Multipurpose Key Chain with Lock Device

ECE 445 | Senior Design Project

Design Review

Date: 10/01/2012

Junting Lou | Yaming Tang | Lida Zhu

TA: Rajarshi Roy

Contents

Introduction	2
Objectives	
Benefits	
Features	2
Design	
Block Diagram	4
Block Descriptions	
Schematics	7
Control Flow	
Calculations	11
Test & Verification	
Requirements and Verifications	
Tolerance Analysis	
Ethic Considerations	
Cost Analysis	
Parts	
Labor	
Total	
Schedule	
References	

Introduction

Despite the improvement in the variety of locking devices available in the market, including electronic keycards and fingerprint recognition, mechanical locks still play a significant role in our everyday life. Such locks inevitably create problems to lots of people. More than often, one always tries to remember whether he or she locks the door when leaving the apartment. You have to either go back to check it or just live with the anxiety. Remember the time when you stand outside of your office or laboratory with a bunch of similar or identical ones, from which you have to find the correct one? Or the time you try to recall where you leave the keys in your room? Such trivial but annoying problems will not just go away without getting rid of all the mechanical locks. We aim to solve these problems with a key chain that is easy to carry and use.

Objectives

The key chain that we are going to implement will be a working prototype of any possible extensions. It will carry 8 keys with LEDs attached to each of them. Every lock is installed with a corresponding device as well. Whenever the status of a certain lock (locked or unlocked) changes in range, the information will be updated to the key chain via Bluetooth and stored. This information can be triggered to be displayed anytime from anywhere with the RGB LED indicators. When someone is near a door, by pressing a button on the door, the key chain could identify the right key for it by lighting up the LED corresponding to it. A small buzzer (speaker) will be installed on the key chain that can be triggered by any door device if in range for one to trace where it is. Last but not lease, via internet, with a smart phone or any device that has a browser, locks can be remotely locked with the help of a servo motor.

Benefits

- Instantaneous access to lock information and able to remotely control them.
- Save time and troubles by detecting corresponding key to the nearest lock.
- Able to track keys within range of a registered lock.

Features

- Light, portable, easy to carry and easy to use.
- Bluetooth communication interface.
- LED indicators.
- Long battery lifetime and easy to change battery.

- Easy to setup or add new keys and locks.
- Reliable and accurate detection.

Design

The design in this project involves two components, the key chain and the lock device. Both devices are designed separately with wireless communication enabled between the two.

Block Diagram

Block Descriptions

Power Supply (Key Chain):

We will be using a 9V alkaline battery with a power regulator. Majority of the circuit will require a 3.3V voltage input and 9V battery is the easiest one to obtain on market and it has the best voltage to size ratio. It supplies power to the entire circuit in the keychain including the controller, the LEDs, the wireless communication interface and etc. For miniaturization considerations, we might change the battery to be used later on in the process and make sure the input voltage will just be maintained at 3.3V.

Power Supply (Lock):

On the lock side, miniaturization will not be as much as a big issue as compared to the key chain. A 9V battery will still be used the same way as described above. The battery is going to supply power to the entire circuit in the lock device.

Controller (Key Chain):

The controller will make use of a Atmel ATmega328 microcontroller chip. It is going to be loaded with the Arduino UNO boot loader and will be programmed using the Arduino programming environment with the help of the FT232RL USB to serial breakout board. It is responsible of processing all information received via Bluetooth or user control via button presses. Also, it will process information and send out signals to light up corresponding LEDs or sound the buzzer.

Controller (Lock):

The controller on the lock device side will perform almost the same way except that there is going to be no LEDs or speakers there. We are still going to be using the same chip here. It is going to output its control signals to the servo motor which is responsible for locking the lock. The inputs to this controller include information obtained through Bluetooth and Ethernet as well as button presses.

LEDs:

Since these LEDs are used as indicators for users to know the status of each lock at anytime. It needs to be able to display different information with different colors. We are going to use 8 Bi-Color LEDs in this case. Three PWM outputs from the microcontroller will be directed to the red, blue and green inputs of these LEDs and with the help of a multiplexer, we are able to light up the right LED with the right color based on stored information.

