

FINAL REPOT
ECE 445
SENIOR DESIGN

Quadpod Transform Vehicle

By
Team 6
Kee Woong Haan
Zenon Son
Jiwon Park
TA: Rajashi Roy

Dec 12, 2012

Abstract

This project is to design a special vehicle that transforming to quadpod which is four leg walking robot. The purpose is to overcome obstacles that car cannot go through.

The design actualizes the following function:
· Fully function as a car in car mode and Omni-directional movement system when vehicle transform to Quadpod.
· Auto obstacle detecting system on the front bumper that makes the car to transform automatically when it hits obstacle.
· Both vehicle and Quadpod can be controlled by wireless remote controller. Also this controller can commend that forcefully transform from car to Quadpod and from Quadpod to car.

The entire electrical component has arrived and they were tested based on our Design Review testing procedure. We had power issues for the 10 servo motors but by using 2 voltage regulators and blue Lipo battery fix this problem.

Contents

I. Introduction……………………………………………………………………….1
1. Purpose and Objective………………………………………………………...1
2. Block Diagram and Functions………………………………………………...1
II. Design
1. Schematics…………………………………………………………………….3
2. Flow Charts…………………………………………………………………....3
3. Detailed Descriptions…………………………………………………………5
1. Main Station………………………………………………………………5
2. Motor Module……………………………………………………………..5
3. Power Module……………………………………………………………..6
4. Voltage Regulator…………………………………………………………7
5. IR Receiver………………………………………………………………..7
6. Proximity Sensor………………………………………………………….7
7. PCB board…………………………………………………………………7
4. Mechanical Design……………………………………………………………8
III. Requirement and Verifications……………………………………………………8
1. Testing Procedure and Quantitative Results…………………………………..8
1. Arduino Mega……………………………………………………………..8
2. Servo Motors……………………………………………………………...9
3. Voltage Regulator…………………………………………………………9
4. IR receiver……………………………………………………………….10
5. Proximity Sensor………………………………………………………...11
IV. Conclusion……………………………………………………………………….12
1. Accomplishment……………………………………………………………..12
2. Uncertainties…………………………………………………………………12
3. Future Works……………………………………………………………...…13
4. Ethical Consideration………………………………………………………..13
V. Cost Analysis…………………………………………………………………….14

Reference………………………………………………………………………..15
Appendix A……………………………………………………………………...16
Appendix B……………………………………………………………………....24
Appendix C………………………………………………………………………39

２

I. Introduction
1.1 Purpose and Objective

We believe this project is important because this scaled version of vehicle can access places (mountain and bumpy roads) that the vehicle cannot get through with typical wheels. This project merely shows the basic concept of the transformable vehicle but it may help the vehicle to be used in more various situations in the future. The main goal is to make a miniature vehicle that can be transformed into the Quadpod, the vehicle with four legs, when it meets an obstacle that can’t be overcome with typical wheels. The obstacle could be any place difficult to move by vehicle but we're mainly focusing on rough unpaved road or hill. The project will consist 4 legs (2 on each side), which will only be activated when the vehicle is in “Quadpod” mode and use it to overcome obstacle.

Benefits:
· Vehicle can overcome obstacles such as bumpy road, mountain, jungle and forest, which typical car can’t get through.
· The vehicle can sense obstacles by using touch sensor in the bumper so that it can automatically transform.
· Both car mode and Quadpod mode are fully controllable by user interface.
· Multifunctional vehicle for multipurpose use.
· Forcefully transformable when driver desires.

1.2 Block Diagram and Functions
[image: 5]

· Main station (Arduino Mega): The microprocessor that gets signal from the wireless remote controller and control all of the vehicle’s motors. Also, it receive the signal from the sensor and evaluate.

· Wheel movement system: This system controls wheels movement. There is two continuous rotation motors on each wheels. By changing pulse width, speed and direction can be controlled.

· Leg movement system: This system controls leg movement. There are two standard motors on each leg. Each controls X-axis and Y-axis of the leg. By changing pulse width, we can make the motor to turns to certain angle.

· Sensor control system: This system controls sensors. Sensors on bumper controls transforming and sensors on legs controls the movement of leg.

· User control system: This system send signal from the user to the main station to control the vehicles. There is 7 different serial data from the user interface and each commends different motions.

· Power: The power for the Arduino Mega is supplied by 9V battery, and two 7.4 Lipo batteries will supply the power for 5 motors each.

[image: IMG_1225.JPG] [image: IMG_1228.JPG]
 < Figure 1. The vehicle mode > < Figure 2. The Quadpod mode >

II. Design

2.1 Schematics
While the project is in vehicle mode, it can go forward, left, right depends on the signal received by IR receiver. It can also transform into quadpod depend on the signal received from proximity sensor and the IR receiver. The Right and left Wheel motors are continuous rotation motor and they are in charge of controlling movement of the vehicle, while the 4 vertical movement motors are standard servo motors and they are in charge of transformation. All the motors are controlled with the length of the pulse given by the main station; thus, the motors are connected to the PWM output of the main station. While the project is in quadpod mode, it can go forward, turn left, turn right depends on the signal received by IR receiver. All these operations are done using the 8 standard servo motor, where 4 of them are in charge of vertical movement of legs and 4 in charge of horizontal movement. Again, all the motors are controlled with the length of the pulse given by the main station; thus, the motors are connected to the PWM output of the main station. The schematic is attached on the Appendix A.

2.2 Flow Charts

Code for vehicle mode

During the fifth week, we gathered and made flow chart (Figure1 from Appendix A) for vehicle mode and Quadpod mode of the project. The flow chart on Appendix A is the flow chart for vehicle mode we made during that time. Based on the flow chart, while the project is in vehicle mode, it can go forward, left, right, and backward depends on the signal received by IR receiver. It can also transform into Quadpod depend on the signal received from proximity sensor and the IR receiver. The Right and left Wheel motors are continuous rotation motor and they are in charge of controlling movement of the vehicle, while the 4 vertical movement motors are standard servo motors and they are in charge of transformation. All the motors are controlled with the length of the pulse given by the main station; thus, the motors are connected to the PWM output of the main station.

