

Multipurpose Key Chain with Lock Device

By

Junting Lou

Yaming Tang

Lida Zhu

Final Report

ECE 445, Senior Design

(Fall 2012)

TA: Rajarshi Roy

08 December 2012

Project No. 11

1

Abstract

This project involves building two separating circuits implementing the design of a multipurpose

keychain with its associated lock device. It aims to solve a numbers of daily problems incurred

from mechanical locks.

The keychain in the completed design carries 8 keys with 8 LEDs corresponding to each of them.

There is a separate device to be installed on a mechanical lock. Both devices have an Atmel

ATmega328 microcontroller and a Bluetooth transceiver. With wireless communication enables

between them, up-to-date status about whether a lock is locked can be updated and stored in the

keychain. The keychain is also able to indicate the correct key to a certain lock based on a unique

lock ID. The keychain is also equipped with a buzzer which can be triggered by the lock device

when one cannot find the keys. In addition, remotely locking or unlocking a door is also

implemented.

The project was completed with a few minor variations from the initial design and we are able to

have all predefined functionalities working. Although the actual products have a few drawbacks

at this moment, with the current design, a few modifications will absolutely make it worth

produced and marketed in the future.

2

Contents

Abstract……………………………………………………………………………………………1

Contents…………………………………………………………………………………………...2

1. Introduction……………………………………………………………………………………..3

 1.1. General Introduction………………………………………………………………….3

 1.2. Blocks and Modules…………………………………………………………………4

 1.2.1. Microcontroller Unit………………………………………………………..4

 1.2.2. Power Supply……………………………………………………………….4

 1.2.3. Bluetooth……………………………………………………………………4

 1.2.4. Sensor……………………………………………………………………….4

 1.2.5. Buzzer and LEDs…………………………………………………………...4

 1.2.6. Servo Motor………………………………………………………………...4

 1.3. Functionality………………………………………………………………………….5

2. Design…………………………………………………………………………………………..6

 2.1. Power Supply…………………………………………………………………………6

 2.2. Microcontroller Unit………………………………………………………………….6

 2.2.1. ATmega328P-PU…………………………………………………………...6

 2.2.2. ATmega328 on Breadboard………………………………………………...7

 2.2.3. Addressable Latches………………………………………………………..7

 2.3. Bluetooth Transceivers……………………………………………………………….8

 2.3.1. Configuration……………………………………………………………….8

 2.3.2. Connection and Logic Level Converter…………………………………….9

 2.4. Sensor………………………………………………………………………………..10

 2.5. PCB………………………………………………………………………………….10

3. Requirements and Verifications…………………….…...11

 3.1. Power Supply………………………………………………………………………..11

 3.2. Microcontroller Unit………………………………………………………………...12

 3.3. Bluetooth…………………………………………………………………………….13

 3.4. Sensor………………………………………………………………………………..14

 3.5. Buzzer……………………………………………………………………………….14

 3.6. Failed Requirements………………………………………………………………...15

4. Cost……………………………………………………………………………………………16

 4.1. Parts…………………………………………………………………………………16

 4.2. Labor………………………………………………………………………………..16

5. Conclusion…………………………………………………………………………………….17

 5.1. Accomplishments……………………………………………………………………17

 5.2. Uncertainties………………………………………………………………………...17

 5.3. Future Work…………………………………………………………………………18

 5.4. Ethical Considerations………………………………………………………………18

 5.5. Acknowledgements………………………………………………………………….19

Reference………………………………………………………………………………………...20

Appendix A – Figures and Pictures……………………………………………………………...21

Appendix B – Requirements and Verifications Table…………………………………………...27

Appendix C – Microcontroller Code (Lock Device #3)…………………………………………35

Appendix D – Microcontroller Code (Keychain)………………………………………………..38

3

1. Introduction

1.1 General Introduction

Despite the improvement in the variety of locking devices available in the market, including

electronic keycards and fingerprint recognition, mechanical locks still play a very significant role

in our everyday life. Our project in general is targeted to solve problems associated with

mechanical locks. By building a keychain and corresponding lock devices, one is able to access

information about whether a certain lock is locked at anytime. Also, it is not anymore a problem

identifying the correct key out of a number of similar or identical ones. The key chain is

equipped with a buzzer which can be triggered when one cannot find it. Last but not least,

similar to any car key nowadays, one could remotely lock or unlock a door with the keychain.

Both the key chain and the lock devices are controlled by an Atmel ATmega328 microcontroller

and they communicate with each other via Bluetooth. Other parts such as LEDs, buzzer and

servo motor are installed for various purposes. Current development aims to build a prototype

with a key chain that holds 8 keys. In the future, other functionalities and extensions can be

added to improve the overall marketability of the product.

Figure 1.1 below is the basic block diagram illustrating how this project is designed and

constructed. The listed blocks and modules will be explained in greater depth in the next section.

Fig. 1.1 Block Diagram

4

1.2 Blocks and Modules

1.2.1 Microcontroller Unit

On both the keychain and the lock device, an Atmel ATmega328 chip will be used as the

microcontroller. They are preloaded with the Arduino UNO bootloader and will be programmed

using the Arduino programming environment with the help of the FT232RL USB to serial

breakout board. It is responsible for processing all information received via Bluetooth or button

presses and generating correct output.

1.2.2 Power Supply

On both the keychain and the lock device, a 9V alkaline battery will act as the power source. In

addition, a 5V voltage regulator and a 3.3V voltage regulator are going to be used to produce the

correct voltage. The entire circuit will be operating at 5V except for the logic level converter that

will need both 5V and 3.3V input voltages.

1.2.3 Bluetooth

The wireless communication between two devices is achieved over Bluetooth. The Bluetooth

module this project makes use of is the HC-05 Bluetooth transceiver. How these modules are

configured and paired will be explained in greater details in Chapter 2.