Buzzer:

The speaker is responsible for letting the user track the location of the key chain by producing sound. A small PCB speaker or buzzer will be used.

Lock Sensor:

The lock sensor will be self built to detect whether a door is being locked or unlocked at a time. It will be mounted on existing locks. The circuit has metal ends at the end of the lock's latch as well as the inside surface of the lock's socket. It produces signals about whether the metal surfaces are in contact; hence indicating whether or not it is locked.

Touch Sensor:

The touch sensor will be installed outside of a door (lock) and it will be activated when a touch is performed by a user. It will trigger the lock's Bluetooth module to send out information, in this

case, the specific ID number associated to the lock. This will be received by the key chain so as to know which key it is to this particular lock.

Servo Motor:

The motor here is used to automatically lock or unlock a lock when remotely controlled via Ethernet. We choose a DC servo motor here because it perfectly fits our need. To lock or unlock a door, the knob is turned clockwise or counter-clockwise by a certain angle and this can be easily implemented by using a servo motor.

Bluetooth (Key Chain):

The Bluetooth block is the most crucial and important one in the entire design. On the key chain side, an Arduino Bluetooth transceiver RS232 will be installed on the key chain so that it is going to be able to receive information from the locks. Every time one locks or unlocks a door, signals will be sent via Bluetooth to update current status of the locks in the keychain. It is also responsible for receiving lock ID numbers from the lock when the touch sensor is activated so that the key chain will know which key is the right one.

Wireless Communication (Lock):

On the lock side, there is also going to be a same Bluetooth transceiver installed on the lock device to send and receive information with the key chain. It is responsible for sending out status and ID numbers associated with this lock. Other than that, communication is also enabled with a Microchip ENC28J60 Ethernet controller. This is connected using an Ethernet cable so that information can be sent using any device with an internet browser from anywhere.

Control Flow

State Diagram for Lock Device

State Diagram for Key Chain

Calculations

Some calculations are performed in the design stage to produce results that are relevant and helpful in determining certain parameters to meet design specifications.

First of them is the calculations regarding the LEDs. The LEDs to be used have an operating current of 20mA and voltage of 2V. To meet this requirement, resistors have to be placed in series with the LEDs in order to ensure the right current value.

The voltage output will be 3.3V and the voltage across the LEDs will be 2V. Therefore, the resistor will have 1.3V voltage across it. The resistance value is then calculated by

$$V_R = \frac{3.3 - 2}{2 \times 10^{-3}} = 65 \ \Omega$$

The other value to be determined is the current output to the device. There are a few situations involved, including when the buzzer is turned on, when the LEDs are on, when the Bluetooth is working, when the servo motor is on and etc. Some of the components do not have clear datasheets included. We put together the current output from all devices when they are in standby mode and it ends up being around 100mA for both devices. Further measurements and calculations will be performed with the actual parts.

Test and Verification

Requirements and Verifications

In order to have this project working, both the lock device and the key chain have to be able to complete their own functionalities and they should reliably communicate with each other. All these involve the proper operations of all modules listed above in the block description part. In the table below, the requirements and verification procedures are listed for each individual module consisting of sub-requirements to be verified and tested.

Module	Requirements	Verification Procedures
Power	1. Supply steady 3.3V output voltage.	1. a)
Supply	a) Able to provide 3.3V output	- A test circuit will be built using the
(Key	voltage at various output current.	voltage output from the voltage
Chain)	2 Able to last for a considerable	regulator with different values of
	amount of time (45 days).	resistors
	a) The worst case scenario is tested	- Based on preliminary calculations, the
	assuming all components are	current output for standby mode is
	consuming maximum amount of power.	around 100mA and will not exceed
	b) The average case is examined with	300mA with all components active.
	reasonable estimates and calculations.	- Tests will be performed from 50mA to
		300mA with 10mA intervals.
		- Values of resistors are controlled to
		obtain the current values.
		- The voltage across resistor will be
		measured using a multi-meter and
		recorded.
		Expected Results: At all current values,
		the voltages measured should fall within
		the range of 3.25V to 3.35V.
		2. (This step is calculated, instead of
		tested using bench equipment because it
		is not possible to monitor the battery for
		a long time over months. However, with
		reasonable assumptions, the calculated
		results should give a brief idea of the
		power consumption of the devices.)
		a) Assuming all modules are