We have made code for the vehicle mode of the project based on the flow chart (Figure1from appendix A). From the combined code in Appendix B, the command "getIRKey ();" is from the sparkfun tutorial page4). Depends on which button is pressed from the IR remote controller, the "getIRKey ();" command will provide key of 144, 145, 146, 147, 148, 149, or 165. We have used key 144, which is the key provided when "Ch down" button is pressed, to be in charge of making the vehicle move backward. Since the two wheel motors are facing away from each other, the right motor needs to rotate counter clockwise, while the left motor rotate clockwise. Similarly, We have assigned key 145 as the key for making right motor rotate clockwise while making left motor rotate counter clockwise to make the vehicle move forward. Key 146 and 147 are in charge of making the vehicle turn right and left, which are done by making one of the wheel motor run forward while keeping the other one stay still. Key 149 is in charge of stopping the wheel motors to make the vehicle pause and key 165 is in charge of rotating the vertical leg movement motors downward to transform the vehicle into a Quadpod mode. Key 148 is in charge of transforming the Quadpod back into vehicle; while in vehicle mode key 148 will have no effect. In each case (key), we have added code that checks the distance between the project and obstacle and transform if the distance is less than 10inch. Therefore, the vehicle will transform into Quadpod when the obstacle is detected no matter what operation it is under. Refer to comments on code 9 for more detail.

The code was tested with the schematic shown on figure 18 and figure 19. We have used pin A0 for taking distance signal from proximity sensor. We have confirmed that the code does allow the motors to run in the way we desired based on the signal from IR remote controller and button. The motors behaved as described above with the corresponding button from IR remote and the two continuous motors stopped moving and transformed once the bumper signal button was pressed.

Code for Quadpod mode

The same day we made flow chart for vehicle mode, we also made flow chart for Quadpod mode (figure2 and 3 from Appendix A). While the project is in Quadpod mode, it can go forward, go backward, turn left, turn right depends on the signal received by IR receiver. All these operations are done using the 8 standard servo motor, where 4 of them are in charge of vertical movement of legs and 4 in charge of horizontal movement. Again, all the motors are controlled with the length of the pulse given by the main station; thus, the motors are connected to the PWM output of the main station.

Flowchart on the left in figure 2 from Appendix A is the flow chart of the Quadpod mode when walking forward. We have made code for the Quadpod mode based on this flow chart. As we have mentioned on the Vehicle mode code, the "getIRKey();" command is from the sparkfun tutorial page and it's in charge of providing key of either 144, 145, 146, 147, 148, 149, or 165 depends on which button is pressed from the IR remote controller4). While a button from IR remote controller is pressed, the Quadpod will move by rotating the legs in sequential orders. The sequential orders are different for each command (refer to figure 2 and 3 in Appendix A for more detail). Each of the horizontal movement motors will be moved from 45deg ~ 90deg (or 90deg to 135 deg depends on the position). The Quadpod will repeat the leg movement in the same sequential order while the button from IR controller is pressed. We have assigned key 145 as forward movement of the Quadpod so the Quadpod will move forward when the "Ch up" button is pressed. While the button is pressed, all the legs will move forward in its unique sequential order to move Quadpod forward (refer to figure 2in Appendix A). Similarly for key 144, all the legs will move backward in the sequential order mentioned above to move the Quadpod backward (refer to figure3 in appendix A). For key 146, the Quadpod will turn right by moving the front left leg and rear left leg forward while moving the front right leg and rear right leg backward (refer to figure3 in Appendix A). For key 147, the Quadpod will turn left by moving the front left leg and rear left leg backward while moving the front right leg and rear right leg forward (refer to figure 2 in Appendix A). One important thing to notice is that although all the horizontal leg movement motor will be set up in identical ways, different degree of rotation will be responsible for forward or backward movement depends on which side the motor is mounted. For example the front left horizontal movement motor will be at 180 degree in order for the leg to be facing forward, while front right horizontal movement motor will be at 0 degree in order for the leg to face forward. Similarly, the vertical movement motors will be at different degree in order to have same motion. In order for the right legs to be rotated to lowest position, the degrees of the right vertical movement motors have to be 180 degrees. For the left legs to be rotated to lowest position, the degrees of the left vertical movement motors have to be 0 deg. Refer to comments on code 10 for more detail.

Combining code for vehicle mode and quad pod mode
[bookmark: _GoBack]We have simply used the int “tr” to combine these codes together. When the project is in vehicle mode, the value of tr would be 0 and only the code for vehicle mode would be activated. Similarly, when the project is in quadpod mode, the value of tr would be 1 and only the code for quadpod mode would be activated. Combine code can be viewed in the Appendix B.

2.3 Detailed Descriptions
2.3.1 Main Station
Arduino Mega is the main station for the design. It should receive the signal from remote controller and generate pulse signal for the control of the motors. Arduino Mega will be powered up by 9V battery, which is regulated to 5V(operating voltage)1) by the regulator installed inside Arduino Mega. On the station, the IR receiver for the remote controlling will be connected to 5V output voltage pin, and all the buttons for the sensing purpose are connected to digital input for the code controlling the whole vehicle. The PWM I/O pin will be linked to all the motors to give pulse signals with desired length for each motor rotation run by the code. The current capacity on DC I/O pin is 40mA, which is in the effective current range of the IR receiver and the buttons.

	PMain = 20mA × 5V = 100mW
	By using 9V battery which contains 550mAh13);
	Max operating Hours: 550mA × 3600Sec / 100m = 19800sec = 5.5 hours
	PulseMax= 16Mhz > PulseMotor

[image: 캡처]
2.3.2 Motor Module
Continuous Motors for the vehicle mode
 (
< Figure
3. Continuous Servo Motor>
3)
)	Two continuous rotation servo motors are used for the vehicle mode. It will simply function as wheels. The motors are powered up by the 7.4V 2-cell lithium battery and receive the pulse signal from Arduino Mega. The pulse length for rotating motors is different from the standard servo motor. It has three motions: turning clockwise, counter clockwise, and stop. Each motion is determined by a specific pulse length as the standard servo motor.
[image: 캡처]

Standard Servo Motors for the Quadpod mode(X-axis)

 (
< Figure
 4. Standard Servo Motor >
2)
)	The 4 standard servo motors are used for each leg moving x-axis for the Quadpod mode. The 7.4V 2-cell lithium battery powers up the motors with voltage regulator for the input voltage for the motors. The rotation angle of the standard servo motor depends on the input signal pulse length, sent by Arduino Mega. The input pulse length is between 750μs and 2250μs2), which is corresponding to the whole 180° angle movement of the motor. This motor need repeated pulse signals at least every 20ms or faster to maintain its position. The degree from 45° to 135° will be used.

