

Gesture-Controlled LED Coffee Table with B.L.O.X.

Final Paper

Josh Pack | Esther Kim | Ryan Dwyer
Project #16

December 12, 2012

ECE 445 Fall 2012
TA: Lydia Majure

ii

Abstract

This report provides a detailed explanation of the motivation, design, assembly, testing, and cost
involved with our Motion-Controlled LED Coffee Table with BLOX project. Our project runs the Tetris-
clone BLOX game in full color on a coffee-table-sized 200-LED matrix, using three IR motion sensors as
the user input to control game pieces. The game is implemented on an Arduino Uno microcontroller.
The design and verification are each explained in a block-level format, and any testing we have yet to
perform is mentioned.

iii

Contents

1. Introduction .. 1

1.1 Project Overview ... 1

1.2 High Level Design .. 1

1.3 Block Descriptions ... 1

1.3.1 IR Sensors ... 1

1.3.2 Controller 1 .. 2

1.3.3 Controller 2 .. 2

1.3.4 LED Driver Circuit ... 2

1.3.5 LED Display ... 2

1.4 Design Revisions .. 2

2 Design ... 3

2.1 IR Sensors .. 3

2.1.1 Design Procedure ... 3

2.1.2 Design Details ... 3

2.2 Controller 1 ... 4

2.2.1 Design Procedure ... 4

2.2.2 Design Details ... 4

2.2 Controller 2 ... 5

2.2.1 Design Procedure ... 5

2.2.2 Design Details ... 5

2.4 LED Driver Circuit .. 6

2.4.1 Design Procedure ... 6

2.4.2 Design Details ... 7

2.5 LED Display .. 9

2.5.1 Design Procedure ... 9

2.5.2 Design Details ... 9

3. Design Verification .. 11

3.1 IR Sensors .. 11

3.2 Controller 1 ... 11

iv

3.3 Controller 2 ... 11

3.4 LED Driver Circuit .. 11

3.5 LED Display .. 12

4. Costs .. 13

4.1 Parts .. 13

4.2 Labor ... 13

5. Conclusion ... 14

5.1 Accomplishments .. 14

5.2 Uncertainties ... 14

5.3 Future Work .. 14

5.3 Ethical considerations ... 14

References .. 16

Appendix A Requirement and Verification Table ... 17

Appendix B Controller 1 Game Logic: tetris.ino ... 20

Appendix C Controller 2 Display Code: receiver.ino .. 36

Appendix D: EasyTransfer Code ... 39

1

1. Introduction

1.1 Project Overview
The purpose of our project is to have a coffee table with an LED matrix display surface that can play
BLOCK LETHAL OBLITERATOR XTREME, or BLOX, using gesture recognition technology. This project is to
provide entertainment to the living room by putting a modern twist to a retro video game, widely
known as Tetris, with interactive motion sensors and an aesthetically pleasing LED matrix surface. This
report gives an overview of the project divided into blocks, as well as each blocks’ design procedure and
details, along with testing and verification results. The final result is later discussed at the end of the
document, showing that the main components of the system work, but have some issues that need to
be addressed before completion.

1.2 High Level Design
The intended functions are to have a coffee table that the user can play BLOX using hand gestures above
the table to drop, move, and rotate the pieces. The BLOX game will have the basic functions of removing
a row when it fills, randomizing the next piece, and ending the game when a piece has reached the top
row.

In order to deliver these functions, the project is broken down into components. The block diagram is
shown in Figure 1.

1.3 Block Descriptions

1.3.1 IR Sensors
These three sensors will be used to implement gesture control of our BLOX game, each sensor consisting
of an IR LED transmitter and IR LED receiver. They are positions at the edge of the table, spaced out
evenly with one in the left corner, one in the middle, and one in the right corner.

Controller
1

Controller
2

LED Driver
Circuit

LED
Display IR Sensors

Figure 1: Overall System Design

2

1.3.2 Controller 1
Controller 1 is an Arduino Uno used to run the main program, which takes input from the IR sensors to
determine the user input and send control signals to Controller 2. This controller is programmed with
the BLOX game logic, as it keeps track of the locations of the game pieces and the progress of the player.
Controller 1 notifies Controller 2 when a row is cleared or when the player has lost.

1.3.3 Controller 2
Controller 2 is an Arduino Uno used solely to interface with the drivers to render the display based on
the received control signals from Controller 1. Having a second controller dedicated to creating the
display will allow us to ensure a smooth image with minimal flickering while the first controller deals
with executing the BLOX program.

1.3.4 LED Driver Circuit
The LED drivers we will use are the TLC5940, which use PWM to control the LEDs to produce the
appropriate color from the 7 options in our BLOX design. They also supply the proper driving voltage for
the LEDs without having to connect each LED to a power supply through a resistor. Controller 2 will send
control signals to the appropriate LED drivers to create the desired display on the LEDs.

1.3.5 LED Display
The LED display is a 20x10 matrix consisting of 200 RBG LEDs, such that each LED represents one cell of
the game. These LEDs have diffused lenses so that any colors which combine the red, green, or blue will
look pure rather than looking like multiple, separate colors. They are controlled by the TLC5940 LED
drivers, which use PWM for each of the red, green, and blue components to create the desired color.
Our BLOX implementation consists of seven different colors for game pieces.

1.4 Design Revisions
We faced several design challenges and revised some components over time in response to those
challenges. The biggest revision we made was using infrared sensors as opposed to passive infrared
sensors, which had much too long of a response time, about 5 seconds, for the end user to be able to
play BLOX. The infrared sensors provided a much smaller delay time. The rest of the revisions we made
were to the LED Driver Circuit component, including getting rid of shift registers, hence a layer of logic,
to effectively provide enough current to each LED.

3

2 Design
The project was designed with simplicity in mind. We wanted two controllers to be able to separate the
game logic and the display rendering programs and ensure an optimal output frequency to the LED
matrix display. The matrix was designed to be 20x10 LEDs because the standard Tetris games tiled
20x10. The even numbers also give simplicity when dividing the LEDs into sections. One section of 20
LEDs corresponds to 1 LED driver, with each row of the section being connected to one of the four
MOSFETs.

Alternate methods include using one controller instead of two, or using a smaller amount of LEDs. We
use multiplexing in our LED matrix to minimize the components needed for the entire system, but if we
were to individual address each LED and remove all segmentation of the matrix, we would either need
more controllers, which is costly, or a layer of logic to be able to provide signals from the
microcontrollers to all 200 pins.

2.1 IR Sensors

2.1.1 Design Procedure
The purpose of the IR sensors is to take input in the form of hand motions from the BLOX player and
send appropriate voltages to controller 1. Initially, we planned to use passive infrared (PIR) sensors, but
simple tests quickly proved that these sensors have way too much delay for our purposes. We then
decided to make our own IR sensor circuits using IR LEDs and IR photosensors. We soon realized that IR
sensors are actually relatively simple to construct; we even found a blog with a great tutorial [1]. Our
design uses three of these sensors such that when the user’s hands are placed over different
combinations of sensors, different game controls are triggered in accordance with Table 1. One
important sensitivity requirement for these sensors is that they detect motions only within one foot of
the sensor itself.

LEFT MIDDLE RIGHT OPERATION
0 0 0 --
0 0 1 Shift Right
0 1 0 --
0 1 1 Rotate Clockwise
1 0 0 Shift Left
1 0 1 Drop
1 1 0 Rotate Counterclockwise
1 1 1 --

Table 1: Motion Logic Table

2.1.2 Design Details
The design of our sensor circuit is summarized in the circuit diagram of Figure 2, taken from [1]. IR-TX is
a 5mm IR LED. IR-RX is a 3mm IR photosensor. The output of the sensor circuit is taken from a 50kΩ
potentiometer placed between GND and the anode of the photosensor. Vcc is connected to a +5VDC
supply. When turned on, the IR LED will emit light so that when an object with a reflective surface, such
as a hand, is placed over the circuit, the IR photosensor will receive IR radiation and the output voltage

4

will change. With our potentiometer turned to maximum resistance, the output is around 4.5V normally
and around 1.8V with a hand placed approximately 6 inches above the sensor.

Figure 2: IR Sensor Circuit

2.2 Controller 1

2.2.1 Design Procedure
Arduino Uno boards are used for both of these controllers. For these blocks, something must process
the analog inputs of some infrared detectors as well as send display information to the LED drivers.
Although other controllers can be used, two Arduino Uno boards are a practical choice. While obviously
cheaper and more portable with the LED matrix, Arduino boards offer analog and digital input and
output pins. It is easy to wire and program with C++ like code. But perhaps most importantly, there are
free 3rd party libraries for communicating between each Arduino Uno as well as controlling the TLC5940
LED drivers.

2.2.2 Design Details
The game code is a clone to the game Tetris. The code from [3] is free to copy and adapt and our
adapted version is in the appendix under tetris.ino, which is included in Appendix B. The input to the
game is adapted to read from the three analog input pins instead of a keyboard stroke. With the three
infrared detectors, the player may move left, move right, drop, or rotate with a combination of the
sensors.