1.2.4 Sensor

The built-in sensor in the lock device is simply designed using a voltage divider circuit. It is able

to keep track of whether the lock is locked or unlocked at the moment by sensing whether the

latch is inside the socket.

1.2.5 Buzzer and LEDs

The display interface on the keychain makes use of a buzzer and 8 bi-color (red and green) LEDs

with common cathode. The LEDs are responsible for displaying the status of all locks as well as

indicating the correct lock upon a button press. The buzzer will be triggered in order for the user

to locate where the keychain is.

1.2.5 Servo Motor

The servo motor we chose is the Parallax continuous rotation servo motor. Through the

microcontroller, we could tell the servo to rotate at a specific speed for a certain time period.

This makes it possible to tell it to rotate for a specific angle so as to perform the actions of lock

and unlock.

5

1.3 Functionality

The objectives of the project up from the design stage are all met except that the Ethernet module

is removed from the design as it is not a function that people will use frequently and some issues

such as security are involved in the design. Instead, remotely lock and unlock via Bluetooth

communication is added into the project. There are a total of 8 bi-color LEDs on the keychain,

each corresponding to a key-lock pair. Whenever a door is locked or unlocked with the keychain,

the built-in sensor on the lock side will update the status in the keychain. Therefore, one is able

to access such information from anywhere anytime. The lock device is equipped with two

buttons, one of them being able to trigger the buzzer on the keychain and the other one will ask

the keychain to light up the LED corresponding to this particular lock. Figure 1.2 below shows

the completed keychain PCB with 8 LEDs.

Fig. 1.2 Keychain

6

2. Design

2.1 Power Supply

The power source on both devices comes from a 9V alkaline battery each. As the circuit mainly

requires 5V voltage with a few exceptions that require 3.3V, 9V battery seems to be the best

choice considering its size and feasibility to step the voltage to a variety of what we need.

Another possible choice is to use 4 AAA batteries but they will occupy a lot more space than a

single 9V battery does.

To step the voltage down, we made use of two voltage regulators, LM7805AC (5V, 1A) and

UA78M33C (3.3V, 500mA) on both devices. Our circuits need 5V and 3.3V voltage supplies

and lower than 200mA current under full operation mode. Both these voltage regulators are 3-pin

devices with an input, an output and a ground pin. The basic connection is illustrated in Fig. 2.1

below using example of the 5V regulator. It is noted that a 0.33uF capacitor is connected from

input to ground while a 0.1uF capacitor is connected from output to ground.

Fig.2.1 Voltage Regulator circuit

2.2 Microcontroller Unit

2.21 ATmega328P-PU

Although a variety of microcontrollers that can accomplish the tasks, Arduino microcontrollers

seem to be the most widely used ones for lots of project nowadays. Using an integrated Arduino

microcontroller board is going to take up a lot of space. Also, an Arduino board such as Arduino

UNO costs a lot more than just a single microcontroller IC chip. Bearing these considerations in

mind, we decided to use the Atmel ATmega328P-PU chip which is the exactly same chip that is

used on an Arduino UNO. The chips that we purchased are preloaded with the UNO Optiboot

bootloader. This enables us to program it through the Arduino software at treating it as an

Arduino UNO. The microcontroller has 14 digital I/O pins and 6 analog input pins which will

fulfill our needs.

7

2.22 ATmega328 on Breadboard

In order to have this microcontroller working on a breadboard, some external connections are

necessary. This is further illustrated in Fig. 2.2 below.

Fig. 2.2 Basic ATmega328 Setup on Breadboard

Firstly, the Vcc and ground pins are connected to 5V and ground respectively. Then, a 16MHz

crystal oscillator is connected between pin 9 and pin 10 with a 22pF capacitors connected from

each of these pins to ground. Not included in this figure is the connection on the reset pin (Pin 1).

A push button is used to enable the reset feature of the Breadboad Arduino. The top left pin of

the button is connected to ground and the bottom left one is connected to pin 1 of the

microcontroller. Whenever the button is pressed, pin 1 is connected to ground and causes the

controller to reset. Also necessary is a pull up resistor connected from pin 1 to Vcc. The resistor I

used has a resistance value of 10kΩ. This makes sure that when the button is not pressed, pin 1 is

always pulled up to Vcc, preventing the chip from resetting itself. When all the above steps are

performed, the microcontroller is successfully set up. It came in with a preloaded LED blink

program. By connected an LED and a resistor from pin 13 to ground, we are able to see the

effect of the blink program. The LED starts blinking slowly and speeds up gradually and finally

stops.

2.23 Addressable Latches

The reason for using addressable latches (74LS259) is that we want to update all LEDs at the

same time instead of one by one. We need some storing units to store the information about the

color of a specific LED while updating the rest. To display information about all locks, bi-color

LEDs (red and green) are used. The addressable latch on the top right corner accounts for the red

colors and the other accounts for the green colors. Pin 13 on the addressable latches are the data

inputs and pin 14 and pin 15 are used to switch among different modes of the latches. When pin

14 and pin 15 are both high, the outputs from the addressable latches will not change and they

are in memory mode. When pin 14 is low and pin 15 is high, the data from pin 13 will be

updated to the output specified by the address pins without changing the values of the other

outputs. In general, status of each lock will be obtained from the corresponding location in a

predefined array. If it is true, the data denoting red will be high and that denoting green will be

low. If it is false, it is the other way. Then the address bits will be determined based on the lock

8

number, i.e. the array index. Then color will be updated piecewise to each output of the

addressable latches. The schematic involving just the microcontroller and the addressable latches

is included in Fig.2.3 below.