	 The angle will be calculated with the following equation:

T (us)= 750us + {1500us (θ/180)}	 (45°< θ <135°)
[image: servo]
< Figure 5. Stadard servo motor rotation degree >2)

Standard Servo Motors for the Quadpod mode(Y-axis)

	The other 4 standard servo motors are used for each leg moving y-axis for the Quadpod mode. These y-axis motors are responsible for transforming between the vehicle mode and the Quadpod mode and the y-axis leg moving. Specifically, when it transforms from the vehicle mode to the Quadpod mode, the lifted legs will be brought down to the ground; the reverse transformation will make the legs to move the opposite way. The rest specifications are the same as x-axis standard servo motors except for the degree range (0°< θ <180°)2).

2.3.3 Power Module
9V battery
	One 9V batter is used only to power up the main station whose recommendation input voltage range is 7~12V.

Main station power source: Voltage = 9V13)
			 Capacity = 550mAh	

7.4V Lipo battery
	Two Blue LiPo 7.4V Batteries power up the servo motors. 5V voltage regulator is used to make the voltage down to 5V. This voltage regulator should be capable to endure all of the current flow to the motors.

Servo motors power supply: Voltage = 5V
			 Capacity =1500mAh11)
			 Max continuous current = 20A
			 Power consumption by one motor = 190mA6),7)
			 8 Imotor = 1.5A

2.3.4 Voltage Regulators
	The input voltage to operate the motors is 4~6 VDC. The voltage regulators for each Lithium battery make the 7.4 volts down to 5 volts for the motors.

	Input voltage: 7.4V11)
	Max Input current: 190mA X 8 = 1.5A
	Voltage regulator output voltage = 5V
	Voltage regulator max current output = 1.5A

2.3.5 IR receiver
	Takes serial data from the remote transmitter and sends it to the main station. The original commend inside remote controller will not be used. Instead, we will code our own commends.
	There are 7 different commend and each will be different signal so that the signal will not messed up with each other’s. This device need 2.5 to 5.5V to power up and it needs at least 5mA source to activate. Since our Arduino provide 40mA with 5V, it will be reliable to fully function.9)
	
2.3.6 Proximity Sensor

	There will be one proximity sensor in front of the vehicle. This sensor detect obstacle and send distance as a analog signal to the Main station. It is capable of detecting obstacle within range of 6 inch to 255 inch. The current consumption is less than 2mA and operating voltage is 2.5V to 5.5V.5)
	This unit will be power up by Arduino mega 5V output pin, therefore, the voltage is appropriate. Also, 5V output pin maximum allowance current is 40mA which is much higher than operating current.

2.3.7 PCB board

[image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Presentation\PCB eagle.PNG]
< Figure 6. The PCB design >

	Instead of using breadboard, we are using Printed Circuit Board for our project. It is required and this board can perform much better in our project. Our PCB will be attached above the Main station, so the location of the pin should be accurate. We will use Ground, 5V, Analog signal I/O pin, Digital I/O pin, and 10 PWM signal pin from the Arduino Mega so that those pin will be attached to the PCB directly which means there is no wire connection. Two voltage regulator and one proximity sensor and one IR receiver will be attached to the PCB and each voltage regulator output will be connected with 5 servo motor connection pin.

2.4 Mechanical Design
	The detailed design for the mechanical parts is on the Appendix A.

III. Requirements and Verifications

3.1 Testing procedure and quantitative results
3.1.1 Arduino Mega
	Arduino Mega as a main station should make 40mA1) for operating connected components to the Arduino, and PWM signal to control the motors. To verify the output current, the 125Ω resistor and ammeter are used. The 5V output pin and ground in Arduino are connected with the resistor and the ammeter that is connected serially to the resistor to measure the flowing current.

The measured current: 41.288mA
The error: 3.12%

[image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\IMG_1127 125ohm.JPG] [image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\IMG_1125.JPG]
 < Figure 7. Wiring for the verification > < Figure 8. Measured Current = 41.2 mA>

	The PWM signal is important because it will control all the motors. To verify this, an oscilloscope is used. In this verification, what needs to be measured is the pulse length and the difference between the pulse because the difference time should be fast than 20ms so that I can maintain the position.

The pulse lengths measured for standard servo motor:
750μs : to the left-most position
1500μs : to the center
2250μs : to the right-most position
The pulse lengths measured for continuous servo motor:
1300μs: clockwise rotation
1500μs: stop at the center
1700μs: counter-clockwise rotation

Graphs are attached on the Appendix A.

[image: C:\Users\Flaneur\Desktop\motor test.png]
3.1.2 Servo Motors

	The rotation of the motors was verified by the given code for the testing by the product company. By sending different pulse length for a particular position change, I could check if the motor works correctly.

// Code for sending a periodic signal with a pulse length //

#include <Servo.h> // Use Servo library
Servo myServo; // Create Servo object

void setup() {
 myServo.attach(9); // Servo connected to pin 9
}
void loop() {
 myServo.writeMicroseconds(750); // 750us pulse
 (
< Figure
9
.
 Wiring Schematic >
)}
	

	All the rotations of the motors were verified with each pulse length for the expected degree. As the correct pulse length from Arduino Mega is checked previously, the right position of the motor according to the given pulse length can be verified as well. The video cannot be attached to this report, so only the code I used for the verification is included.

3.1.3 Voltage Regulator
	The voltage regular should make the voltage higher than 5V down to 5V. To verify this, I used the 6VDC voltage input and check the output voltage of the regulator using a voltmeter. The voltmeter verified that the output voltage of the regulator is 4.957VDC, which is very close to the 5V.