EasyTransfer [2] is a library for communicating between the display and game controller. Both
controllers share a common data structure that is under 255 bytes to be transferred at a rate of 9600
bits per second. This gives:

5

9600𝑏𝑖𝑡𝑠
8 𝑏𝑖𝑡𝑠𝑏𝑦𝑡𝑒

=
�1200 𝑏𝑦𝑡𝑒𝑠𝑠 �

255 𝑏𝑦𝑡𝑒𝑠/𝑝𝑎𝑐𝑘𝑒𝑡
 ~4.7

𝑝𝑎𝑐𝑘𝑒𝑡𝑠
𝑠

Equation 1: Transfer Rate

This is an acceptable rate for updating the display.

2.2 Controller 2

2.2.1 Design Procedure
Using the EasyTransfer library, Controller 2 takes the output of Controller 1 and renders the display.

The TLC5940Mux library in [2] is the primary motivation for using Arduino controllers because it is used
to control driver inputs for a LED matrix using multiplexing. Controller 2 is the display controller that
uses this library and both the library and controller code can be found in the Appendix under
TLC5940Mux.h and receiver.ino. The information required to use this library is the row and column of
the LED and the appropriate grayscale value for brightness. The grayscale can be calculated for each red,
green, and blue channel to display the correct color. Grayscales range from 0-4095. But before it is
explained how these are calculated, an explanation of the controller communication is needed.

2.2.2 Design Details
Controller 2 gets about 4.7 packets per second from Controller 2, with each packet required to contain
the color and location information for the display. Original implementation of passing an x and y
coordinate and RGB channel as indices for a grayscale array proved too large as seen below:

10 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 ∗ 20 𝑟𝑜𝑤𝑠 ∗ 3 𝑅𝐺𝐵 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ∗ 4
𝑏𝑦𝑡𝑒𝑠
𝑖𝑛𝑡𝑒𝑔𝑒𝑟

= 2400 𝑏𝑦𝑡𝑒𝑠 > 255

Equation 2: Original Packet Size

So the final data structure is a 2D array of characters where the first letter of the color is used as the
character. This works because our game has eight colors each beginning with a different letter. From
those characters, the display controller 2 can determine the correct grayscale values according to the
following table:

Color Character Red Grayscale Green Grayscale Blue Grayscale
Red r 4095 0 0

Green g 0 4095 0
Blue b 0 0 4095

Yellow y 4095 4095 0
Orange o 4095 2730 0

Cyan c 0 4095 4095
Purple p 2730 0 4095
Blank 0 0 0 0

Table 2: Color Grayscale Values

6

This works because each character is only one byte and represents an entire LED making the data
structure 200 bytes. The display controller now has the information about rows and columns from the
array indices and can determine their correct grayscale values. This information is directly received from
the game controller 1 by directly connecting the Tx pin of 1 to the Rx pin of controller 2.

To preserve color, whenever a block piece is chosen or stored, it replaces the 2D array of characters with
the proper colors for that block. Instead of making graphics library calls, a packet is sent to the display
controller with the new block positions and colors.

2.4 LED Driver Circuit

2.4.1 Design Procedure
The purpose of the LED driver circuit is to supply current to the anodes of the matrix and sink current
through the cathodes of the desired LEDs, as instructed by controller 2. We chose to use low-side LED
drivers, specifically the Texas Instruments TLC5940NT, because there is already an Arduino library
written for interfacing with these chips. Also, we were able to get as many free samples as we wanted
from the TI website. We are supplying current to the anodes through P-channel MOSFETs whose gates
are controlled by Arduino outputs through a decoder. This general setup is suggested by the writer of
the TLC5940 Arduino libraries and is explained at the top of his example programs. Figure 3 shows the
basic setup we used, where the current switches and LED drivers are the components contained in the
driver circuit. To greatly reduce the number of necessary components, we employ the technique of
display multiplexing on the anodes of our matrix. Multiplexing works by turning only one row on at a
time and scanning through all rows quickly enough that no flickering is visible. The human eye cannot
discern refresh rates above 60Hz, so we must scan through all rows in less than 16ms.

Figure 3: LED Driver Layout Overview

After deciding on the low-side drivers and high-side multiplexing switches, we had to determine how
many of each component we would actually need. Each TLC5940 has 16 channels, and each channel will
be connected to a column of connected red, green, or blue cathodes. As a lower limit we could use only
two of these drivers to sink current through our ten columns and apply multiplexing to all twenty of our
matrix rows. Since the parts shop only had five of the MOSFETs we needed, we decided a fair tradeoff
would be to use ten LED drivers and four MOSFETs. We arranged the drivers as shown in Figure 4, such

7

that each LED driver controls a 4x5 section of the matrix. Each PMOS drain is connected to five matrix
rows, meaning that in a single multiplexing cycle we only scan through four rows.

Figure 4: LED Driver Sections

2.4.2 Design Details
As mentioned previously, the driver circuit consists of two main sections: the low-side LED drivers and
the high-side current switches. The circuit diagram for two of our ten LED drivers is shown in Figure 5.
The signals coming in from the top left are the control signals from controller 2. The two drivers are
daisy-chained by connecting the serial output of one to the serial input of the next. Our design actually
daisy-chains all ten LED drivers for design simplicity and in order to use the TLC5940Mux library
mentioned previously. The 10k resistor on BLANK is to make sure all channels are turned off at the end
of each PWM cycle. The 2.2k resistor on IREF is used to set the current through each channel. This
resistor value was chosen as suggested by the Arduino website and in accordance with Equation 3 from
the TLC5940 datasheet. We want approximately 20mA through each channel, allowing us to solve for
the necessary resistance of 2.2k.

8

max
()

()

()

1.24 31.5

1.2420 31.5

2.2

IREF

IREF

IREF

VI
R

VmA
R

R k

= ×

= ×

= Ω

Equation 3: Resistance Required by LED Drivers

Figure 5: LED Driver Pinouts

The high-side switching section of our driver circuit is implemented using a 3:8 decoder and 4 P-channel
MOSFETs. This portion of the circuit is shown in Figure 6 The decoder takes input from analog outputs of
controller 2, and the MOSFETs are turned on one at a time from the decoder outputs. The resistors on
the gates of the MOSFETs are just to make sure the gates are pulled high and the MOSFETs turned off
very quickly. We chose to use P-channel MOSFETs that were readily available in the parts shop,
specifically, the Motorola MTP2P50E which have a maximum drain current of 2A continuous or up to 6A
pulsed. With ten RGB LEDs per row and 20mA per cathode, our maximum current requirement for one
row is 600mA. Each PMOS drain supplies current to five rows simultaneously, requiring a maximum of
3A drain current from a single PMOS. This requirement is pushing the limit of the MTP2P50 a bit, but our
application will never have all LEDs at maximum brightness.

9

Figure 6: Controller and LED Driver Communication

2.5 LED Display

2.5.1 Design Procedure
The challenge of the LED Display was to ensure stable and strong connections between all 200 cathode
pins of the LEDs as well as the 100 anode pins. We held the LEDs in place with a 5mm thin, 2x4ft board
of plywood, spaced 5cm away from each other, to make sure that the LEDs were spaced evenly apart
and weren’t tilting, as the viewing angle of the LED affects the possibility to view flickering.

2.5.2 Design Details
The matrix is segmented into the following sections and wired accordingly as seen in Figure 7.

Figure 7: LED Matrix Sections

10

The numbers on each section designate each module’s LED driver. The red, blue, and green lines
represent the LED cathodes for the red, green, and blue pins, respectively. The gray lines represent the
LED anodes and are segmented in Figure 7 to more clearly display the sections. However, on the board,
one anode wire connects all 10 LEDs across the row. The first row of each section is then connected,
along with the second of each section, as well as the third and fourth, to be connected to the output of
each row’s respective MOSFET.

The LEDs are held in place in the board by drilling 200 holes in the plywood board. The cross section of
the holes is seen in Figure 8.

Figure 8: LED Hole Cross Section

Finally, a 20x10 grid is used to keep light from mixing with each other. The grid is made up of 21 short
pieces and 11 long pieces with the sketch of the short piece shown in Figure 9.

Figure 9: Short Grid Piece

The long grid piece is essentially the same as the short grid piece except that it is 110cm long, with more
slots to fit its length.

11

3. Design Verification
The design requirements and verification were modified when we modified the IR Sensors and LED
Driver Circuit blocks. The full requirements and verification table can be found in Appendix A, with the
most important requirements and verifications discussed below.

3.1 IR Sensors
One important requirement for our sensors is that they only detect motion within approximately 1ft of
the sensor itself. For testing, we connected one sensor to an Arduino and ran a simple program to read
from the sensor and light an LED. We were able to adjust a threshold value in the program until the
proper range of sensitivity was met.

Another important requirement is the delay of the sensor. We did not expect this to be an issue, which
is why we did not have a delay requirement in our original verification table. Testing the original PIR
sensors that we ordered showed that the delay is a very nontrivial factor, as those sensors had a delay
of multiple seconds. We used the same test program mentioned above to test the delay our final sensor
circuit and found that there is no noticeable delay; the sensor seems to respond immediately.