		consuming maximum power, calculate
		the time it is going to take before the
		battery drains. This should give us a
		brief idea of how long the device could
		last at least.
		b) Estimate that an average user uses
		the key chain 6 times a day and each
		time the LEDs light up for 5 seconds.
		Also assume that the buzzer is used
		once every 3 days with duration of 15
		seconds each time. Under these
		circumstances, calculate the operating
		current together with devices that
		continuously draws power. The result
		needs to be more than 45 days.
Power	1. Supply steady 3.3V output voltage	1. a) Same as "1. a)" in Power Supply
Supply	for entire circuit except the servo motor.	(Key Chain) section.
(Lock)	a) Able to provide 3.3V output	b)
	voltage at various output current.	- The servo motor operates best between
	b) Supply required voltage for servo	4.8V and 6V.
	motor.	- The test will be set up using power
		supply from the 3.3V voltage output.
	2. Same as "2." from Power Supply	- The current through the servo motor
	(Key Chain) section.	will be measured using a multi-meter.
		- The operation behavior will be
		monitored too.
		Expected Results: If the current falls
		within the normal range suggested by
		the data sheet and the operation
		behavior of the servo motor is not
		abnormal, 3.3V will be used. If not, a
		different circuit will be used to provide
		power to the servo motor.
		2 Same as "2" from Power Supply
		(Key Chain) section excent with
		different estimations. The servo motor
		together with the Ethernet module is
		estimated to operate once every 6 days
		The corresponding result should be
		The corresponding result should be

		more than 45 days.		
LEDs	1. The LEDs should be able to light up	1.		
	two distinguishably different colors.	- The test circuit will be set up using the		
		bi-color LEDs with each input		
		connected to a 65 Ohm resistor.		
		- 3.3V voltage will be applied to each		
		pin of each LED.		
		Expected Results: The LED should		
		light up red with input to the red pin and		
		green with input to the green pin. These		
		colors should match the intended color		
		and should be easily distinguishable.		
Buzzer	1. Able to produce sound to be heard	1. a)		
	under variety of circumstances.	- The buzzer will be placed on a bread		
	a) Able to hear sound within 15	board with 3.3V input voltage.		
	meters in clear distance.	- It will be triggered by one of the group		
	b) Able to hear sound within 10	members at 15 meters away from the		
	meters in a separate room.	rest.		
	c) Able to hear sound within 10	Expected Results: The other two		
	meters with buzzer places in closed	people have to be able to clearly hear		
	objects, such as drawers and boxes.	the buzzer and determine its location.		
		 b) The same buzzer circuit from part (a) will be triggered inside one of the rooms in Everitt Lab 10 meters away from where the other two members stand. Expected Results: Both members have to be able to hear the sound clearly and determine which room it is in. c) The same buzzer circuit will be triggered inside a drawer at home with two members standing 10 meters away. Expected Results: Both members have to be able to hear the sound clearly and determine which room it is in. 		
Bluetooth	1. The Bluetooth module on the key	1 a) b)		
Transceiver	chain should be able to receive data	- The Bluetooth transceiver will be		

(Key	reliably and quickly from the sender.	connected to an Arduino Uno board.		
Chain)	a) The Bluetooth module should	- The Arduino will be programmed to		
	receive data from sender without errors	send 300 sets of data with 2 second		
	at distance between 0.1m to 15m.	intervals.		
	b) The Bluetooth module should	- The computer enabled with Bluetooth		
	receive data without errors within	will be the receiver and all data received		
	closed objects or rooms.	will be monitored on the screen.		
	c) No data is lost when the time	Expected Results: All data should		
	interval between sending is short.	arrive and be displayed on the screen		
	C C	with no single error.		
		C		
		c)		
		- This is the same setup as described		
		above.		
		- The Arduino will be sending 100 sets		
		of data with 0.5 second interval.		
		Expected Results: All data should		
		arrive and be displayed on the screen		
		without losing any single one.		
Bluetooth	1. The Bluetooth module on the lock	1. a)		
Transceiver	should be able to send data reliably and	- The sender will be the same circuit		
(Lock)	quickly from the sender.	above with the receiver being another		
	a) The Bluetooth module should send	Bluetooth module connected to an		
	data that is passed from the controller	ATmega328 chip.		
	without errors.	- 300 sets of data will be sent and the		
	b) No data is lost when the time	received data will be monitored on the		
	interval between sending is short.	screen.		
		Expected Results: All data should		
		arrive and be displayed on the screen		
		with no single error.		
		c)		
		- This is the same setup as described		
		above.		
		- The Arduino will be sending 100 sets		
		of data with 0.5 second interval.		
		Expected Results: All data should		
		arrive and be displayed on the screen		
		without losing any single one.		
Servo	1. Able to rotate a specified angle	1.		

