there are several ethical issues that must be adhered to in

order to give the customer, Pogo Studios, the best possible product. One of the main policies

from the IEEE Code of Ethics, policy number 7, states “to seek, accept, and offer honest

criticism of technical work, to acknowledge and correct errors, and to credit properly the

contributions of others.”[6] This policy stands out particularly because the team members

involved with this project has had little experience designing robotic devices in the past;

therefore, it is necessary to conduct thorough research into the design of the device. This is a

reminder that sources used while developing the design of this device needs to be properly

credited throughout the entirety of this project.

Another policy within the IEEE code of ethics that has stood out is policy number 3 which states

“to be honest and realistic in stating claims or estimates based on available data.”[6] When the

device is presented before peers and the customer, honesty and clarity in the capabilities of the

device must be communicated. For example, the team members must be responsible in

providing the error associated with the movements and the device’s mechanical limitations.

A moral consideration that may be unique to our project is that the power supply contains a

Lithium-Polymer battery. These batteries have very high energy densities and are able to

explode if proper care is not taken. The team members must inform the customer of its risks

and provide instructions on proper use and handling of the battery.

VII.) References

[1] 4" Omni-Directional Wheel (2-pack) [Online]. Available: http://www.vexrobotics.com/276-
2185.html

[2] LM2596 SIMPLE SWITCHER Power Converter 150 kHz3A Step-Down Voltage Regulator, 1st
ed., Texas Instruments, Dallas, TX, 2011, pp. 07-14.

http://www.vexrobotics.com/276-2185.html
http://www.vexrobotics.com/276-2185.html

Page 30 of 30

[3]LM1117/LM1117 800mA Low-Dropout Linear Regulator, 1st ed., National Semiconductor,
Dallas, TX, 2004, pp. 02-09.

[4] Low-Voltage H-Bridge IC, 1st ed., Texas Instruments, Dallas, TX, 2012, pp. 02-16.

[5] PIC16F882/883/884/886/887 Data Sheet, 1st ed., Microchip, Chicago, IL, 2009, pp. 07-14.

[6] IEEE Code of Ethics, IEEE Standard 7.8, 2012