The final major requirement of the sensor component is that the three sensors are able to detect and
distinguish five different control motions. We have not been able to verify this requirement yet, but we
will do so by altering the test code to include two more sensor inputs and adding two more indicator
LEDs to make sure we get the appropriate combination of LEDs to turn on for each control motion.

3.2 Controller 1
The libraries for both EasyTransfer and TLC5940Mux came with example code performing the minimum
necessary functionality. A simple program to send a random number of blinks to an LED for a random
duration was tested for the communication of both of our microcontrollers and passed out test with the
adapted communication of a 2D array. TLC5940Mux library performed well on the scale of a 4x5 LED
matrix and a 4x10 LED matrix with appropriate updates to color on individual rows and columns.

3.3 Controller 2
We tested the game code for the Tetris clone which performs as expected on a PC, but our adaptation
requires connection of the output to the LED matrix. When the driver circuit was finally connected to
the LED matrix, the display controller could output to the matrix. It was only when testing game
functionality and communication to the display notice was taken to the row column index referencing.
The pieces started from the sides of the board and continued to fall sideways. It was an easy fix to the
switch the row and column referencing in the display microcontroller. From there, randomly generated
pieces fell to the bottom of the board and stacked with correct game functionality. Pieces stacked
correctly and remained stored on the board with their proper colors.

3.4 LED Driver Circuit
Upon assembling and testing our driver circuit, we realized that the requirements from our original table
for the driver circuit are extremely general and are already met by the particular driver chips we chose.
We, therefore, came up with some new requirements as we were designing and assembling the circuit.

12

The first requirement is that our high-side multiplexing switch component must implement row
scanning at a rate of at least 60Hz, as mentioned previously. This requirement is actually handled by the
TLC5940Mux library.

Another important requirement for the driver circuit is that the new grayscale values are latched to the
output at the same time as the rows are switched. This is also handled by the TLC5940Mux library, but
we verified by tying the latch signal XLAT of the LED drivers to the enable input of the decoder, which
did not make a visible difference. We are still having problems with flickering on our display, so we
might try adding this connection back into the circuit to see if we notice a difference.

3.5 LED Display
The main test for the LED Display was to see that all LEDs lit up with uniform brightness, as the
connections for the LED matrix were subject to separate or mistakenly touch. We verified that it was
working with no flickering when it was not connected to any other block. However, when connected to
the LED Driver circuit, the display showed flickering and a leakage of red when the LEDs were designated
to be off. This failure in verification, however, is not due to the LED matrix display itself, but is based in
another component of the system. So as far as the LED Display block goes, all tests were completed and
the LED display was verified to be working completely.

13

4. Costs

4.1 Parts

Part Manufacturer Retail Cost
($)

Quantity Shipping
($)

Actual Cost
($)

Arduino Uno Arduino 30 2 10 70
Vector Circbord 8006 Vector 40 1 0 40

2’x4’ Plywood Unknown (Home
Depot)

8 2 0 16

4”x4” Wood Posts Unknown (Home
Depot)

0.50 8 0 4

20-gaue 2-wire Wire (65ft) Unknown (Home
Depot)

8 5 0 40

RGB Common-Anode LEDs
(5mm)

Unknown 10 (100pcs) 3 15 45

Screws Unknown (Home
Depot)

1 (6pcs) 3 0 3

ILED-8 (IR LED) All Electronics Corp 0.25 3 0 0.75
PD-6 (Photosensor) All Electronics Corp 0.50 3 0 1.50

TLC5940NT Texas Instruments 2.20 10 0 0
SN4F138N (3:8 Decoder) Texas Instruments 0.85 1 0 0.85

MTP2P50E (PMOS) Motorola 2.00 4 0 0
470Ω resistor Unknown 0.02 3 0 0
1kΩ resistor Unknown 0.02 4 0 0

2.2kΩ resistor Unknown 0.02 10 0 0
10kΩ resistor Unknown 0.02 10 0 0
37kΩ resistor Unknown 0.02 4 0 0

47nF capacitor Unknown 0.02 3 0 0
0.1µF capacitor Unknown 0.02 11 0 0
100µF capacitor Unknown 0.02 1 0 0
50kΩ 10-turn
potentiometer

Vishay 1.50 3 0 0

Total 221.10
Table 3: Parts List

4.2 Labor
Group Member Rate Total Number of Hours 2.5 x Total
Josh Pack $40/hr 250 $25,000
Esther Kim $40/hr 250 $25,000
Ryan Dwyer $40/hr 250 $25,000

Table 4: Labor Costs

Parts Total Cost $ 221.10
Labor Total Cost $75,000.00
Grand Total Cost $75.221.10

Table 5: Costs Overview

14

5. Conclusion

5.1 Accomplishments
As a whole, our project was able to display BLOX on the LED surface. Pieces were falling in a randomized
order, and minus the overall red tint, each cell displayed its designated color at the appropriate time.
Enough current was supplied to all the LEDs and the light was evenly diffused through the diffusion
board and did not mix through the grid. Additionally, we were able to get the IR sensors working
separately.

5.2 Uncertainties
As of now, our project fails to meet several requirements, listed out below:

• LEDs are red when designated to be turned off
• Flickering is visible
• Sensors did not respond during demonstration

The next task for our project is to find and debug these problems. We first need to verify that the LED
driver circuit is working correctly. Once we know that the hardware is working, we can go deeper into
the software that we are using, specifically the libraries and header files that we found online. We
suspect that the problem of flickering and red bleeding comes from a timing issue in the software, and
will be looking into changing the libraries and header files to better address our system.

The sensors were verified to work prior to the demonstration, but its signals are yet to be read by the
controllers. We will need to write separate programs to read the output of the sensors once we verify
that the sensor circuits are working again.

5.3 Future Work
Once we debug these problems, some alternatives we may introduce to the game would be to improve
user experience. We could add more sensors to include more actions to differentiate between a hard
drop and soft drop, and include a reset motion. Depending on how convenient the sensors are placed,
we may also change the position of the sensors or change the truth table of the sensors to have a more
intuitive motion for each action. Finally, to ensure the completion of this project, we could build a sturdy
table around the system and display to transform it into an actual coffee table. Doing so would include
getting a power supply, a glass or acrylic surface, and ensuring that all edges are airtight so that liquids
could not seep through and harm the system inside.

5.3 Ethical considerations
The LED BLOX Coffee Table is a device meant for entertainment and should be used as such. Users
should not tamper with the electronic parts of this device. In accordance with #9 in the IEEE Code of
Ethics in Section of 7.8 of IEEE Policies, we as engineers must “avoid injuring others, their property,
reputation, or employment by false or malicious action” [5]. Safety is a concern when:

• Staring directly at powered LEDs without the diffusing film
• Using quick hand movements to activate the IR sensors

15

The diffusing film is meant to give the LED display a warm glow as well as provide protection to the user
in the case of prolonged exposure to the light. Playing the BLOX game also requires the player’s hands to
move about, so the player should be aware of the surroundings. The LED BLOX Coffee Table is meant to
serve as a living room table that can support common items placed on top of the display. This means
that the table can be large and heavy. These safety concerns are few and may not affect most users who
are careful with similar devices. We do not wish others to be harmed from the use of the LED BLOX
coffee table.

The rights to Tetris belong to The Tetris Company, which is why we renamed our game BLOCK LETHAL
OBLITERATOR XTREME, or BLOX. In doing so, we avoid copyright infringement

16

References

[1] O. Kulkarni. (2008, Feb.). How to make simple Infrared Sensor Modules. WordPress blog. [Online].
Available: http://elecrom.wordpress.com/2008/02/19/how-to-make-simple-infrared-sensor-
modules/

[2] A Leone. (2009, May). Arduino TLC5940 Library Documentation. [Online]. Available:
http://alex.kathack.com/codes/tlc5940arduino/html_r014/

[3] B. Porter. (2011, May). EasyTransfer Arduino Library. [Online}. Available:
http://www.billporter.info/2011/05/30/easytransfer-arduino-library/

[4] J. López. (2008, Dec.). Tetris tutorial in C++ platform independent focused in game logic for
beginners. [Online]. Available: http://javilop.com/gamedev/tetris-tutorial-in-c-platform-
independent-focused-in-game-logic-for-beginners/

[5] 7.8 Code of Ethics, IEEE

http://javilop.com/gamedev/tetris-tutorial-in-c-platform-independent-focused-in-game-logic-for-beginners/
http://javilop.com/gamedev/tetris-tutorial-in-c-platform-independent-focused-in-game-logic-for-beginners/

17

Appendix A Requirement and Verification Table
Requirement Verification
Gesture Detection
Three sensors positioned on the left, middle, and
right of the table must be able to distinguish five
control motions for the falling BLOX pieces. The
truth table is as follows:

LEFT MIDDLE RIGHT OPERATION
0 0 0 --
0 0 1 Shift Right
0 1 0 --
0 1 1 Rotate CW
1 0 0 Shift Left
1 0 1 Drop
1 1 0 Rotate CCW
1 1 1 --

Connect each of the sensor outputs directly to an
LED so that we can observe the proper LEDs
lighting when each of the control motion
combinations is performed above the sensors.