Motor	correctly.	- The servo motor will be connected
		with PWM output from the ATmega328
	2. Able to turn lock's knob to perform	chip.
	lock and unlock.	- The ATmega is programmed to send
		out a series of control command
		involving roting 10 to 180 degrees
		clockwise with 10 degree interval.
		- The servo needs to return to its original
		position 5 seconds after each rotation.
		- A protractor will be used to measure
		the angle turned and all measurements
		will be recorded.
		- The same test is then performed with
		the servo motor rotating counter-
		clockwise.
		Expected Results: All recorded data
		should be within 1 degree tolerance
		range of the intended rotation.
		2.
		- The servo will be connected to a
		The angle to be turned in order to look
		- The angle to be turned in order to lock
		The serve will receive command from
		the ATmage 228 ship to turn the
		predetermined angle in order to lock and
		unlock the lock
		- 10 locks and 10 unlocks are performed
		and results are recorded
		Expected Results: All 20 operations
		should be completed with no failures
		meaning that each time the lock needs to
		be locked or unlocked matching the
		intentions.
Lock	1. Should output correctly when the	1
Sensor	status of lock changes.	- The sensor will be installed on a
		mechanical lock.
	2. Should keep track of the status of	- The lock will be manually locked and
	lock with fast change of state, meaning	unlocked 100 times each.

	when lock and unlock are performed	- The output is observed on an
	with very short time interval.	oscilloscope.
		Expected Results: The waveform on
		the oscilloscope should match correctly
		to the operations without a single error.
		1 0
		2.
		- The same setup from part 1 will be
		used.
		- The door will be manually locked but
		at a very fast speed by a group member.
		- One other member will count the
		number of times locks and unlocks
		occurred.
		Expected Results: The waveform on
		the oscilloscope should not miss any of
		the operations.
Ethernet	1. Correctly receive information based	1.
Module	on controls sent via computers or smart	- The Ethernet module will be connected
	phones.	to the ATmega328 chip.
		- 10 Sets of commands will be sent from
		an iPhone, an Android phone, an iPad
		- The received command is decoded and
		displayed on screen.
		Expected Results: All data on screen
		should match that sent from all devices
		without any error.
Controller	1. Detects button presses correctly.	1. a)
(Key	a) Button needs to be debounced and	- The button will have one side being
Chain)	respond correctly to fast pressings.	connected to a 3.3V voltage source and
		the other to an ATmega328 chip.
	2. Able to display correct information	- The ATmega controller is
	by lighting up correct LEDs.	preprogrammed with a debounce
	a) Correctly indicates the right key	function and the output to an
	given the lock ID.	oscilloscope is high when button is
	b) Correctly light up all LEDs based	pressed.
	on stored information of lock status.	- The button will be manually pressed
		100 times as fast as possible.
	3. Able to store or output correct	Expected Results: The output on the
	information	oscilloscope should indicate 100

	presses.
	2. a)
	- The controller will be connected to a
	Bluetooth module.
	- A total of 100 signals indicating lock
	IDs will be sent.
	- The controller will generate signals
	light up the correct LED based on the
	ID.
	- The generated signal will be monitored
	using an oscilloscope.
	Expected Results: The output signal
	should match the intended output to the
	correct LED.
	b)
	- 10 sets of different combinations of the
	locks' status will be written into the
	microcontroller.
	- The LEDs are going to be attached to
	the microcontroller as indicated in
	schematics 2 in page 8.
	- The behavior of all 8 LEDs will be
	monitored and recorded.
	Expected Results: The LEDs should
	exactly match the pre-written
	information about the locks for all 10
	times.
	3.
	- Without the Bluetooth module
	attached, an input pin will be used to
	simulate the data input from the
	Bluetooth module.
	- 20 different Commands including
	triggering buzzer and update
	information will passed to the controller.
	- The controller will generate different
	output based on different information
	received.