	The regulator needed to verify the current output so that the output current should be more than the maximum current of 8 motors as only 8 motors will be used in the Quadpod mode. The maximum current supply of the motors is 1.52A because the maximum current capacity of each motor is 190mA and 8 motors are used. As we use two Lithium batteries, each regulator should be able to make 0.76A at most. To verify this, I used five 30Ω and 39 Ω resistors in parallel to make 4.76Ω to prevent each resistor from overheating. When 6VDC was applied to the resistors, it produced 0.832A, which was larger than 0.76. Thus, the regulator can endure the current that flows to all the motors.

 1/Rtot = 4/30 +3/39, Rtot = 4.76Ω (1)
 I = V/R = 5/4.76 = 1.05 A (2)

3.1.4 IR Receiver
	
Check if the receiver receives the modulated 38 kHz pulse signal from the IR LED.10) The code(attached to the appendix B) given by Sparkfun Electronics, the product company, will check if the signal is transmitted by printing ‘hit’ on the screen.

	Button
	Print out
	Button
	Print out

	Up
	144
	Quadpod
	148

	Down
	145
	Car
	165

	Left
	147
	Stop
	149

	Right
	146
	
	

 (
<
Table 1
.
 The buttons and corresponding values >
)[image: C:\Users\Kee Woong Haan\Dropbox\ece310\ECE 445\Individual report files\IR Receiver\IR receiver serial monitor.png]
 < Figure 10. The output of the signal >

The controller spec shows that Receiver can get signal up to 45M. However, we are testing this project in the Senior Project Room; we use the length of the room to measure.
The IR receiver received the signal from the door of the room to the window. (14.7M)
[image: C:\Users\Necromency\Dropbox\ece310\ECE 445\Individual report files\Voltage regulator\IMG_1090.JPG] [image: C:\Users\Necromency\Dropbox\ece310\ECE 445\Individual report files\IMG_1125.JPG]
 < Figure 11. Voltage Output: 4.9V > < Figure 9. Current output: 41.28mA >
The maximum current that can flow into IR receiver is 45mA. Because be are using Arduino as a source, current will be approximately 40mA which is in tolerance range. Also, we check the voltage across IR receiver.

Because we know the voltage and the current, we are able to calculate power consumption.
41mA × 4.95V = 203mW

3.1.5 Proximity Sensor
Because the power source for sensor is from the Arduino Mega 5V output, the voltage across the proximity sensor is very accurate. Also, the Arduino mega 5V output pin can produce up to 40mA.8)

[image: C:\Users\Kee Woong Haan\Dropbox\ece310\ECE 445\Individual report files\Botton\IMG_1093.JPG]
 < Figure 10. Voltage output: 4.96V >

[image: C:\Users\Flaneur\Desktop\캡처.GIF] [image: C:\Users\Flaneur\Desktop\캡처1.GIF]
 < Figure 11. Distance vs measured value graph > < Table 2. The measurement values >

In order to get exact value, we made the code below and moved an obstacle inch by inch from the proximity sensor. From the values in the table, we found that the linear relationship between the distance and measured value. We picked the value of 16 for the distance for the transformation so that the vehicle can have enough room to transform into the Quadpod and overcome the obstacle.

// Code for the proximity sensor verification //

int sensorPin = 0; //analog pin 0
void setup(){
	Serial.begin(9600);
}
void loop(){
	int val = analogRead(sensorpin);
	Serial.printIn(val);
	delay(100);
}

The table for the requirement and verification is attached on the appendix C

IV. Conclusion

4.1 Accomplishment
Through our work over the course of semester, we have successfully demonstrated vehicle that can transform into quad pod. The project we made is fully controllable by user in both quad pod mode and vehicle mode. User can control the movement of the project using the IR remote controller. The project also has proximity sensor that automatically detects obstacle sends signal to transform the vehicle to Quadpod. Although our project is only a scaled version, it shows the basic concept of the transformable vehicle that may help the vehicle to be used in more various situations in the future.

4.2 Uncertainties
Many of the uncertainties come from mechanical issues such as frame design, durability, and weight. Our current model has inefficient frame design. Since the project doesn’t have frame work that fixes the leg to the side of the body while it’s in vehicle mode, the quad pod legs have to be fixed at 90 deg position by giving the pulse signal to avoid it touching the floor. This not only takes unnecessary space, but it also consumes extra energy that could otherwise be conserved. In order to have more efficient frame design, we would need larger body frame and additional frame that would fix the legs in certain position while it’s in vehicle mode. However, larger body frame would cause the durability of frame to decrease while increasing the weight of the project. The 4 Standard servo motors we are using for vertical legs movement is already at its maximum potential while the project is in Quadpod mode. In order to use efficient frame work that’s also durable, having stronger servo motors would be crucial. Obtaining stronger motors is important for one more reason. The main goal for transforming the vehicle to Quadpod is to overcome obstacle that typical wheels can’t overcome. In order to accomplish this goal the Quadpod have to lift its legs to certain elevation while walking. However, due to our servo motor’s lack of power, there are almost no elevation in legs while the Quadpod is moving. In order to accomplish the goal of overcoming obstacle with Quadpod, having stronger servo motor is very important.

4.3 Future Works
As I have mentioned in challenges, one of the main issue we have to improve for future work is frame design. Our current frame design is inefficient in both space and power consumption. By creating frame design that holds the position of the legs while the project is in vehicle mode, it will save both space and power consumption. Using stronger motors for vertical leg movement is also important. Improved frame design will probably increase the weight of the project. Since the current servo motor we are using is working at its maximum potential, stronger servo motor would be required in order to apply the improved frame design. Stronger servo motor will also allow our project to have more elevation in the legs vertical motion while moving. This will help accomplish goal of overcoming obstacle. Lastly, using multiple proximity sensors would greatly improve the vehicle in detecting obstacle. The proximity sensor has cone shape of range that detects obstacle. Because of this shape, there are blind spot to left and right side of the proximity sensor and the vehicle has hard time detecting obstacle while turning. Installing multiple proximity sensors would decrease the blind spot.