Fig. 2.3 Schematic of Keychain Display Module

2.3 Bluetooth Transceivers

The Bluetooth transceivers in this project are responsible for sending and receiving data at both

devices. It is the most crucial component of the design since all functionalities are based on

successful transmitting of data quickly and reliably. The Bluetooth module chosen for this

project is the HC-05 Bluetooth transceiver modules. Bluetooth connection can only be set up

between a master and a slave module, meaning that neither two masters nor two slaves could

establish connections. In addition, to have two modules paired, they need to have the same

paring code. The HC-05 modules are master/slave modules, meaning that each of them could be

configured to be a master or a slave whenever the user wants.

2.3.1 Configuration

The Bluetooth modules can be configured using AT

command though any serial communication software. In

this case, we chose to use Putty. To enter the AT mode of

the module, Pin 34 has to be grounded first when the chip is

powered. Then it automatically enters AT mode when pin

34 is connected to 5V. To have the Bluetooth chip

communicating with the computer, the FTDI breakout board

that is used to program the microcontroller is used again

here. Figure 2.4 shows the connection for configuration of

the Bluetooth module. AT command is used to change the Fig.2.4 Configuration Circuit

9

name, the role (master/slave), the pairing code, the communication baud rate and a lot more of

the Bluetooth module. Table 2.1 below includes some of the most important AT commands that

are used in this project.

Table 2.1 Important AT Command

Purpose Command

Verify Connection AT

Set Name AT+NAME=<name>

Set Role AT+ROLE=1(Master)/0(Slave)

Set Pairing Code AT+PSWD=<password>

Pairing Options AT+CMODE=1(Auto)/0(Last Address)

2.3.2 Connection and Logic Level Converter

The original HC-05 Bluetooth chip requires 3.1V to 4.2V voltage input and has a data (RX/TX)

level voltage of around 3.3V. We purchased the breakout board because they do not require

soldering. These chips are able to operate at a voltage of 5V. However, the data level voltage is

still 3.3V. This can be seen from Fig 2.5 below.

Fig. 2.5 Bluetooth Transceiver Test Result

Fig 2.5 illustrates the result of a simple test involving two Bluetooth modules and two

microcontrollers. One of the controllers is made to send some data repeatedly over Bluetooth to

the other controller. The top waveform captures the data that comes out from the first

microcontroller and the bottom waveform captures that being received by the Bluetooth module

connected to the second controller. As seen above, the top waveform has a data level of 5V while

the bottom one being 3.3V. This means that some sort of converting process is required if we

want to connect data I/O from the Bluetooth module into the microcontroller. This is while we

made use of the logic level converter. The logic level converter that we purchases is able to

convert a 3.3V signal to 5V and vice versa. Details about how logic level converters are

connected can be found in the Appendix.

10

2.4 Sensor

The built-in sensor on the lock device needs to produce different output when the lock is in

different positions (locked/unlocked). The sensor makes use of a simple voltage divider circuit as

shown in Fig 2.6 below. Resistor R1 is 340kΩ each and R2 is 220Ω. The two black dots in the

circuit symbolize two open wires that are mounted inside the socket of the lock. When the lock is

locked, the conducting latch will make the circuit connected. When the lock is unlocked, the

circuit is open and therefore the output from the sensor will simply be 5V. When it is locked, the

output voltage can be derived from equation (2.1) below.

 (2.1)

Fig. 2.6 Sensor Circuit

2.5 PCB

The PCB design involves a few considerations. It is relatively easier for design the PCB on the

lock side as size is less considered to be a factor. On the keychain side, we want to make it as

small as possible. However, with the number of components that we have in our design and the

consideration of have wider traces for easier fabrication and soldering, we decided to make two

PCBs for our keychain. One of them has the main circuit with all components except the

Bluetooth module and the logic level converter which will be placed onto the second smaller

board. We placed some headers on them for later connection. Detailed information about PCB

designs can be found in the Appendix.

11

3. Requirements and Verifications

The detailed table of requirements and verifications from original design review can be found in

the Appendix. Since the Ethernet module is removed from the circuit, corresponding

requirements and verifications are no longer applicable. Most of the verifications met

requirements except the battery lifetime that is going to be explained subsequently.

3.1 Power Supply

Since all of the components in the circuit require either 5V or 3.3V voltage supplies, it is

important to have steady output from the voltage regulators.

The test that is performed can be illustrated in Fig 3.1 below.

Fig. 3.1 Test Circuit for Power Supply

The purpose of this test is to verify that the output from the voltage regulator stays at a value

around 5V with a tolerance of ±0.2V at a variety of current values. The current requirements for

both devices are estimated to be between 20mA to 200mA in the best and worst cases,

respectively. In Fig.3.1 above, Vo is the output from the voltage regulator circuit as described in

Fig.2.1 and the resistor value is varied to achieve desired current. The test is performed at current

values from 20mA to 200mA with 20mA intervals and the corresponding resistance values are

calculated based on Ohm’s Law in equation (3.1) below. Table.1 below illustrates results from

this test.

 (3.1)

From Table 3.1 below, at all current values with respective resistance, the voltage meet our

requirements of staying in the range of 5±0.2V. This confirms that the voltage regulator works

up to required standard. Exact same test is performed on 3.3V circuit and results also fall in the

accepted range.

12

Table.3.1 Test Results for Power Supply

R, Resistance (Ω) I, Current Reading (mA) V, Voltage Reading (V)

250 19.88 5.03

125 39.96 5.02

83 60.31 5.02

63 79.75 5.02

50 101.03 5.02

42 119.62 5.04

36 141.10 5.01

31 160.84 5.06

28 179.23 5.02

25 201.50 5.02

3.2 Microcontroller Unit

Regarding the microcontroller, there are two major issues. The first issue is that we want to make

sure that buttons are debounced if necessary. The second is that we want it to be able to display

correct information based on pre-stored data regarding the status of locks. This is also partly a

test for the operation of addressable latches.

As for the buttons, we verified that we do not need a special debouncing function for it. This is

mainly because that after each button press, the system needs to wait for about 4 to 5 seconds for

the Bluetooth modules to establish connection. During this time period, the bouncing of the

switches is already over.