Sensitivity and Positioning
 Sensors must detect hand gestures from up to,
but no more than a 1 feet radius.

Sensors must be positioned 1.2 feet away from
each other and not overlap radii, eg. the left
sensor picking up signal from motions meant for
the middle sensor.

Adjust the sensitivity and measure with a ruler the
ranges for all sensors.

Test the middle sensor by waving hand 12 inches
to the right and then 12 inches to the left to make
sure that the left and right sensors do not go off.
Do the same for the left and right sensors.

Power
The sensors must be supplied with a voltage
between 4.5 and 6 volts.

Check voltages using a multimeter.

Table 6: IR Sensors Requirements and Verification

Requirement Verification
Sensor Input Communication
Controller 1 must be able to interpret each of the
five input controls from the PIR sensors.

Write a test case in the Arduino Software to
display the input from the sensors. Check for all
five operations.

BLOX Game Logic
Controller 1 must keep track of the position of the
game pieces so that the pieces will stack properly.

Controller 1 must remove a completed row in one
cycle of the gravity rate.

Write a test case in the Arduino Software to stack
random pieces. Output the pieces’ grid positions in
the Arduino software.

 Write a test case in the Arduino Software to drop
pieces in a complete row to make sure controller 1
detects a complete row and removes this row.

18

 Output detection flag and deletion flag. Check that
pieces above shift down and pieces below remain.

Controller 2 Communication
Controller 1 must send control signals to controller
2 with instructions for the next cycle of the display.

Write a test case in the Arduino Software to
ensure that the display updates at a smooth rate
and that the control motions are actualized on the
display in a responsive manner with no more than
16ms delay between control motion and piece
movement.

Table 7: Controller 1 Requirements and Verification

Requirement Verification
Controller 1 Communication
Controller 2 must receive updated input from
Controller 1 at rate of at least 60Hz.

We will connect an oscilloscope to the output
control signals from controller 1 to controller 2 to
ensure that they refresh at approximately 60Hz.

Table 8: Controller 1 Requirements and Verification

Requirement Verification
LED Communication
The LED drivers must provide each LED in the
display with the proper operating voltage, which
ranges from 2.1V to 3.4V, and sink ~20mA for each
LED.

The LED drivers must use proper PWM on the red,
green, and blue portions of each RGB LED such
that each LED can light with each of the seven
necessary colors (cyan, blue, orange, yellow,
green, purple, red in accordance with The BLOX
Company’s color scheme).

Use a voltmeter on each pin to ensure that the
output voltage is in the operating range of 2.1V to
3.4V

Connect one RGB LED to the output of one of the
LED drivers with the controllers sending the proper
signals to the driver to create the desired colors.
We will repeat for each of the seven colors to
make sure our duty cycles are visibly correct for
each color.

Table 9: LED Driver Circuit Requirements and Verification

Requirement Verification
LED Brightness
LED brightness reflects duty cycle of PWM on all
RGB channels for accurate color.

For each red, green, and blue pin, test with duty
factors 25%, 50%, 75%, and 100% to see that
brightness increases respectively.

Use function generator with a 1 kHz, 3V peak-to-
peak square wave to output across the
appropriate RGB pin and common anode. Not all
200 LEDs need be tested unless they stand out in
the matrix.

Use one LED to look for varying levels of brightness
in a dark room.

19

Color Output
LEDS must display the correct colors with the
following duty factors (R, G, B) and subjectively
determine that they match others in the matrix.
(Red, green, and blue colors have already been
tested at 100% duty factor)

yellow: (100%, 100%, 0%)
orange: (100%, 65%, 0%)
cyan: (0%, 100%, 100%)
purple: (67%, 0%, 100%)

Use one LED to look for all colors in a dark room.
Repeat with one LED in each shift register and LED
driver to ensure that the colors are the same
across the matrix.

No Visible Flickering
There must not be any noticeable flickering at any
viewing angle to the LED.

At a duty factor of 65% for each RGB channel, look
at the LED with it pointing directly at you and
sweep across 90 degrees to be sure there is no
noticeable flicker dependent on viewing angle at
this 1 kHz. Also useful to try lowering the duty
factor or frequency to find the minimum
frequency/duty factor at which flickering becomes
a problem.

Table 10: LED Display Requirements and Verification

20

Appendix B Controller 1 Game Logic: tetris.ino
/***
/* Desc: Tetris tutorial
/*
/* gametuto.com - Javier López López (javilop.com)
/*
/***
/*
/* Creative Commons - Attribution 3.0 Unported
/* You are free:
/* to Share — to copy, distribute and transmit the work
/* to Remix — to adapt the work
/*
/* Under the following conditions:
/* Attribution. You must attribute the work in the manner specified by the author or licensor
/* (but not in any way that suggests that they endorse you or your use of the work).
/*
/***/

#define BLOCK_SIZE 1 // Width and Height of each block of a piece
#define BOARD_POSITION 320 // Center position of the board from the left of the screen
#define BOARD_WIDTH 10 // Board width in blocks
#define BOARD_HEIGHT 20 // Board height in blocks
#define PIECE_BLOCKS 5 // Number of horizontal and vertical blocks of a matrix piece

#define WAIT_TIME 700 // Number of milliseconds that the piece remains before going 1 block down */

#include <EasyTransfer.h>

EasyTransfer ET;

struct SEND_DATA_STRUCTURE{
 //put your variable definitions here for the data you want to send
 //THIS MUST BE EXACTLY THE SAME ON THE OTHER ARDUINO
 char sentcolors[10][20];
};
SEND_DATA_STRUCTURE mydata;
char mycolors[10][20];

class Pieces
{
public:

 int GetBlockType(int pPiece, int pRotation, int pX, int pY);
 int GetXInitialPosition (int pPiece, int pRotation);
 int GetYInitialPosition (int pPiece, int pRotation);
};

class Board
{
public:

 Board(Pieces *pPieces, int pScreenHeight);

 int GetXPosInPixels(int pPos);
 int GetYPosInPixels(int pPos);

21

 bool IsFreeBlock(int pX, int pY);
 bool IsPossibleMovement(int pX, int pY, int pPiece, int pRotation);
 void StorePiece(int pX, int pY, int pPiece, int pRotation);
 void DeletePossibleLines();
 bool IsGameOver();

private:

 enum { POS_FREE, POS_FILLED }; // POS_FREE = free position of the board; POS_FILLED = filled position of the

board
 int mBoard [BOARD_WIDTH][BOARD_HEIGHT]; // Board that contains the pieces
 Pieces *mPieces;
 int mScreenHeight;

 void InitBoard();
 void DeleteLine (int pY);
};

class Game
{
public:

 Game(Board *pBoard, Pieces *pPieces, int pScreenHeight);

 void DrawScene ();
 void CreateNewPiece ();

 int mPosX, mPosY; // Position of the piece that is falling down
 int mPiece, mRotation; // Kind and rotation the piece that is falling down

private:

 int mScreenHeight; // Screen height in pixels
 int mNextPosX, mNextPosY; // Position of the next piece
 int mNextPiece, mNextRotation; // Kind and rotation of the next piece

 Board *mBoard;
 Pieces *mPieces;

 int GetRand (int pA, int pB);
 void InitGame();
 void DrawPiece (int pX, int pY, int pPiece, int pRotation);
 void DrawBoard ();
};

void setup() {
 // put your setup code here, to run once:

 Serial.begin(9600);
 //start the library, pass in the data details and the name of the serial port. Can be Serial, Serial1, Serial2, etc.
 ET.begin(details(mydata), &Serial);

 pinMode(13, OUTPUT);

 randomSeed(analogRead(0));

22

}

void loop() {
 // put your main code here, to run repeatedly:

 for (int i=0; i<10; i++){
 for (int j=0; j<20; j++){
 mydata.sentcolors[i][j] = '0';
 mycolors[i][j] = '0';
 }
 }

Pieces mPieces;

 // Board
 int mScreenHeight = 20;
 Board mBoard (&mPieces, mScreenHeight);

 // Game
 Game mGame (&mBoard, &mPieces, mScreenHeight);

 // Get the actual clock milliseconds (SDL)
 unsigned long mTime1 = millis();

 // ----- Main Loop -----
 int lose = 0;
 while (!lose)
 {
 // ----- Draw -----
 for (int i=0; i<10; i++){
 for (int j=0; j<20; j++){
 mydata.sentcolors[i][j] = mycolors[i][j];
 }
 }
 mGame.DrawScene (); // Draw staff
 ET.sendData();