4.4 Ethical consideration

3. To be honest and realistic in stating claims or estimates based on available data
Our major technical part is the transformation between the Quadpod mode and the vehicle mode. We do not exaggerate any data that may give an impression that our transformation would be more that our real data and experience. We admit our design could have the parts that need an improvement and believe that we could get more valuable and critical review from other professional technicians if we provide our data honestly.

7. To seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to credit properly the contributions of others

We are trying to create new type of vehicle with simple design in regards of the practical usage. We are open to accept any honest criticism regarding technical issues by admitting our lack of knowledge for better and practical design and technical work. As we use some parts that are already made by a company, we must give a full credit to the company by mentioning their name and work in proper manner.

5. Cost Analysis

	Part #
	Provider
	Desc
	For
	Price
	Qty
	Total

	900-00005
	Parallax
	Standard servo motor
	Leg
	$12.99
	10
	$129.90

	DEV-11021
	Arduino
	Arduino Mega
	Main
	$49.99
	1
	$49.99

	900-00008
	Parallax
	Continuous servo motor
	Wheel
	$12.99
	2
	$25.98

	RTL-10783
	Sparkfun
	IR Control Kit Retail
	Controller
	$9.95
	1
	$9.95

	LV-EZ1
	Sparkfun
	Ultrasonic Range Finder - Maxbotix
	Sensor
	$25.95
	1
	$25.95

	LM7805
	ECEstore
	Voltage Regulator - 5V
	Power
	$1.25
	1
	$1.25

	N/A
	ECEstore
	9V battery
	Power
	$2.80
	2
	$5.60

	2S1P-74-20C
	HobbyPartz
	Blue Lipo 2-Cell 1500mAh 2S1P 7.4v 20C RC Battery w/ 4.0 banana connector
	Power
	$6.67
	1
	$6.67

	
	
	
	
	
	
	

	N/A
	ECEstore
	Printed Circuit Board
	Circuit
	$20.00
	1
	$20.00

	Total
	
	
	
	
	
	$275.29

Note: Cost for frame work from Machine shop is not included.

	Name
	Hourly Rate
	Total Hours Invested
	Total =Hourly Rate X 2.5 X total hours Invested

	Kee Woong Haan
	$30.00
	125
	$9,375

	Jiwon Park
	$30.00
	125
	$9,375

	Zenon Son
	$30.00
	125
	$9,375

	Total
	$90.00
	375
	$28,125

Grand total: $28,400.29

Reference

1. “Arduino – ArduinoMega2560.” Arduino – ArduinoMega2560.N.P., n.d. Web. 30 Sept 2012.
< http://arduino.cc/en/Main/ArduinoBoardMega2560>
	
2. “Parallex Standard Servo.” Parallex inc – Parallex Standard Servo.NP.,n.d. Web. 28 Sept 2012.
< http://learn.parallax.com/kickstart/900-00005>

3. “Parallex Continuous Rotation Servo.” Parallex inc – Parallex Continuous Rotation Servo.NP.,n.d. Web. 28 Sept 2012.
< http://learn.parallax.com/KickStart/900-00008>

4. “IR Control Kit Landing Page.” SparkfunElectronics – IR Control Kit Landing Page.NP.,n.d. Web. 30 Sept 2012.
< http://www.sparkfun.com/tutorials/291>

5. “Ultrasonic Range Finder - Maxbotix LV-EZ1” sparkfun.com.NP.,n.d. Web. 28 Oct. 2012.
< https://www.sparkfun.com/products/639>

6. “Parallax Standard Servo” Standard Servo. NP.,n.d. Web. 28 Sept 2012.
<http://www.parallax.com/Portals/0/Downloads/docs/prod/motors/900-00005-StdServo-v2.2.pdf>

7. “Parallax Continuous Rotation Servo” Continuous Rotation Servo. NP.,n.d. Web. 28 Sept 2012.
<http://www.parallax.com/Portals/0/Downloads/docs/prod/motors/900-00008-CRServo-v2.2.pdf>

8. “LV-MaxSonar-EZ1™High Performance Sonar Range Finder”. NP.,n.d. Web. 28 Oct 2012.
< http://maxbotix.com/documents/MB1010_Datasheet.pdf>

9. “IR Receiver Modules for Remote Control Systems” Datasheet (TSOP38238). NP.,n.d. 	Web. 29 Sept 2012.
< http://www.sparkfun.com/datasheets/Sensors/Infrared/tsop382.pdf>

10. “IR Control Kit Retail” SparkfunElectronics – IR Control Kit Retail NP.,n.d. Web. 29 Sept 2012.	< https://www.sparkfun.com/products/10783 >

11. “7.4V battery” HobbyPartz –Blue Lipo 2-Cell 1500mAh 2S1P 7.4v 20C RC Battery w/ 4.0 banana connector, Web. 3 Oct. 2012.
	< http://www.hobbypartz.com/83p-1500mah-2s1p-74-20c.html>

12. “Voltage Regulator - 5V” – Positive voltage regulator. Web. 03 Oct. 2012.
	< https://www.sparkfun.com/datasheets/Components/LM7805.pdf>

13. “Duracell 9V” –Duracell coppertop. Web. 03 Oct. 2012.
	< http://datasheet.octopart.com/MN1604-Duracell-datasheet-5306548.pdf>

Appendix A - Figures

[image:]
< Figure 1. Flow chart for the Vehicle Mode >
[image:][image:]
< Figure 2. Flow chart for the Quadpod Mode 1>

[image:][image:]
< Figure 3. Flow chart for the Quadpod Mode 2>

Verification figures for the motors

[image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\Servo motors\750s.png] [image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\Servo motors\750.png]
 < Figure 4 750us Pulse Length > < Figure 5 Difference between Pulse Length >

[image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\Servo motors\1300s.png] [image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\Servo motors\1300.png]
 < Figure 6 1300us Pulse Length > < Figure 7 Difference between Pulse Length >

[image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\Servo motors\1700s.png] [image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\Servo motors\1700.png]
 <	Figure 8 1700us Pulse Length > < Figure 9 Difference between Pulse Length >