In order to verify correct display of pre-stored data, we connected the circuit on the keychain

side with only the microcontroller, the addressable latches and the LEDs. The array holding data

in the microcontroller program is written with different combination of values and we observed

the color on the LEDs to see whether they match. Table 3.2 below illustrates the test results and

all tests pass by having the exactly correct display.

Table 3.2 Test Results for Keychain Display Interface

Stored Combination Verified

LLLLUUUU Yes

UUUULLLL Yes

LLUULLUU Yes

UULLUULL Yes

LULULULU Yes

ULULULUL Yes

LLUUUULL Yes

UULLLLUU Yes

LUUUUUUL Yes

ULLLLLLU Yes

13

3.3 Bluetooth

The primary reason we chose Bluetooth to be our protocol for wireless communication is that it

is one of the most reliable protocols which possibly fulfill our requirements for distance. The

features of the product require Bluetooth communication to be able to send and receive data

within 20 meters reliably. In addition, it should also work without any error when data is sent as

fast as once every 0.5 second.

The test we performed here is similar to that is mentioned in Section 2.3.2 where we made use of

two microcontrollers, each connected to a Bluetooth chip. On one of the microcontroller, an

integer variable will act as a counter and will increment from 0 over a set time period until 300..

The number then will be sent via Bluetooth to the other microcontroller. The other one will

display the information onto the computer screen via Putty. If all data is sent and received

successfully, we should see something like Fig 3.2 below.

Fig 3.2 Screen Output in Bluetooth Test

We performed this test with a number of distance between modules as well as different time

intervals for sending data and as illustrated in Table 3.3 below, all tests are passed, verifying that

the communication is reliable and accurate.

Table 3.3 Test Results of Bluetooth Test

 Time Interval

Distance

0.5s 1s 2s

0.1 m ✓ ✓ ✓

1 m ✓ ✓ ✓

5 m ✓ ✓ ✓

10 m ✓ ✓ ✓

20 m ✓ ✓ ✓

14

3.4 Sensor

The purpose of the sensor is to detect the change of status of a lock. Therefore, we need to make

sure that the output from the sensor can be accurately and quickly updated to the microcontroller

whenever one is locking or unlocking the door.

We verified this by attaching the sensor on the lock and repeatedly lock and unlock it for 20

times with a frequency of once every second. The output from the sensor is observed on the

oscilloscope. The captured waveform from the oscilloscope is included in Figure 3.3 below.

From the graph we can see that every action of locking and unlocking can be seen clearly and

updated very quickly.

Fig 3.3 Oscilloscope Output from Sensor Test

3.5 Buzzer

In order to make sure that the buzzer noise is loud enough to be heard, we created a few

situations for the test. The buzzer needs to be heard within 15 meters in an open space, within a

box or drawer or in an adjacent room. Table 3.4 shows the test results. It is confirmed that the

buzzer creates noise that is loud enough to be heard under a variety of situations.

Table 3.4 Results from Buzzer Test

 Conditions

Distance

Open Space Inside Locker Adjacent Room

1 m ✓ ✓ ✓

5 m ✓ ✓ ✓

10 m ✓ ✓ ✓

15 m ✓ ✓ ✓

20 m ✓ ✓ Not So Clear

15

3.6 Failed Requirements

The only requirement that is failed to be verified in this project is the battery lifetime. Based on

the design review, the battery needs to have a battery lifetime of more than 45 days provided

with reasonable assumptions. These assumptions include the number of operations the keychain

performs daily. However, under current circumstance, this requirement could not be fulfilled and

current battery can only last up to about 20 days under the same assumptions. The situation is

even worse on the lock device side because the servo motor is consuming a lot of power

continuously. This problems is not able to be solved with the current design, but is easily

solvable with a few modifications and improvements. It will be explained later in Section 5.3.

16

4. Cost

4.1 Parts

Table 4.1 Total Cost for Parts

Module Part
Unit

Cost
Number Subtotal

Power Supply

(Key Chain)

Energizer 522BP-2 9V Alkaline Battery 3.99 1 3.99

UA78M33C Voltage Regulator 1.18 1 1.18

LM7805AC Voltage Regulator 1.05 1 1.05

Power Supply

(Lock)

Energizer 522BP-2 9V Alkaline Battery 3.99 1 3.99

UA78M33C Voltage Regulator 1.18 1 1.18

LM7805AC Voltage Regulator 1.05 1 1.05

Bluetooth (Key

Chain)

HC-05 Bluetooth Transceiver Module
5.30 1 5.30

Bluetooth (Lock) HC-05 Bluetooth Transceiver Module 5.30 1 5.30

LEDs
Bi-Color LED – Common Cathode,

Pack of 10
2.00 1 2.00

Buzzer PCB Tone Alarm Buzzer 0.15 1 0.15

Motor
Parallax Continuous Rotation Servo

Motor
11.99 1 11.99

Controller (Key

Chain)

Atmel ATmega328P-PU

Microcontroller with Bootloader
5.50 1 5.50

USB to UART Bridge – FT232RL* 10.95 1 10.95

Controller (Lock)
Atmel ATmega328P-PU

Microcontroller with Bootloader
5.50 1 5.50

Misc.

Resistors, Capacitors, Wires, Tactile

Buttons, PCB and so on

10.00

(Esti-

mate)

1 10.00

Total
69.13

(58.18)

4.2 Labor

Table 4.2 Total Cost for Labor

Members $/Hour Hours/Week
Number of

Weeks
Total/Person

*Multiplier

(2.5)

Junting Lou 30 12 12 4320 10800

Yaming Tang 30 12 12 4320 10800

Lida Zhu 30 12 12 4320 10800

Total 32400

17

5. Conclusion

5.1 Accomplishments

We created a keychain on PCB with a corresponding lock device to be mounted on any

mechanical lock. The devices are able to demonstrate all four functionalities as previously

intended. Figure 5.1 below shows a picture of our final product.