 // ----- Input -----

 /*switch (mKey)
 {
 case (SDLK_RIGHT):
 {
 if (mBoard.IsPossibleMovement (mGame.mPosX + 1, mGame.mPosY, mGame.mPiece,

mGame.mRotation))
 mGame.mPosX++;
 break;
 }

 case (SDLK_LEFT):
 {
 if (mBoard.IsPossibleMovement (mGame.mPosX - 1, mGame.mPosY, mGame.mPiece,

mGame.mRotation))
 mGame.mPosX--;
 break;

23

 }

 case (SDLK_DOWN):
 {
 if (mBoard.IsPossibleMovement (mGame.mPosX, mGame.mPosY + 1, mGame.mPiece,

mGame.mRotation))
 mGame.mPosY++;
 break;
 }

 case (SDLK_CW):
 {
 if (mBoard.IsPossibleMovement (mGame.mPosX, mGame.mPosY, mGame.mPiece,

(mGame.mRotation - 1) % 4))
 mGame.mRotation = (mGame.mRotation - 1) % 4;

 break;
 }

 case (SDLK_CCW):
 {
 if (mBoard.IsPossibleMovement (mGame.mPosX, mGame.mPosY, mGame.mPiece,

(mGame.mRotation + 1) % 4))
 mGame.mRotation = (mGame.mRotation + 1) % 4;

 break;
 }
 }
*/
 // ----- Vertical movement -----

 unsigned long mTime2 = millis();

 if ((mTime2 - mTime1) > WAIT_TIME)
 {
 if (mBoard.IsPossibleMovement (mGame.mPosX, mGame.mPosY + 1, mGame.mPiece, mGame.mRotation))
 {
 mGame.mPosY++;
 }
 else
 {
 mBoard.StorePiece (mGame.mPosX, mGame.mPosY, mGame.mPiece, mGame.mRotation);

 mBoard.DeletePossibleLines ();
 if (mBoard.IsGameOver())
 {
 lose = 1;
 }

 mGame.CreateNewPiece();
 }

 mTime1 = millis();
 }
 }
 delay(9999);

24

}

// Pieces definition
char mPieces [7 /*kind */][4 /* rotation */][5 /* horizontal blocks */][5 /* vertical blocks */] =
{
// Square
 {
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0},
 {0, 0, 2, 1, 0},
 {0, 0, 1, 1, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0},
 {0, 0, 2, 1, 0},
 {0, 0, 1, 1, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0},
 {0, 0, 2, 1, 0},
 {0, 0, 1, 1, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0},
 {0, 0, 2, 1, 0},
 {0, 0, 1, 1, 0},
 {0, 0, 0, 0, 0}
 }
 },

// I
 {
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0},
 {0, 1, 2, 1, 1},
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 2, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 1, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},

25

 {0, 0, 0, 0, 0},
 {1, 1, 2, 1, 0},
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 1, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 2, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 0, 0, 0}
 }
 }
 ,
// L
 {
 {
 {0, 0, 0, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 2, 0, 0},
 {0, 0, 1, 1, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0},
 {0, 1, 2, 1, 0},
 {0, 1, 0, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 1, 1, 0, 0},
 {0, 0, 2, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 1, 0},
 {0, 1, 2, 1, 0},
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0}
 }
 },
// L mirrored
 {
 {
 {0, 0, 0, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 2, 0, 0},
 {0, 1, 1, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 1, 0, 0, 0},

26

 {0, 1, 2, 1, 0},
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 1, 1, 0},
 {0, 0, 2, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0},
 {0, 1, 2, 1, 0},
 {0, 0, 0, 1, 0},
 {0, 0, 0, 0, 0}
 }
 },
// N
 {
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 1, 0},
 {0, 0, 2, 1, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0},
 {0, 1, 2, 0, 0},
 {0, 0, 1, 1, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 1, 2, 0, 0},
 {0, 1, 0, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 1, 1, 0, 0},
 {0, 0, 2, 1, 0},
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0}
 }
 },
// N mirrored
 {
 {
 {0, 0, 0, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 2, 1, 0},
 {0, 0, 0, 1, 0},

27

 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0},
 {0, 0, 2, 1, 0},
 {0, 1, 1, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 1, 0, 0, 0},
 {0, 1, 2, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 1, 1, 0},
 {0, 1, 2, 0, 0},
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0}
 }
 },
// T
 {
 {
 {0, 0, 0, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 2, 1, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0},
 {0, 1, 2, 1, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 1, 2, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 1, 0, 0},
 {0, 1, 2, 1, 0},
 {0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0}
 }
 }
};

28

// Displacement of the piece to the position where it is first drawn in the board when it is created
int mPiecesInitialPosition [7 /*kind */][4 /* rotation */][2 /* position */] =
{
/* Square */
 {
 {-2, -3},
 {-2, -3},
 {-2, -3},
 {-2, -3}
 },
/* I */
 {
 {-2, -2},
 {-2, -3},
 {-2, -2},
 {-2, -3}
 },
/* L */
 {
 {-2, -3},
 {-2, -3},
 {-2, -3},
 {-2, -2}
 },
/* L mirrored */
 {
 {-2, -3},
 {-2, -2},
 {-2, -3},
 {-2, -3}
 },
/* N */
 {
 {-2, -3},
 {-2, -3},
 {-2, -3},
 {-2, -2}
 },
/* N mirrored */
 {
 {-2, -3},
 {-2, -3},
 {-2, -3},
 {-2, -2}
 },
/* T */
 {
 {-2, -3},
 {-2, -3},
 {-2, -3},
 {-2, -2}
 },
};

/*

29

======================================
Return the type of a block (0 = no-block, 1 = normal block, 2 = pivot block)

Parameters:

>> pPiece: Piece to draw
>> pRotation: 1 of the 4 possible rotations
>> pX: Horizontal position in blocks
>> pY: Vertical position in blocks
======================================
*/
int Pieces::GetBlockType (int pPiece, int pRotation, int pX, int pY)
{
 return mPieces [pPiece][pRotation][pX][pY];
}

/*
======================================
Returns the horizontal displacement of the piece that has to be applied in order to create it in the
correct position.

Parameters:

>> pPiece: Piece to draw
>> pRotation: 1 of the 4 possible rotations
======================================
*/
int Pieces::GetXInitialPosition (int pPiece, int pRotation)
{
 return mPiecesInitialPosition [pPiece][pRotation][0];
}

/*
======================================
Returns the vertical displacement of the piece that has to be applied in order to create it in the
correct position.

Parameters:

>> pPiece: Piece to draw
>> pRotation: 1 of the 4 possible rotations
======================================
*/
int Pieces::GetYInitialPosition (int pPiece, int pRotation)
{
 return mPiecesInitialPosition [pPiece][pRotation][1];
}

Game::Game(Board *pBoard, Pieces *pPieces, int pScreenHeight)
{
 mScreenHeight = pScreenHeight;

 // Get the pointer to the Board and Pieces classes

30

 mBoard = pBoard;
 mPieces = pPieces;

 // Game initialization
 InitGame ();
}

/*
======================================
Get a random int between to integers

Parameters:
>> pA: First number
>> pB: Second number
======================================
*/
int Game::GetRand (int pA, int pB)
{
 return rand () % (pB - pA + 1) + pA;
}

/*
======================================
Initial parameters of the game
======================================
*/
void Game::InitGame()
{
 // Init random numbers
 //srand ((unsigned int) time(NULL));

 // First piece
 mPiece = GetRand (0, 6);
 mRotation = GetRand (0, 3);
 mPosX = (BOARD_WIDTH / 2) + mPieces->GetXInitialPosition (mPiece, mRotation);
 mPosY = mPieces->GetYInitialPosition (mPiece, mRotation);

 // Next piece
 mNextPiece = GetRand (0, 6);
 mNextRotation = GetRand (0, 3);
 mNextPosX = BOARD_WIDTH + 5;
 mNextPosY = 5;
}

/*
======================================
Create a random piece
======================================
*/
void Game::CreateNewPiece()
{
 // The new piece
 mPiece = mNextPiece;
 mRotation = mNextRotation;

31

 mPosX = (BOARD_WIDTH / 2) + mPieces->GetXInitialPosition (mPiece, mRotation);
 mPosY = mPieces->GetYInitialPosition (mPiece, mRotation);

 // Random next piece
 mNextPiece = GetRand (0, 6);
 mNextRotation = GetRand (0, 3);
}

/*
======================================
Draw piece

Parameters:

>> pX: Horizontal position in blocks
>> pY: Vertical position in blocks
>> pPiece: Piece to draw
>> pRotation: 1 of the 4 possible rotations
======================================
*/
void Game::DrawPiece (int pX, int pY, int pPiece, int pRotation)
{