[image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\Servo motors\2250s.png] [image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\Servo motors\2250.png]
 < Figure 10 2250us Pulse Length > < Figure 11 Difference between Pulse Length >

[image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\Servo motors\scope_0.png] [image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\Servo motors\scope_1.png]
 < Figure 12 1500us Pulse Length > < Figure 13 Difference between Pulse Length >

[image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\Voltage regulator\IMG_1090.JPG] [image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\IMG_1133.JPG]
 < Figure 14. Regulated Voltage: 4.96V > < Figure 15. Wiring For The Verification >
[image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\IMG_1135.JPG] [image: C:\Users\Flaneur\Desktop\Dropbox\ECE 445, 343\ECE 445\Individual report files\IMG_1131.JPG]
 < Figure 16. Measured Resistance: 4.85V > < Figure 17. The Current Flowing: 0.83A >

[image: Mainframe.PNG]
< Figure 18. Mechanical Frame For The Board >

[image: Leg part Frame.JPG]
< Figure 19. A Leg With The Motors >

< Figure 20. The Schematic >
[image:]
Appendix B - Codes

Combined code

#include <Servo.h> // Use Servo library, included with IDE

Servo Servo12; // Create Servo object to control the servo
Servo Servo11;
Servo Servo2;
Servo Servo3;
Servo Servo4;
Servo Servo8;
Servo Servo6;
Servo Servo7;
Servo Servo9;
Servo Servo10;

int key = 0;	 //Fetch the key
int val = 1000;
int sensorPin = 0; //analog pin 0
int irPin = 52; //Sensor pin 1 wired to Arduino's pin 52
int start_bit = 2200; //Start bit threshold (Microseconds)
int bin_1 = 1000; //Binary 1 threshold (Microseconds)
int bin_0 = 400; //Binary 0 threshold (Microseconds)
int tr = 0; //transform signal, initially zero since it's in vehicle mode when first start

void setup() {

 pinMode(irPin, INPUT);
 Serial.begin(9600);
 Servo12.attach(12); // Servo is connected to digital pin 12 (RW)
 Servo11.attach(11); // Servo is connected to digital pin 11 (LW)
 Servo2.attach(2); // Servo is connected to digital pin 2 (FR verticle)
 Servo3.attach(3); // Servo is connected to digital pin 3 (FL verticle)
 Servo4.attach(4); // Servo is connected to digital pin 4 (RR verticle)
 Servo8.attach(8); // Servo is connected to digital pin 8 (RL verticle)
 Servo6.attach(6); // Servo is connected to digital pin 6 (RL horizontal)
 Servo7.attach(7); // Servo is connected to digital pin 7 (RR horizontal)
 Servo9.attach(9); // Servo is connected to digital pin 9 (FL horizontal)
 Servo10.attach(10); // Servo is connected to digital pin 10 (FR horizontal)
 Servo2.write(98); //initially, project is in vehicle mode
 Servo3.write(80); //vertical motors(servo2,3,4,8) holds 90deg position
 Servo4.write(78);
 Servo8.write(10);
 Servo6.write(165); //horizontal motors(servo6,7,9,10) are parallel to side of
 Servo7.write(5); //the main body frame
 Servo9.write(140);
 Servo10.write(25);
 Servo12.writeMicroseconds(1505); // Two wheel motor should not move when the vehicle mode first start
 Servo11.writeMicroseconds(1515);

 }
void loop() {

 key = getIRKey();		 //Fetch the key
 val = analogRead(sensorPin); //Fetch distance value from proximity sensor

 if(key != 0) //Ignore keys that are zero
 {
 if(tr == 0) //access only in vehicle mode
 {
 switch(key)
 {
 case 144: //"CH down" button is pressed from IR remote
 Servo12.writeMicroseconds(1700); // Right wheel motor rotateCounter Clockwise
 Servo11.writeMicroseconds(1300); // Left wheel motor rotate Clockwise
 while(val > 15) //do while distance value is greater than 15(around 10 inch)
 {
 key = getIRKey(); //Fetch the key from IR receiver
 if(key != 144) //If key is not 144, break from the loop
 {
 break;}
 }
 break;
 case 145: //("CH up") button is pressed from IR remote;
 Servo12.writeMicroseconds(1300); // Right wheel motor rotate Clockwise
 Servo11.writeMicroseconds(1700); // Left wheel motor rotate Counter Clockwise
 while(val > 15) //do while distance is more than 10inch
 {
 key = getIRKey(); //Fetch the key from IR receiver
 if(key != 145) //If key is not 145, break from the loop
 {
 break;}
 else{
 val = analogRead(sensorPin); //read signal from bumper button
 if(val < 16) //If the distance is less then 10inch, transform
 {Servo12.writeMicroseconds(1505); //wheel motor should stop moving when in
 Servo11.writeMicroseconds(1515); //quadpod mode
 Servo6.write(90); // when quadpod mode start
 Servo7.write(90); //all horizontal movement motors
 Servo9.write(85); //are at 90 degree
 Servo10.write(90);
 delay(700); //give 0.7 second delay
 Servo2.write(165); //rotate legs to the lowest position
 Servo3.write(0);
 Servo4.write(5);
 Servo8.write(180);
 delay(700); //give 0.7 second delay
 tr = 1; //tr = 1 so the code for vehicle won't be activated untill tr = 0 again
 }
 }
 }
 break;
 case 146: //("VOL Right")button is pressed from IR remote;
 Servo12.writeMicroseconds(1505); // Right wheel motor stop
 Servo11.writeMicroseconds(1700); // Left wheel motor rotate Couter Clockwise
 while(val > 15) //do while distance value is greater than 15
 {
 key = getIRKey(); //Fetch the key from IR receiver
 if(key != 146) //If key is not 146, break from the loop
 {
 break;}
 else{
 val = analogRead(sensorPin); //read signal from proximity sensor
 if(val < 16) //If the distance value is less then 16(around 10 inch), transform
 {Servo12.writeMicroseconds(1505); //wheel motor should stop moving when in
 Servo11.writeMicroseconds(1515); //quadpod mode
 Servo6.write(90); // when quadpod mode start
 Servo7.write(90); //all horizontal movement motors
 Servo9.write(85); //are at 90 degree
 Servo10.write(90);
 delay(700); //give 0.7 second delay
 Servo2.write(165);
 Servo3.write(0); //rotate to the lowest position
 Servo4.write(5);
 Servo8.write(180);
 delay(700); //give 0.7 second delay
 tr = 1; //tr = 1 so the code for vehicle won't be activated untill tr = 0 again
 }
 }
 }
 break;
 case 147: //Serial.print("VOL Left");
 Servo12.writeMicroseconds(1300); // Right wheel motor Clockwise
 Servo11.writeMicroseconds(1515); // Left wheel motor stop
 while(val > 15) //do while distance value is greater then 15
 {
 key = getIRKey(); //Fetch the key from IR receiver
 if(key != 147) //If key is not 147, break from the loop
 {
 break;}
 else{
 val = analogRead(sensorPin); //read signal from proximity sensor
 if(val < 16) //If the distance value is less then 16(around 10 inch),transform
 {Servo12.writeMicroseconds(1505); //wheel motor should stop moving when in
 Servo11.writeMicroseconds(1515); //quadpod mode
 Servo6.write(90); // when quadpod mode start
 Servo7.write(90); //all horizontal movement motors
 Servo9.write(85); //are at 90 degree
 Servo10.write(90);
 delay(700); //give 0.7 second delay
 Servo2.write(165); //rotate legs to the lowest position
 Servo3.write(0);
 Servo4.write(5);
 Servo8.write(180);
 delay(700); //give 0.7 second delay
 tr = 1; //tr = 1 so the code for vehicle won't be activated untill tr = 0 again
 }
 }
 }
 break;
 case 148: //("Mute")button is pressed from IR remote; // Vehicle Mode
 Servo12.writeMicroseconds(1505); //wheel motor should stop moving when in
 Servo11.writeMicroseconds(1515); //quadpod mode
 Servo6.write(90); // when quadpod mode start
 Servo7.write(90); //all horizontal movement motors
 Servo9.write(85); //are at 90 degree
 Servo10.write(90);
 delay(700); //give 0.7 second delay
 Servo2.write(165); //rotate legs to the lowest position
 Servo3.write(0);
 Servo4.write(5);
 Servo8.write(180);
 delay(700); //give 0.7 second delay
 tr = 1; //tr = 1 so the code for vehicle won't be activated untill tr = 0 again