Fig. 5.1 Final Product

5.2 Uncertainties

Although we are able to achieve all four functionalities working, there are a few uncertainties

involved in the final produce.

Firstly, as suggested in previous sections, the battery lifetime is relatively shorter than what we

intended. Secondly, after each button press, about 4 seconds are needed for the Bluetooth

modules to setup connection and this is not very efficient. In addition, the PCBs that we are

having right now are very big because of the limitations that we have in PCB designs and

fabrication. In the next section, we are going to suggest a few possible solutions to these

problems. Lastly, since there is no external memory unit in our design, all the information is

stored in the microcontroller as part of the program. This prevents users from turning off the

microcontroller, because the information will be lost whenever power is cut off.

18

5.3 Future Work

To solve the issue with battery lifetime, we can add a memory unit such as an SD card to the

design so that information about locks is no longer stored inside the microcontroller. Whenever

the keychain is not being used, we can power it off to save power. Since more concern regarding

power consumption comes from the lock device, we could possibly get rid of battery on the lock

side and instead use wall power since the lock device is always mounted stationary.

Another possible future work is to replace Bluetooth protocol with some other wireless

communication methods such as radio frequency or Xbee modules that can broadcast to others.

This could potentially eliminate the time needed for Bluetooth modules to pair up with each

other every time a button is pressed or a lock status changes.

Lastly, with more efficient PCB design and fabrication, the product can be a lot smaller than the

current one.

5.4 Ethical Considerations

Table 5.1 Relevant Ethical Considerations

Relevant IEEE Code of Ethics Relevance in Project

1. to accept responsibility in making decisions

consistent with the safety, health, and welfare

of the public, and to disclose promptly factors

that might endanger the public or the

environment;

The keychain that we developed is going to

integrate a battery as the power supply. We

made sure that the battery makes stable

performance at all times so that it does not

create potential harm to others. As we are

dealing with doors and locks, we will make

sure that the device to be develop does not

pose any safety or security issues on society.

3. to be honest and realistic in stating claims or

estimates based on available data;

We declare that all experimental data and

calculations illustrated in related documents in

the process of this project are honest and real.

6. to maintain and improve our technical

competence and to undertake technological

tasks for others only if qualified by training or

experience, or after full disclosure of pertinent

limitations;

We will not embark on producing or marketing

devices made in this course unless after

qualified training and approval.

7. to seek, accept, and offer honest criticism of

technical work, to acknowledge and correct

errors, and to credit properly the contributions

of others;

Our group accepted all constructive advice and

suggestions from people around us and will

acknowledge any contribution towards the

eventual result of this project.

19

5.5 Acknowledgements

We would like to thank Professor Andrew Singer and our TA Rajarshi Roy for their valuable

support and guidance throughout the process of the project. We would like to thank Mr. Skee

Aldrich and Mr. Scott McDonald from the ECE machine shop for making a nice door mounted

with our motor and sensor for our demo. We would like to thank Mr. Skot Wiedmann and Mr.

Mark Smart for their help with our PCB design and fabrication. Without all of the people

mentioned above and the others who have helped us in one way or another, this project could

never be completed.

20

References

Mellis, D. (2008, OCTOBER 23). Building an arduino on a breadboard. Retrieved from

http://arduino.cc/en/Main/Standalone

tigoe. (2009, MAY 28). Controlling lots of outputs from a microcontroller. Retrieved
from http://www.tigoe.com/pcomp/code/arduinowiring/486/

Amedee, C. (2011, DECEMBER 2). Easy bluetooth enabled door lock with arduino
android. Retrieved from http://www.instructables.com/id/Easy-Bluetooth-
Enabled-Door-Lock-With-Arduino-An/?ALLSTEPS

Microchip. (2012, July 30). enc28j60 stand-alone ethernet controller with spi
interface. Retrieved from
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en02288
9

21

Appendix A - Figures and Pictures

Fig. A.1 Control Flow (Lock Device)

22

Fig. A.2 Control Flow (Keychain)

Fig. A.3 Schematics (Keychain Bluetooth)

23

Fig. A.4 Schematics (Keychain Without Bluetooth)

24

Fig. A.5 Schematics (Lock Device)

25

Fig. A.6 PCB (Keychain Bluetooth)

Fig. A.7 PCB (Keychain Without Bluetooth)

26

Fig. A.8 PCB (Lock Device)

27

Appendix B – Requirements and Verifications Table

Table B.1 Requirements and Verifications Table

Module Requirements Verification Procedures

Power

Supply

(Key

Chain)

1. Supply steady 3.3V output voltage.

 a) Able to provide 3.3V output

voltage at various output current.

2. Able to last for a considerable

amount of time (45 days).

a) The worst case scenario is tested

assuming all components are

consuming maximum amount of power.

b) The average case is examined with

reasonable estimates and calculations.

1. a)

- A test circuit will be built using the

voltage output from the voltage

regulator with different values of

resistors

- Based on preliminary calculations, the

current output for standby mode is

around 100mA and will not exceed

300mA with all components active.

- Tests will be performed from 50mA to

300mA with 10mA intervals.

- Values of resistors are controlled to

obtain the current values.

- The voltage across resistor will be

measured using a multi-meter and

recorded.

Expected Results: At all current values,

the voltages measured should fall within

the range of 3.25V to 3.35V.

2. (This step is calculated, instead of

tested using bench equipment because it

is not possible to monitor the battery for

a long time over months. However, with

reasonable assumptions, the calculated

results should give a brief idea of the

power consumption of the devices.)

 a) Assuming all modules are

consuming maximum power, calculate

the time it is going to take before the

battery drains. This should give us a

brief idea of how long the device could

last at least.

 b) Estimate that an average user uses

the key chain 6 times a day and each

time the LEDs light up for 5 seconds.