 // Travel the matrix of blocks of the piece and draw the blocks that are filled
 for (int i1 = pX, i2 = 0; i1 < pX + PIECE_BLOCKS; i1++, i2++)
 {
 for (int j1 = pY, j2 = 0; j1 < pY + PIECE_BLOCKS; j1++, j2++)
 {
 // Store only the blocks of the piece that are not holes
 if (mPieces->GetBlockType (pPiece, pRotation, j2, i2) != 0){

 switch(pPiece){
 case 0: mydata.sentcolors[i1][j1] = 'y'; break;
 case 1: mydata.sentcolors[i1][j1] = 'c'; break;
 case 2: mydata.sentcolors[i1][j1] = 'o'; break;
 case 3: mydata.sentcolors[i1][j1] = 'b'; break;
 case 4: mydata.sentcolors[i1][j1] = 'r'; break;
 case 5: mydata.sentcolors[i1][j1] = 'g'; break;
 case 6: mydata.sentcolors[i1][j1] = 'p'; break;
 }
 }

 }
 }
}

/*
======================================
Draw board

Draw the two lines that delimit the board
======================================
*/
void Game::DrawBoard ()
{

32

//nothing
}

/*
======================================
Draw scene

Draw all the objects of the scene
======================================
*/
void Game::DrawScene ()
{
 DrawPiece (mPosX, mPosY, mPiece, mRotation); // Draw the playing piece
}

Board::Board (Pieces *pPieces, int pScreenHeight)
{
 // Get the screen height
 mScreenHeight = pScreenHeight;

 // Get the pointer to the pieces class
 mPieces = pPieces;

 //Init the board blocks with free positions
 InitBoard();
}

/*
======================================
Init the board blocks with free positions
======================================
*/
void Board::InitBoard()
{
 for (int i = 0; i < BOARD_WIDTH; i++)
 for (int j = 0; j < BOARD_HEIGHT; j++)
 mBoard[i][j] = POS_FREE;
}

/*
======================================
Store a piece in the board by filling the blocks

Parameters:

>> pX: Horizontal position in blocks
>> pY: Vertical position in blocks
>> pPiece: Piece to draw
>> pRotation: 1 of the 4 possible rotations
======================================
*/
void Board::StorePiece (int pX, int pY, int pPiece, int pRotation)
{
 // Store each block of the piece into the board

33

 for (int i1 = pX, i2 = 0; i1 < pX + PIECE_BLOCKS; i1++, i2++)
 {
 for (int j1 = pY, j2 = 0; j1 < pY + PIECE_BLOCKS; j1++, j2++)
 {
 // Store only the blocks of the piece that are not holes
 if (mPieces->GetBlockType (pPiece, pRotation, j2, i2) != 0){
 mBoard[i1][j1] = POS_FILLED;
 switch(pPiece){
 case 0: mycolors[i1][j1] = 'y'; break;
 case 1: mycolors[i1][j1] = 'c'; break;
 case 2: mycolors[i1][j1] = 'o'; break;
 case 3: mycolors[i1][j1] = 'b'; break;
 case 4: mycolors[i1][j1] = 'r'; break;
 case 5: mycolors[i1][j1] = 'g'; break;
 case 6: mycolors[i1][j1] = 'p'; break;
 }
 }

 }
 }
}

/*
======================================
Check if the game is over becase a piece have achived the upper position

Returns true or false
======================================
*/
bool Board::IsGameOver()
{
 //If the first line has blocks, then, game over
 for (int i = 0; i < BOARD_WIDTH; i++)
 {
 if (mBoard[i][0] == POS_FILLED) return true;
 }

 return false;
}

/*
======================================
Delete a line of the board by moving all above lines down

Parameters:

>> pY: Vertical position in blocks of the line to delete
======================================
*/
void Board::DeleteLine (int pY)
{
 // Moves all the upper lines one row down
 for (int j = pY; j > 0; j--)
 {
 for (int i = 0; i < BOARD_WIDTH; i++)
 {

34

 mBoard[i][j] = mBoard[i][j-1];
 mycolors[i][j] = mycolors[i][j-1];
 }
 }
}

/*
======================================
Delete all the lines that should be removed
======================================
*/
void Board::DeletePossibleLines ()
{
 for (int j = 0; j < BOARD_HEIGHT; j++)
 {
 int i = 0;
 while (i < BOARD_WIDTH)
 {
 if (mBoard[i][j] != POS_FILLED) break;
 i++;
 }

 if (i == BOARD_WIDTH) DeleteLine (j);
 }
}

/*
======================================
Returns 1 (true) if the this block of the board is empty, 0 if it is filled

Parameters:

>> pX: Horizontal position in blocks
>> pY: Vertical position in blocks
======================================
*/
bool Board::IsFreeBlock (int pX, int pY)
{
 if (mBoard [pX][pY] == POS_FREE) return true; else return false;
}

/*
======================================
Returns the horizontal position (isn pixels) of the block given like parameter

Parameters:

>> pPos: Horizontal position of the block in the board
======================================
*/
int Board::GetXPosInPixels (int pPos)
{
 return ((BOARD_POSITION - (BLOCK_SIZE * (BOARD_WIDTH / 2))) + (pPos * BLOCK_SIZE));
}

35

/*
======================================
Returns the vertical position (in pixels) of the block given like parameter

Parameters:

>> pPos: Horizontal position of the block in the board
======================================
*/
int Board::GetYPosInPixels (int pPos)
{
 return ((mScreenHeight - (BLOCK_SIZE * BOARD_HEIGHT)) + (pPos * BLOCK_SIZE));
}

/*
======================================
Check if the piece can be stored at this position without any collision
Returns true if the movement is possible, false if it not possible

Parameters:

>> pX: Horizontal position in blocks
>> pY: Vertical position in blocks
>> pPiece: Piece to draw
>> pRotation: 1 of the 4 possible rotations
======================================
*/
bool Board::IsPossibleMovement (int pX, int pY, int pPiece, int pRotation)
{
 // Checks collision with pieces already stored in the board or the board limits
 // This is just to check the 5x5 blocks of a piece with the appropiate area in the board
 for (int i1 = pX, i2 = 0; i1 < pX + PIECE_BLOCKS; i1++, i2++)
 {
 for (int j1 = pY, j2 = 0; j1 < pY + PIECE_BLOCKS; j1++, j2++)
 {
 // Check if the piece is outside the limits of the board
 if (i1 < 0 ||
 i1 > BOARD_WIDTH - 1 ||
 j1 > BOARD_HEIGHT - 1)
 {
 if (mPieces->GetBlockType (pPiece, pRotation, j2, i2) != 0)
 return 0;
 }

 // Check if the piece have collisioned with a block already stored in the map
 if (j1 >= 0)
 {
 if ((mPieces->GetBlockType (pPiece, pRotation, j2, i2) != 0) &&
 (!IsFreeBlock (i1, j1)))
 return false;
 }
 }
 }

 // No collision
 return true;
}

36

Appendix C Controller 2 Display Code: receiver.ino
#include <EasyTransfer.h>
#define NUM_TLCS 10
#define NUM_ROWS 4
#include "Tlc5940Mux.h"
//#include "digitalWriteFast.h"

volatile uint8_t isShifting;
uint8_t shiftRow;

ISR(TIMER1_OVF_vect)
{
 if (!isShifting) {
 disable_XLAT_pulses();
 isShifting = 1;
 sei();
 TlcMux_shiftRow(shiftRow);
 PORTC = shiftRow++;
 if (shiftRow == NUM_ROWS) {
 shiftRow = 0;
 }
 enable_XLAT_pulses();
 isShifting = 0;
 }
}

//create object
EasyTransfer ET;

struct RECEIVE_DATA_STRUCTURE{
 //put your variable definitions here for the data you want to receive
 //THIS MUST BE EXACTLY THE SAME ON THE OTHER ARDUINO
 char sentcolors[10][20];
};

//give a name to the group of data
RECEIVE_DATA_STRUCTURE mydata;

void setup(){
 DDRC |= _BV(PC0) | _BV(PC1) | _BV(PC2);
 TlcMux_init();

 Serial.begin(9600);
 //start the library, pass in the data details and the name of the serial port. Can be Serial, Serial1, Serial2, etc.
 ET.begin(details(mydata), &Serial);

 pinMode(13, OUTPUT);

}

void loop(){
 int currentSect=0;
 uint8_t newrow=0;
 uint8_t newcol=0;
 //check and see if a data packet has come in.