 break;
 case 165: //("AV/TV")button is pressed from IR remote; // Quadpod Mode

 break;
 case 149:
 // Serial.print("Power");
 Servo12.writeMicroseconds(1505); // stops both wheel motors
 Servo11.writeMicroseconds(1515);
 while(val > 15) //do while distance value is more then 15(10 inch)
 {
 key = getIRKey(); //Fetch the key from IR receiver
 if(key != 149) //If key is not 149, break from the loop
 {
 break;}
 else{
 val = analogRead(sensorPin); //read signal from proximity sensor
 if(val < 16) //If the distance value is less then 16(arounc 10inch), transform
 {Servo12.writeMicroseconds(1505); //wheel motor should stop moving when in
 Servo11.writeMicroseconds(1515); //quadpod mode
 Servo2.writeMicroseconds(2250); // different side, pull down legs to lowest point
 Servo3.writeMicroseconds(750);
 Servo4.writeMicroseconds(2250);
 Servo8.writeMicroseconds(750);
 delay(1000); //give 1 second delay so the vehicle will transform into quadpod
 tr = 1; //tr = 1 so the code for vehicle won't be activated untill tr = 0 again
 }
 }
 }
 break;

 //default: Serial.print(key);
 }
 }
 if(tr == 1) //access only in quadpod mode
 {
 switch(key)
 {
 case 144: //("CH down") button is pressed from IR remote;

 Servo8.write(155);//lift rear left leg 30 deg(155deg)
 Servo6.write(132);//rotate rear left leg backward (132deg)
 delay(100); //give 0.1 second delay
 Servo9.write(45);//rotate front left leg 15 deg forward(45deg)
 Servo7.write(83);//rotate rear right leg 15 deg forward(83deg)
 Servo10.write(90);//rotate front right leg 15 deg forward(90deg)
 delay(100); //give 0.1 second delay
 Servo8.write(180);//lower the rear left leg back to original position (180deg)
 delay(100);

 Servo3.write(25);//lift front left leg 30deg(25deg)
 Servo9.write(90);//rotate the front left leg backward (90deg)
 delay(100); //give 0.1 second delay
 Servo6.write(117);//rotate rear left leg 15 deg forward(117deg)
 Servo10.write(105);//rotate front right leg 15 deg forward(105deg)
 Servo7.write(98);//rotate rear right leg 15 deg forward(98deg)
 delay(100); //give 0.1 second delay
 Servo3.write(0);//lower the front left leg back to original position (0deg)
 delay(100);

 Servo4.write(30);//lift rear Right leg 30 deg(30deg)
 Servo7.write(53);//rotate the rear right leg backward (53deg)
 delay(100); //give 0.1 second delay
 Servo9.write(75);//rotate front left leg 15 deg forward(75deg)
 Servo6.write(102);//rotate rear left leg 15 deg forward(102deg)
 Servo10.write(120);//rotate front right leg 15 deg forward(120deg)
 delay(100); //give 0.1 second delay
 Servo4.write(5);//lower the rear right leg to original position (5deg)
 delay(100);

 Servo2.write(140);//lift Front Right leg 30 deg(140deg)
 Servo10.write(75);//rotate the front right leg backward (75deg)
 delay(100); //give 0.1 second delay
 Servo9.write(60);//rotate front left leg 15 deg forward(60deg)
 Servo7.write(68);//rotate rear right leg 15 deg forward(68deg)
 Servo6.write(87);//rotate rear left leg 15 deg forward(87deg)
 delay(100); //give 0.1 second delay
 Servo2.write(165);//rotate front right leg back to original position (165deg)
 delay(100);

 break;

 case 145: //Serial.print("CH up");
 Servo3.write(25);//lift front left leg 30deg(25deg)
 Servo9.write(45);//rotate the front left leg forward(45deg)
 delay(100); //give 0.1 second delay
 Servo6.write(132);//rotate rear left leg 15 deg backward(132deg)
 Servo10.write(90);//rotate front right leg 15 deg backward(90deg)
 Servo7.write(83);//rotate rear right leg 15 deg backward(deg)
 delay(100); //give 0.1 second delay
 Servo3.write(0);//rotate front left leg back to original position(0deg)
 delay(100); //give 0.1 second delay