28

Also assume that the buzzer is used

once every 3 days with duration of 15

seconds each time. Under these

circumstances, calculate the operating

current together with devices that

continuously draws power. The result

needs to be more than 45 days.

Power

Supply

(Lock)

1. Supply steady 3.3V output voltage

for entire circuit except the servo motor.

a) Able to provide 3.3V output

voltage at various output current.

b) Supply required voltage for servo

motor.

2. Same as “2.” from Power Supply

(Key Chain) section.

1. a) Same as “1. a)” in Power Supply

(Key Chain) section.

b)

- The servo motor operates best between

4.8V and 6V.

- The test will be set up using power

supply from the 3.3V voltage output.

- The current through the servo motor

will be measured using a multi-meter.

- The operation behavior will be

monitored too.

Expected Results: If the current falls

within the normal range suggested by

the data sheet and the operation

behavior of the servo motor is not

abnormal, 3.3V will be used. If not, a

different circuit will be used to provide

power to the servo motor.

2. Same as “2.” from Power Supply

(Key Chain) section except with

different estimations. The servo motor

together with the Ethernet module is

estimated to operate once every 6 days.

The corresponding result should be

more than 45 days.

LEDs 1. The LEDs should be able to light up

two distinguishably different colors.

1.

- The test circuit will be set up using the

bi-color LEDs with each input

connected to a 65 Ohm resistor.

- 3.3V voltage will be applied to each

pin of each LED.

Expected Results: The LED should

29

light up red with input to the red pin and

green with input to the green pin. These

colors should match the intended color

and should be easily distinguishable.

Buzzer 1. Able to produce sound to be heard

under variety of circumstances.

a) Able to hear sound within 15

meters in clear distance.

b) Able to hear sound within 10

meters in a separate room.

c) Able to hear sound within 10

meters with buzzer places in closed

objects, such as drawers and boxes.

1. a)

- The buzzer will be placed on a bread

board with 3.3V input voltage.

- It will be triggered by one of the group

members at 15 meters away from the

rest.

Expected Results: The other two

people have to be able to clearly hear

the buzzer and determine its location.

b)

- The same buzzer circuit from part (a)

will be triggered inside one of the rooms

in Everitt Lab 10 meters away from

where the other two members stand.

Expected Results: Both members have

to be able to hear the sound clearly and

determine which room it is in.

c)

- The same buzzer circuit will be

triggered inside a drawer at home with

two members standing 10 meters away.

Expected Results: Both members have

to be able to hear the sound clearly and

locate the buzzer.

Bluetooth

Transceiver

(Key

Chain)

1. The Bluetooth module on the key

chain should be able to receive data

reliably and quickly from the sender.

a) The Bluetooth module should

receive data from sender without errors

at distance between 0.1m to 15m.

b) The Bluetooth module should

receive data without errors within

closed objects or rooms.

c) No data is lost when the time

1. a) b)

- The Bluetooth transceiver will be

connected to an Arduino Uno board.

- The Arduino will be programmed to

send 300 sets of data with 2 second

intervals.

- The computer enabled with Bluetooth

will be the receiver and all data received

will be monitored on the screen.

Expected Results: All data should

30

interval between sending is short. arrive and be displayed on the screen

with no single error.

c)

- This is the same setup as described

above.

- The Arduino will be sending 100 sets

of data with 0.5 second interval.

Expected Results: All data should

arrive and be displayed on the screen

without losing any single one.

Bluetooth

Transceiver

(Lock)

1. The Bluetooth module on the lock

should be able to send data reliably and

quickly from the sender.

a) The Bluetooth module should send

data that is passed from the controller

without errors.

 b) No data is lost when the time

interval between sending is short.

1. a)

- The sender will be the same circuit

above with the receiver being another

Bluetooth module connected to an

ATmega328 chip.

- 300 sets of data will be sent and the

received data will be monitored on the

screen.

Expected Results: All data should

arrive and be displayed on the screen

with no single error.

c)

- This is the same setup as described

above.

- The Arduino will be sending 100 sets

of data with 0.5 second interval.

Expected Results: All data should

arrive and be displayed on the screen

without losing any single one.

Servo

Motor

1. Able to rotate a specified angle

correctly.

2. Able to turn lock’s knob to perform

lock and unlock.

1.

- The servo motor will be connected

with PWM output from the ATmega328

chip.

- The ATmega is programmed to send

out a series of control command

involving roting 10 to 180 degrees

clockwise with 10 degree interval.

- The servo needs to return to its original

31

position 5 seconds after each rotation.

- A protractor will be used to measure

the angle turned and all measurements

will be recorded.

- The same test is then performed with

the servo motor rotating counter-

clockwise.

Expected Results: All recorded data

should be within 1degree tolerance

range of the intended rotation.

2.

- The servo will be connected to a

mechanical lock.

- The angle to be turned in order to lock

and unlock the lock is recorded.

- The servo will receive command from

the ATmega328 chip to turn the

predetermined angle in order to lock and

unlock the lock.

- 10 locks and 10 unlocks are performed

and results are recorded.

Expected Results: All 20 operations

should be completed with no failures

meaning that each time the lock needs to

be locked or unlocked matching the

intentions.

Lock

Sensor

1. Should output correctly when the

status of lock changes.

2. Should keep track of the status of

lock with fast change of state, meaning

when lock and unlock are performed

with very short time interval.

1

- The sensor will be installed on a

mechanical lock.

- The lock will be manually locked and

unlocked 100 times each.

- The output is observed on an

oscilloscope.

Expected Results: The waveform on

the oscilloscope should match correctly

to the operations without a single error.

2.

- The same setup from part 1 will be

32

used.

- The door will be manually locked but

at a very fast speed by a group member.

- One other member will count the

number of times locks and unlocks

occurred.