37

 if(ET.receiveData()){
 //this is how you access the variables. [name of the group].[variable name]
 TlcMux_clear();
 for (uint8_t col = 0; col < 159; col++) {
 if (col%16 == 0)
 currentSect = col/16 + 1;

 if ((currentSect-1)%2 == 0)
 newcol = ((col-16*(currentSect-1))-(col-16*(currentSect-1))%3)/3;
 else
 newcol = (((col-16*(currentSect-1))-(col-16*(currentSect-1))%3)/3)+5;

 if (col%16 != 15){
 if ((col-(16*(currentSect-1)))%3==0){
 for (uint8_t row = 0; row < NUM_ROWS; row++) {
 switch(currentSect){
 case 1: case 2: newrow=row; break;
 case 3: case 4: newrow=4+row; break;
 case 5: case 6: newrow=8+row; break;
 case 7: case 8: newrow=12+row; break;
 case 9: case 10: newrow=16+row;break;
 }
 TlcMux_set(row, col,grayscaleR(newcol,newrow));
 }
 }
 if ((col-(16*(currentSect-1)))%3==1){
 for (uint8_t row = 0; row < NUM_ROWS; row++) {
 switch(currentSect){
 case 1: case 2: newrow=row; break;
 case 3: case 4: newrow=4+row; break;
 case 5: case 6: newrow=8+row; break;
 case 7: case 8: newrow=12+row; break;
 case 9: case 10: newrow=16+row;break;
 }
 TlcMux_set(row, col,grayscaleG(newcol,newrow));
 }
 }
 if ((col-(16*(currentSect-1)))%3==2){
 for (uint8_t row = 0; row < NUM_ROWS; row++) {
 switch(currentSect){
 case 1: case 2: newrow=row; break;
 case 3: case 4: newrow=4+row; break;
 case 5: case 6: newrow=8+row; break;
 case 7: case 8: newrow=12+row; break;
 case 9: case 10: newrow=16+row;break;
 }
 TlcMux_set(row, col,grayscaleB(newcol,newrow));
 }
 }
 }
 }

38

 }

 //you should make this delay shorter then your transmit delay or else messages could be lost
 delay(1);
}

int grayscaleR(int px, int py){
 switch(mydata.sentcolors[px][py]){
 case 'r': case 'o': case 'y': return 4095; break;
 case 'p': return 2730; break;
 default: return 0;
 }
}

int grayscaleG(int px, int py){
 switch(mydata.sentcolors[px][py]){
 case 'g': case 'c': case 'y': return 4095; break;
 case 'o': return 2730; break;
 default: return 0;
 }
}

int grayscaleB(int px, int py){
 switch(mydata.sentcolors[px][py]){
 case 'b': case 'c': case 'p': return 4095; break;
 default: return 0;
 }
}

39

Appendix D: EasyTransfer Code
EasyTransfer.h

/**
* EasyTransfer Arduino Library
* details and example sketch:
* http://www.billporter.info/easytransfer-arduino-library/
*
* Brought to you by:
* Bill Porter
* www.billporter.info
*
* See Readme for other info and version history
*
*
*This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
<http://www.gnu.org/licenses/>
*
*This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License.
*To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or
*send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA.
**/
#ifndef EasyTransfer_h
#define EasyTransfer_h

//make it a little prettier on the front end.
#define details(name) (byte*)&name,sizeof(name)

//Not neccessary, but just in case.
#if ARDUINO > 22
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "HardwareSerial.h"
//#include <NewSoftSerial.h>
#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <avr/io.h>

class EasyTransfer {
public:
void begin(uint8_t *, uint8_t, HardwareSerial *theSerial);
//void begin(uint8_t *, uint8_t, NewSoftSerial *theSerial);
void sendData();
boolean receiveData();
private:

40

HardwareSerial *_serial;
//NewSoftSerial *_serial;
uint8_t * address; //address of struct
uint8_t size; //size of struct
uint8_t * rx_buffer; //address for temporary storage and parsing buffer
uint8_t rx_array_inx; //index for RX parsing buffer
uint8_t rx_len; //RX packet length according to the packet
uint8_t calc_CS; //calculated Chacksum
};

#endif

EasyTransfer.cpp

#include "EasyTransfer.h"

//Captures address and size of struct
void EasyTransfer::begin(uint8_t * ptr, uint8_t length, HardwareSerial *theSerial){
 address = ptr;
 size = length;
 _serial = theSerial;

 //dynamic creation of rx parsing buffer in RAM
 rx_buffer = (uint8_t*) malloc(size);
}

//Sends out struct in binary, with header, length info and checksum
void EasyTransfer::sendData(){
 uint8_t CS = size;
 _serial->write(0x06);
 _serial->write(0x85);
 _serial->write(size);
 for(int i = 0; i<size; i++){
 CS^=*(address+i);
 _serial->write(*(address+i));
 }
 _serial->write(CS);

}

boolean EasyTransfer::receiveData(){

 //start off by looking for the header bytes. If they were already found in a previous
call, skip it.
 if(rx_len == 0){
 //this size check may be redundant due to the size check below, but for now I'll leave
it the way it is.
 if(_serial->available() >= 3){

41

 //this will block until a 0x06 is found or buffer size becomes less then 3.
 while(_serial->read() != 0x06) {
 //This will trash any preamble junk in the serial buffer
 //but we need to make sure there is enough in the buffer to process while
we trash the rest
 //if the buffer becomes too empty, we will escape and try again on the next
call
 if(_serial->available() < 3)
 return false;
 }
 if (_serial->read() == 0x85){
 rx_len = _serial->read();
 //make sure the binary structs on both Arduinos are the same size.
 if(rx_len != size){
 rx_len = 0;
 return false;
 }
 }
 }
 }

 //we get here if we already found the header bytes, the struct size matched what we
know, and now we are byte aligned.
 if(rx_len != 0){
 while(_serial->available() && rx_array_inx <= rx_len){
 rx_buffer[rx_array_inx++] = _serial->read();
 }

 if(rx_len == (rx_array_inx-1)){
 //seem to have got whole message
 //last uint8_t is CS
 calc_CS = rx_len;
 for (int i = 0; i<rx_len; i++){
 calc_CS^=rx_buffer[i];
 }

 if(calc_CS == rx_buffer[rx_array_inx-1]){//CS good
 memcpy(address,rx_buffer,size);
 rx_len = 0;
 rx_array_inx = 0;
 return true;
 }

 else{
 //failed checksum, need to clear this out anyway
 rx_len = 0;
 rx_array_inx = 0;
 return false;
 }

 }
 }

 return false;
}

42

TLC5940Mux.h

/* Copyright (c) 2009 by Alex Leone <acleone ~AT~ gmail.com>

 This file is part of the Arduino TLC5940 Library.

 The Arduino TLC5940 Library is free software: you can redistribute it
 and/or modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation, either version 3 of the
 License, or (at your option) any later version.

 The Arduino TLC5940 Library is distributed in the hope that it will be
 useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with The Arduino TLC5940 Library. If not, see
 <http://www.gnu.org/licenses/>. */

#ifndef TLC5940MUX_H
#define TLC5940MUX_H

#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdint.h>
#include "tlcMux_config.h"
#include "tlcMux_shift8.h"

/** Enables the output of XLAT pulses */
#define enable_XLAT_pulses() TCCR1A = _BV(COM1A1) | _BV(COM1B1)
/** Disables the output of XLAT pulses */
#define disable_XLAT_pulses() TCCR1A = _BV(COM1B1)

static void TlcMux_init(uint16_t initialValue = 0);
static void TlcMux_clear(void);
static void TlcMux_clearRow(uint8_t row);
static uint16_t TlcMux_get(uint8_t row, TLC_CHANNEL_TYPE channel);
static void TlcMux_set(uint8_t row, TLC_CHANNEL_TYPE channel, uint16_t value);
static void TlcMux_setAll(uint16_t value);
static void TlcMux_setRow(uint8_t row, uint16_t value);
static inline void TlcMux_shiftRow(uint8_t row);
#if VPRG_ENABLED
static void TlcMux_setAllDC(uint8_t value);
static void TlcMux_dcModeStart(void);
static void TlcMux_dcModeStop(void);
#endif
#if XERR_ENABLED
static uint8_t TlcMux_readXERR(void);
#endif

static uint8_t tlcMux_GSData[NUM_ROWS][NUM_TLCS * 24];

/** Pin i/o and Timer setup. The grayscale register will be reset to all
 zeros, or whatever initialValue is set to and the Timers will start.