		Expected Results: The output should
		match the commands without single
		error.
Controller	1. Same as "1." from Controller (Key	1. Same as "1." from Controller (Key
(Lock)	Chain) section.	Chain) section.
	2. Correctly generates output signals to	2. a) b) c)
	be sent via Bluetooth and Ethernet.	- A function generator will be used to
	a) Correctly generate output for	generate square wave simulating the
	updating status.	lock sensor and touch sensor.
	b) Correctly generate lock ID.	- The output from the microcontroller
	c) Correctly generate signal to trigger	will be monitored on a computer.
	buzzer.	Expected Results: The output needs to
	d) Lock or unlock.	show the exact command to be
		generated based on the input from
		different sensors without a single error.

Tolerance Analysis

The controller will be considered as the most important part of the entire design. The major job of our design is to make the controller modules on door and keychain working reliably and efficiently. More specifically, our controller module on the door should generate the correct output signal immediately when the door status changes. And the door status in the system can be updated quickly at a real-time.

For testing the module on the door, we lock and unlock the door with one second stop between each status change. And we expect the module can receive the signal and generate to change the door status in the system instantaneously within 0.5s time delay. When we watch through the testing result by demonstrating the signal received on PC, so we should see the door status change continuously.

Also for controller to ask the servo motor to rotate a specific degree, the accuracy should within 5 degree as our expectation. And the operation should be accomplished within a short time, we expect the door can lock and unlock in 2 sec. We plan to test this by successfully operating lock and unlock door 5 times continuously with one second between each time.

For the keychain, we want to make sure that no data is lost or misread after received by the Bluetooth receiver. Specifically, we want the status to be continuously updated even with data coming in at a very fast rate, for example, 0.5s intervals. Also the buzzer will start or stop to play sound as soon as we press the button on the door or keychain side. Last but not least, the controller can determine the right the key to light up its BLUE LED without disturbing the other key status according to the sent signal.

In conclusion, this project consists of a number of small constituent modules and they have to coordinate well by the control of the microcontrollers to achieve efficient, precise and accurate operation and functions.

Ethics Considerations

When working on this project, we will comply strictly to the IEEE Code of Ethics as well as the moral standards set among the members. We will make sure that the process of development and the final product will not violate any rules, regulations or moral principles. The following table illustrates all relevant ethical issues corresponding to the IEEE Code of Ethics.

Relevant IEEE Code of Ethics	Relevance in Project
1. to accept responsibility in making decisions	The keychain that we are going to develop is
consistent with the safety, health, and welfare	going to integrate a battery as the power
of the public, and to disclose promptly factors	supply. We will make sure that the battery
that might endanger the public or the	makes stable performance at all times so that it
environment;	does not create potential harm to others. As we
	are dealing with doors and locks, we will make
	sure that the device to be develop does not
	pose any safety or security issues on society.
3. to be honest and realistic in stating claims or	We will make sure that all experimental data
estimates based on available data;	and calculations illustrated in all related
	documents in the process of this project are
	honest and real.
6. to maintain and improve our technical	We will not embark on producing or marketing
competence and to undertake technological	devices made in this course unless after
tasks for others only if qualified by training or	qualified training and approval.
experience, or after full disclosure of pertinent	
limitations;	
7. to seek, accept, and offer honest criticism of	Our group will listen and accept all
technical work, to acknowledge and correct	constructive advice and suggestions from
errors, and to credit properly the contributions	people around us and will acknowledge any
of others;	contribution towards the eventual result of this
	project.
10. to assist colleagues and co-workers in their	All group members will keep the code of ethics
professional development and to support them	on our mind and remind ourselves and group
in following this code of ethics.	mates throughout the process. We all are
	responsible and accountable for this project.