Expected Results: The waveform on

the oscilloscope should not miss any of

the operations.

Ethernet

Module

1. Correctly receive information based

on controls sent via computers or smart

phones.

1.

- The Ethernet module will be connected

to the ATmega328 chip.

- 10 Sets of commands will be sent from

an iPhone, an Android phone, an iPad

and a computer each.

- The received command is decoded and

displayed on screen.

Expected Results: All data on screen

should match that sent from all devices

without any error.

Controller

(Key

Chain)

1. Detects button presses correctly.

a) Button needs to be debounced and

respond correctly to fast pressings.

2. Able to display correct information

by lighting up correct LEDs.

a) Correctly indicates the right key

given the lock ID.

b) Correctly light up all LEDs based

on stored information of lock status.

3. Able to store or output correct

information

1. a)

- The button will have one side being

connected to a 3.3V voltage source and

the other to an ATmega328 chip.

- The ATmega controller is

preprogrammed with a debounce

function and the output to an

oscilloscope is high when button is

pressed.

- The button will be manually pressed

100 times as fast as possible.

Expected Results: The output on the

oscilloscope should indicate 100

presses.

2. a)

- The controller will be connected to a

Bluetooth module.

- A total of 100 signals indicating lock

IDs will be sent.

- The controller will generate signals

light up the correct LED based on the

33

ID.

- The generated signal will be monitored

using an oscilloscope.

Expected Results: The output signal

should match the intended output to the

correct LED.

b)

- 10 sets of different combinations of the

locks’ status will be written into the

microcontroller.

- The LEDs are going to be attached to

the microcontroller as indicated in

schematics 2 in page 8.

- The behavior of all 8 LEDs will be

monitored and recorded.

Expected Results: The LEDs should

exactly match the pre-written

information about the locks for all 10

times.

3.

- Without the Bluetooth module

attached, an input pin will be used to

simulate the data input from the

Bluetooth module.

- 20 different Commands including

triggering buzzer and update

information will passed to the controller.

- The controller will generate different

output based on different information

received.

Expected Results: The output should

match the commands without single

error.

Controller

(Lock)

1. Same as “1.” from Controller (Key

Chain) section.

2. Correctly generates output signals to

be sent via Bluetooth and Ethernet.

1. Same as “1.” from Controller (Key

Chain) section.

2. a) b) c)

- A function generator will be used to

34

a) Correctly generate output for

updating status.

b) Correctly generate lock ID.

c) Correctly generate signal to trigger

buzzer.

d) Lock or unlock.

generate square wave simulating the

lock sensor and touch sensor.

- The output from the microcontroller

will be monitored on a computer.

Expected Results: The output needs to

show the exact command to be

generated based on the input from

different sensors without a single error.

35

Appendix C – Microcontroller Code (Lock Device #3)

#include <Servo.h>

int motorPin = 9;

int sensorPin = 10;

int btResetPin = 11;

int switchPin = 12;

int switchPin2 = 13;

Servo door3;

int lockID = 3;

boolean locked;

boolean currentLocked;

void setup()

{

 Serial.begin(9600);

 door3.attach(motorPin);

 pinMode(motorPin, OUTPUT);

 pinMode(sensorPin, INPUT);

 pinMode(btResetPin, OUTPUT);

 pinMode(switchPin, INPUT);

 pinMode(switchPin, INPUT);

 digitalWrite(btResetPin, LOW);

}

void loop()

{

 if(digitalRead(switchPin))

 {

 digitalWrite(btResetPin, HIGH);

 delay(5000);

 Serial.write(lockID);

 for(int i = 0; i <500; i++)

 {

 delay(10);

 if(Serial.available())

 {

 int val = Serial.read();

 if(val == 11)

 {

 if(locked)

36

 {

 door3.writeMicroseconds(1700);

 delay(500);

 }

 else

 {

 door3.writeMicroseconds(1300);

 delay(500);

 }

 door3.writeMicroseconds(1500);

 }

 }

 }

 digitalWrite(btResetPin, LOW);

 }

 else if(digitalRead(switchPin2))

 {

 digitalWrite(btResetPin, HIGH);

 delay(5000);

 Serial.write(9);

 delay(1000);

 digitalWrite(btResetPin, LOW);

 }

 /*else if(Serial.available()>0)

 {

 int val = Serial.read();

 if(val == 11)

 {

 if(locked)

 {

 door3.writeMicroseconds(1700);

 delay(500);

 }

 else

 {

 door3.writeMicroseconds(1300);

 delay(500);

 }

 }

 }*/

 door3.writeMicroseconds(1500);

 currentLocked = digitalRead(sensorPin);

 if(currentLocked == !locked)

 {

37

 digitalWrite(btResetPin, HIGH);

 delay(5000);

 if(currentLocked)

 Serial.write(30);

 else

 Serial.write(31);

 locked = currentLocked;

 delay(1000);

 digitalWrite(btResetPin,LOW);

 }

}

38

Appendix D – Microcontroller Code (Keychain)

boolean statusArray[8] = {false, true, true, true, false, false, true, true};

int switchPin = 5;

int switchPin2 = 4;

int redPin = 11;

int greenPin = 12;

int cPin = 10;

int ePin = 9;

int addrPin_2 = 8;

int addrPin_1 = 7;

int addrPin_0 = 6;

int lockID = 2;

int buzzerPin = 3;

int state = 0;

void setup()

{

 Serial.begin(9600);

 pinMode(switchPin, INPUT);

 pinMode(switchPin2, INPUT);

 pinMode(redPin, OUTPUT);

 pinMode(greenPin, OUTPUT);

 pinMode(cPin, OUTPUT);

 pinMode(ePin, OUTPUT);

 pinMode(addrPin_2, OUTPUT);

 pinMode(addrPin_1, OUTPUT);

 pinMode(addrPin_0, OUTPUT);

 pinMode(buzzerPin, OUTPUT);