43

 \param initialValue = 0, optional parameter specifing the inital startup
 value */
static void TlcMux_init(uint16_t initialValue)
{
 /* Pin Setup */
 XLAT_DDR |= _BV(XLAT_PIN);
 BLANK_DDR |= _BV(BLANK_PIN);
 GSCLK_DDR |= _BV(GSCLK_PIN);
#if VPRG_ENABLED
 VPRG_DDR |= _BV(VPRG_PIN);
 VPRG_PORT &= ~_BV(VPRG_PIN); // grayscale mode (VPRG low)
#endif
#if XERR_ENABLED
 XERR_DDR &= ~_BV(XERR_PIN); // XERR as input
 XERR_PORT |= _BV(XERR_PIN); // enable pull-up resistor
#endif
 BLANK_PORT |= _BV(BLANK_PIN); // leave blank high (until the timers start)
 TlcMux_shift8_init();
 TlcMux_setAll(initialValue);
 /* Timer 1 - BLANK / XLAT */
 TCCR1A = _BV(COM1B1); // non inverting, output on OC1B, BLANK
 TCCR1B = _BV(WGM13); // Phase/freq correct PWM, ICR1 top
 OCR1A = 1; // duty factor on OC1A, XLAT is inside BLANK
 OCR1B = 2; // duty factor on BLANK (larger than OCR1A (XLAT))
 ICR1 = TLC_PWM_PERIOD; // see tlc_config.h
#ifdef TLC_ATMEGA_8_H
 TIFR |= _BV(TOV1);
 TIMSK = _BV(TOIE1);
#else
 TIFR1 |= _BV(TOV1);
 TIMSK1 = _BV(TOIE1);
#endif
 /* Timer 2 - GSCLK */
#if defined(TLC_ATMEGA_8_H)
 TCCR2 = _BV(COM20) // set on BOTTOM, clear on OCR2A (non-inverting),
 | _BV(WGM21); // output on OC2B, CTC mode with OCR2 top
 OCR2 = TLC_GSCLK_PERIOD / 2; // see tlc_config.h
 TCCR2 |= _BV(CS20); // no prescale, (start pwm output)
#elif defined(TLC_TIMER3_GSCLK)
 TCCR3A = _BV(COM3A1) // set on BOTTOM, clear on OCR3A (non-inverting),
 // output on OC3A
 | _BV(WGM31); // Fast pwm with ICR3 top
 OCR3A = 0; // duty factor (as short a pulse as possible)
 ICR3 = TLC_GSCLK_PERIOD; // see tlc_config.h
 TCCR3B = _BV(CS30) // no prescale, (start pwm output)
 | _BV(WGM32) // Fast pwm with ICR3 top
 | _BV(WGM33); // Fast pwm with ICR3 top
#else
 TCCR2A = _BV(COM2B1) // set on BOTTOM, clear on OCR2A (non-inverting),
 // output on OC2B
 | _BV(WGM21) // Fast pwm with OCR2A top
 | _BV(WGM20); // Fast pwm with OCR2A top
 TCCR2B = _BV(WGM22); // Fast pwm with OCR2A top
 OCR2B = 0; // duty factor (as short a pulse as possible)
 OCR2A = TLC_GSCLK_PERIOD; // see tlc_config.h
 TCCR2B |= _BV(CS20); // no prescale, (start pwm output)
#endif
 TCCR1B |= _BV(CS10); // no prescale, (start pwm output)

44

}

/** Clears the grayscale data array, #tlc_GSData, but does not shift in any
 data. This call should be followed by update() if you are turning off
 all the outputs. */
static void TlcMux_clear(void)
{
 for (uint8_t row = 0; row < NUM_ROWS; row++) {
 TlcMux_clearRow(row);
 }
}

static void TlcMux_clearRow(uint8_t row)
{
 uint8_t *rowp = tlcMux_GSData[row];
 uint8_t * const end = rowp + NUM_TLCS * 24;
 while (rowp < end) {
 *rowp++ = 0;
 }
}

/** Gets the current grayscale value for a channel
 \param channel (0 to #NUM_TLCS * 16 - 1). OUT0 of the first TLC is
 channel 0, OUT0 of the next TLC is channel 16, etc.
 \returns current grayscale value (0 - 4095) for channel
 \see set */
static uint16_t TlcMux_get(uint8_t row, TLC_CHANNEL_TYPE channel)
{
 TLC_CHANNEL_TYPE index8 = (NUM_TLCS * 16 - 1) - channel;
 uint8_t *index12p = tlcMux_GSData[row] + ((((uint16_t)index8) * 3) >> 1);
 return (index8 & 1)? // starts in the middle
 (((uint16_t)(*index12p & 15)) << 8) | // upper 4 bits
 *(index12p + 1) // lower 8 bits
 : // starts clean
 (((uint16_t)(*index12p)) << 4) | // upper 8 bits
 ((*(index12p + 1) & 0xF0) >> 4); // lower 4 bits
 // that's probably the ugliest ternary operator I've ever created.
}

/** Sets channel to value in the grayscale data array, #tlc_GSData.
 \param channel (0 to #NUM_TLCS * 16 - 1). OUT0 of the first TLC is
 channel 0, OUT0 of the next TLC is channel 16, etc.
 \param value (0-4095). The grayscale value, 4095 is maximum.
 \see get */
static void TlcMux_set(uint8_t row, TLC_CHANNEL_TYPE channel, uint16_t value)
{
 TLC_CHANNEL_TYPE index8 = (NUM_TLCS * 16 - 1) - channel;
 uint8_t *index12p = tlcMux_GSData[row] + ((((uint16_t)index8) * 3) >> 1);
 if (index8 & 1) { // starts in the middle
 // first 4 bits intact | 4 top bits of value
 *index12p = (*index12p & 0xF0) | (value >> 8);
 // 8 lower bits of value
 *(++index12p) = value & 0xFF;
 } else { // starts clean
 // 8 upper bits of value
 *(index12p++) = value >> 4;
 // 4 lower bits of value | last 4 bits intact
 *index12p = ((uint8_t)(value << 4)) | (*index12p & 0xF);

45

 }
}

/** Sets all channels to value.
 \param value grayscale value (0 - 4095) */
static void TlcMux_setAll(uint16_t value)
{
 for (uint8_t row = 0; row < NUM_ROWS; row++) {
 TlcMux_setRow(row, value);
 }
}

static void TlcMux_setRow(uint8_t row, uint16_t value)
{
 uint8_t firstByte = value >> 4;
 uint8_t secondByte = (value << 4) | (value >> 8);
 uint8_t *p = tlcMux_GSData[row];
 uint8_t * const end = p + NUM_TLCS * 24;
 while (p < end) {
 *p++ = firstByte;
 *p++ = secondByte;
 *p++ = (uint8_t)value;
 }
}

static inline void TlcMux_shiftRow(uint8_t row)
{
 uint8_t *p = tlcMux_GSData[row];
 uint8_t * const end = p + NUM_TLCS * 24;
 while (p < end) {
 TlcMux_shift8(*p++);
 TlcMux_shift8(*p++);
 TlcMux_shift8(*p++);
 }
}

#if VPRG_ENABLED

/** Sets the dot correction for all channels to value. The dot correction
 value correspondes to maximum output current by
 \f$\displaystyle I_{OUT_n} = I_{max} \times \frac{DCn}{63} \f$
 where
 - \f$\displaystyle I_{max} = \frac{1.24V}{R_{IREF}} \times 31.5 =
 \frac{39.06}{R_{IREF}} \f$
 - DCn is the dot correction value for channel n
 \param value (0-63) */
static void TlcMux_setAllDC(uint8_t value)
{
 TlcMux_dcModeStart();

 uint8_t firstByte = value << 2 | value >> 4;
 uint8_t secondByte = value << 4 | value >> 2;
 uint8_t thirdByte = value << 6 | value;

 for (TLC_CHANNEL_TYPE i = 0; i < NUM_TLCS * 12; i += 3) {
 tlc_shift8(firstByte);
 tlc_shift8(secondByte);
 tlc_shift8(thirdByte);

46

 }
 XLAT_PORT |= _BV(XLAT_PIN);
 XLAT_PORT &= ~_BV(XLAT_PIN);

 TlcMux_dcModeStop();
}

/** Switches to dot correction mode and clears any waiting grayscale latches.*/
static void TlcMux_dcModeStart(void)
{
 disable_XLAT_pulses(); // ensure that no latches happen
 clear_XLAT_interrupt(); // (in case this was called right after update)
 tlc_needXLAT = 0;
 VPRG_PORT |= _BV(VPRG_PIN); // dot correction mode
}

/** Switches back to grayscale mode. */
static void TlcMux_dcModeStop(void)
{
 VPRG_PORT &= ~_BV(VPRG_PIN); // back to grayscale mode
 firstGSInput = 1;
}

#endif

#if XERR_ENABLED

/** Checks for shorted/broken LEDs reported by any of the TLCs.
 \returns 1 if a TLC is reporting an error, 0 otherwise. */
static uint8_t TlcMux_readXERR(void)
{
 return ((XERR_PINS & _BV(XERR_PIN)) == 0);
}

#endif

#endif

	1. Introduction
	1.1 Project Overview
	1.2 High Level Design
	1.3 Block Descriptions
	1.3.1 IR Sensors
	1.3.2 Controller 1
	1.3.3 Controller 2
	1.3.4 LED Driver Circuit
	1.3.5 LED Display

	1.4 Design Revisions

	2 Design
	2.1 IR Sensors
	2.1.1 Design Procedure
	2.1.2 Design Details

	2.2 Controller 1
	2.2.1 Design Procedure
	2.2.2 Design Details

	2.2 Controller 2
	2.2.1 Design Procedure
	2.2.2 Design Details

	2.4 LED Driver Circuit
	2.4.1 Design Procedure
	2.4.2 Design Details

	2.5 LED Display
	2.5.1 Design Procedure
	2.5.2 Design Details

	3. Design Verification
	3.1 IR Sensors
	3.2 Controller 1
	3.3 Controller 2
	3.4 LED Driver Circuit
	3.5 LED Display

	4. Costs
	4.1 Parts
	4.2 Labor

	5. Conclusion
	5.1 Accomplishments
	5.2 Uncertainties
	5.3 Future Work
	5.3 Ethical considerations

	References
	Appendix A Requirement and Verification Table
	Appendix B Controller 1 Game Logic: tetris.ino
	Appendix C Controller 2 Display Code: receiver.ino
	Appendix D: EasyTransfer Code