Cost Analysis

Parts

Module	odule Part			Subtotal
Power Supply	Energizer 522BP-2 9V Alkaline Battery	3.99	1	3.99
(Key Chain)	MIC5205-3.3BM5 Voltage Regulator	1.05	1	1.05
Power Supply	Energizer 522BP-2 9V Alkaline Battery	3.99	1	3.99
(Lock)	MIC5205-3.3BM5 Voltage Regulator	1.05	1	1.05
Bluetooth (Key Chain)	Arduino Bluetooth Transceiver Module RS232	8.39	1	8.39
Bluetooth (Lock)	Arduino Bluetooth Transceiver Module RS232	8.39	1	8.39
Ethomat	Microchip ENC28J60 Ethernet Module	4.39	1	4.39
Ethernet	6 ft Ethernet Cable	0.99	1	0.99
LEDs	Bi-Color LED – Common Cathode, Pack of 10		1	2.00
Buzzer	PCB Tone Alarm Buzzer	0.15	1	0.15
Motor	Motor Hitec HS-322HD Standard Heavy Duty Servo		1	9.99
Controller (Key Bootloader		5.50	1	5.50
Chain)	USB to UART Bridge – FT232RL*	10.95	1	10.95
Controller (Lock)	Atmel ATmega328P-PU Microcontroller with Bootloader	5.50	1	5.50
	Resistors, Capacitors, Wires, PCB and so on	10.00		
Misc.		(Esti-	1	10.00
		mate)		
			Total	76.33 (65.38)

* This breakout board will only be used for programming and configuring the controller chip, hence does not contribute to the total cost in the device because it is not included.

Labor

Members	\$/Hour	Hours/Week	Number of	Total/Person	*Multiplier
Wiembers ,	φ/HOUI	110urs/ week	Weeks		(2.5)
Junting Lou	30	15	12	5400	13500
Yaming Tang	30	15	12	5400	13500
Lida Zhu	30	15	12	5400	13500
				Total	40500

Total Cost

The total cost including labor and parts is 40576.33

Schedule

Week	Tasks	Person in Charge
9/16	Finalize project idea and write up proposal	Junting Lou
	Research for microcontroller ICs and their operations	Lida Zhu
9/23	Sign up and prepare for Design Review	All
	Research for power management and wireless modules	Yaming Tang
	Finalize and order parts	Lida Zhu
9/30	Build basic Bluetooth communication circuits and verify	Yaming Tang
	Test Bluetooth circuit's reliability and performance	Junting Lou
10/7	Test and verify controller modules with the integration of	Lida Zhu Junting Lou
	wireless modules	
	Build sensor circuit and test its operation, then integrate	
	with controller module	
10/14	Finalize motor selection and verify its operation	Junting Lou
	Build basic circuit involving Ethernet module	Yaming Tang
10/21	Prepare for individual Report	All
	Finalize PCB design	Lida Zhu
10/28	Build basic speaker circuit and test it together with the	Lida Zhu
	Bluetooth module	
	Test reliable status updates	Yaming Tang
11/4	Integrate entire circuit and build working prototype on	Junting Lou
	bread board	
11/11	Identify existing problems and debugging.	Yaming Tang
11/18	Finalize design of actual devices	Lida Zhu
	Start working on final paper and presentation	Junting Lou
11/25	Construct final device and test all components with possible	Yaming Tang
	improvements.	
	Sign up for Demo and presentation	All

References

- Mellis, D. (2008, OCTOBER 23). Building an arduino on a breadboard. Retrieved from http://arduino.cc/en/Main/Standalone
- tigoe. (2009, MAY 28). Controlling lots of outputs from a microcontroller. Retrieved from http://www.tigoe.com/pcomp/code/arduinowiring/486/
- Renck, T. (2011, DECEMBER 2). Ethernet controlled garage door. Retrieved from http://x-inferno.com/computers/hardware/ethernet-controlled-garage-door
- Amedee, C. (2011, DECEMBER 2). *Easy bluetooth enabled door lock with arduino android*. Retrieved from http://www.instructables.com/id/Easy-Bluetooth-Enabled-Door-Lock-With-Arduino-An/?ALLSTEPS
- Microchip. (2012, July 30). *enc28j60 stand-alone ethernet controller with spi interface*. Retrieved from http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en02288
 - 9