}

void loop()

{

 switch(state)

 {

 case 0: //standby

 if(digitalRead(switchPin))

 {

 display();

 delay(500);

 state = 1;

 }

39

 else if(Serial.available()>0)

 {

 int val = Serial.read();

 if(val == 9)

 {

 state = 3;

 }

 else if(val < 9 && val > 0)

 {

 indicate(val-1);

 delay(500);

 state = 2;

 }

 else if(val == 10)

 {

 update(0, false);

 delay(20);

 }

 else if(val == 11)

 {

 update(0, true);

 delay(20);

 }

 else if(val == 20)

 {

 update(1, false);

 delay(20);

 }

 else if(val == 21)

 {

 update(1, true);

 delay(20);

 }

 else if(val == 30)

 {

 update(2, false);

 delay(20);

 }

 else if(val == 31)

40

 {

 update(2, true);

 delay(20);

 }

 else if(val == 40)

 {

 update(3, false);

 delay(20);

 }

 else if(val == 41)

 {

 update(3, true);

 delay(20);

 }

 else if(val == 50)

 {

 update(4, false);

 delay(20);

 }

 else if(val == 51)

 {

 update(4, true);

 delay(20);

 }

 else if(val == 60)

 {

 update(5, false);

 delay(20);

 }

 else if(val == 61)

 {

 update(5, true);

 delay(20);

 }

 else if(val == 70)

 {

 update(6, false);

 delay(20);

41

 }

 else if(val == 71)

 {

 update(6, true);

 delay(20);

 }

 else if(val == 80)

 {

 update(7, false);

 delay(20);

 }

 else if(val == 81)

 {

 update(7, true);

 delay(20);

 }

 Serial.flush();

 }

 break;

 case 1://display

 delay(4000);

 displayOff();

 state = 0;

 break;

 case 2://indicate

 for(int i = 0; i < 400; i++)

 {

 delay(10);

 if(digitalRead(switchPin2))

 {

 Serial.write(11);

 delay(20);

 break;

 }

 }

 displayOff();

 state = 0;

 break;

 case 3://buzzer

 buzzer();

42

 delay(20);

 state = 0;

 break;

 }

}

void update(int id, boolean lock)

{

 statusArray[id] = lock;

}

void buzzer()

{

 int buzzerCount = 0;

 boolean buzzerOn = true;

 while(buzzerOn && buzzerCount<30)

 {

 digitalWrite(buzzerPin, HIGH);

 delay(1000);

 buzzerCount++;

 if(digitalRead(switchPin))

 buzzerOn = false;

 }

 digitalWrite(buzzerPin, LOW);

 delay(500);

}

void displayOff()

{

 for(int i = 0; i < 8; i++)

 {

 boolean a2;

 boolean a1;

 boolean a0;

 if((i>>2)&1 == 1)

 a2 = true;

 else a2 = false;

 if((i>>1)&1 == 1)

 a1 = true;

 else a1 = false;

 if(i&1 == 1)

 a0 = true;

 else a0 = false;

 boolean red = false;

43

 boolean green = false;

 digitalWrite(cPin, HIGH);

 digitalWrite(ePin, HIGH);

 digitalWrite(redPin, red);

 digitalWrite(greenPin, green);

 digitalWrite(addrPin_2, a2);

 digitalWrite(addrPin_1, a1);

 digitalWrite(addrPin_0, a0);

 digitalWrite(cPin, HIGH);

 digitalWrite(ePin, LOW);

 delay(20);

 digitalWrite(cPin, HIGH);

 digitalWrite(ePin, HIGH);

 }

}

void indicate(int id)

{

 for(int i = 0; i < 8; i++)

 {

 boolean s = statusArray[i];

 boolean a2;

 boolean a1;

 boolean a0;

 if((i>>2)&1 == 1)

 a2 = true;

 else a2 = false;

 if((i>>1)&1 == 1)

 a1 = true;

 else a1 = false;

 if(i&1 == 1)

 a0 = true;

 else a0 = false;

 boolean red;

 boolean green;

 if(id == i)

 {

 if(s)

 {

 red = true;

 green = false;

 }

44

 else

 {

 red = false;

 green = true;

 }

 }

 else

 {

 red = false;

 green = false;

 }

 digitalWrite(cPin, HIGH);

 digitalWrite(ePin, HIGH);

 digitalWrite(redPin, red);

 digitalWrite(greenPin, green);

 digitalWrite(addrPin_2, a2);

 digitalWrite(addrPin_1, a1);

 digitalWrite(addrPin_0, a0);

 digitalWrite(cPin, HIGH);

 digitalWrite(ePin, LOW);

 delay(20);

 digitalWrite(cPin, HIGH);

 digitalWrite(ePin, HIGH);

 }

}

void display()

{

 for(int i = 0; i < 8; i++)

 {

 boolean s = statusArray[i];

 boolean a2;

 boolean a1;

 boolean a0;

 if((i>>2)&1 == 1)

 a2 = true;

 else a2 = false;

 if((i>>1)&1 == 1)

 a1 = true;

 else a1 = false;

 if(i&1 == 1)

 a0 = true;

45

 else a0 = false;

 boolean red;

 boolean green;

 if(s)

 {

 red = true;

 green = false;

 }

 else

 {

 red = false;

 green = true;

 }

 digitalWrite(cPin, HIGH);

 digitalWrite(ePin, HIGH);

 digitalWrite(redPin, red);

 digitalWrite(greenPin, green);

 digitalWrite(addrPin_2, a2);

 digitalWrite(addrPin_1, a1);

 digitalWrite(addrPin_0, a0);

 digitalWrite(cPin, HIGH);

 digitalWrite(ePin, LOW);

 delay(20);

 digitalWrite(cPin, HIGH);

 digitalWrite(ePin, HIGH);

 }

}