 Servo8.write(155);//lift rear left leg 30 deg(155deg)
 Servo6.write(87);//rotate rear left leg forward(87deg)
 delay(100); //give 0.1 second delay
 Servo9.write(60);//rotate front left leg 15 deg backward(60deg)
 Servo7.write(68);//rotate rear right leg 15 deg backward(68deg)
 Servo10.write(75);//rotate front right leg 15 deg backward(75deg)
 delay(100); //give 0.1 second delay
 Servo8.write(180);//rotate the rear left leg back to original position (180deg)
 delay(100); //give 0.1second delay

 Servo2.write(140);//lift Front Right leg 30 deg(140deg)
 Servo10.write(120);//rotate the front right leg forward(120deg)
 delay(100); //give 0.1 second delay
 Servo9.write(75);//rotate front left leg 15 deg backward(75deg)
 Servo7.write(53);//rotate rear right leg 15 deg backward(53deg)
 Servo6.write(102);//rotate rear left leg 15 deg backward(102deg)
 delay(100); //give 0.1 second delay
 Servo2.write(165);//rotate the front right leg back to original position (165deg)
 delay(100); //give 0.1 second delay

 Servo4.write(30);//lift rear Right leg 30 deg(30deg)
 Servo7.write(98);//rotate rear right leg forward(498deg)
 delay(100); //give 0.1 second delay
 Servo9.write(90);//rotate front left leg 15 deg backward(90deg)
 Servo6.write(117);//rotate rear left leg 15 deg backward(117deg)
 Servo10.write(105);//rotate front right leg 15 deg backward(105deg)
 delay(100); //give 0.1 second delay
 Servo4.write(5);//rotate rear right leg back to original position (5deg)
 delay(100); //give 0.1 second delay

 break;

 case 146: //Serial.print("VOL Right");
 Servo3.write(25);//lift front left leg 30deg(25deg)
 Servo9.write(45);//rotate front left leg forward(45deg)
 delay(100); //give 0.1 second delay
 Servo6.write(132);//rotate rear left leg 15 deg backward(132deg)
 Servo10.write(90);//rotate front right leg 15 deg forward(90deg)
 Servo7.write(83);//rotate rear right leg 15 deg forward(83deg)
 delay(100); //give 0.1 second delay
 Servo3.write(0);//rotate front left leg back to original position (0deg)
 delay(100);//give 0.1 second delay

 Servo8.write(155);//lift rear left leg 30 deg(155deg)
 Servo6.write(87);//rotate rear left leg forward (87deg)
 delay(100); //give 0.1 second delay
 Servo9.write(60);//rotate front left leg 15 deg backward(60deg)
 Servo7.write(98);//rotate rear right leg 15 deg forward(98deg)
 Servo10.write(105);//rotate front right leg 15 deg forward(105deg)
 delay(100); //give 0.1 second delay
 Servo8.write(180);//rotate rear left leg back to original position (180deg)
 delay(100);//give 0.1 second delay

 Servo4.write(30);//lift rear Right leg 30 deg(30deg)
 Servo7.write(53);//rotate rear right leg backward (53deg)
 delay(100); //give 0.1 second delay
 Servo9.write(75);//rotate front left leg 15 deg backward(75deg)
 Servo6.write(102);//rotate rear left leg 15 deg backward(102deg)
 Servo10.write(120);//rotate front right leg 15 deg forward(120deg)
 delay(100); //give 0.1 second delay
 Servo4.write(5);//rotate rear Right leg back to original position (5deg)
 delay(100); //give 0.1 second delay

 Servo2.write(140);//lift Front Right leg 30 deg(140deg)
 Servo10.write(75);//rotate front right leg backward (75deg)
 delay(100); //give 0.1 second delay
 Servo9.write(90);//rotate front left leg 15 deg backward(90deg)
 Servo7.write(68);//rotate rear right leg 15 deg forward(68deg)
 Servo6.write(117);//rotate rear left leg 15 deg backward(117deg)
 delay(100); //give 0.1 second delay
 Servo2.write(165);//rotate front right leg back to original position (165deg)
 delay(100); //give 0.1 second delay
 break;

 case 147: //Serial.print("VOL Left");
 Servo2.write(140);//lift Front Right leg 30 deg(140deg)
 Servo10.write(120);//rotate front right leg forward(120deg)
 delay(100); //give 0.1 second delay
 Servo9.write(75);//rotate front left leg 15 deg forward(75deg)
 Servo7.write(53);//rotate rear right leg 15 deg backward(53deg)
 Servo6.write(102);//rotate rear left leg 15 deg forward(102deg)
 delay(100); //give 0.1 second delay
 Servo2.write(165);//rotate the front right leg back to original position (165deg)
 delay(100); //give 0.1 second delay

 Servo4.write(30);//lift rear Right leg 30 deg(30deg)
 Servo7.write(98);//rotate rear right leg forward(98deg)
 delay(100); //give 0.1 second delay
 Servo9.write(60);//rotate front left leg 5 deg forward(60deg)
 Servo6.write(87);//rotate rear left leg 15 deg forward(87deg)
 Servo10.write(105);//rotate front right leg 15 deg backward(105deg)
 delay(100); //give 0.1 second delay
 Servo4.write(5);//rotate rear right leg back to original position (5deg)
 delay(100);

 Servo8.write(155);//lift rear left leg 30 deg(155deg)
 Servo6.write(132);//rotate rear left leg backward(132deg)
 delay(100); //give 0.1 second delay
 Servo9.write(45);//rotate front left leg 15 deg forward(45deg)
 Servo7.write(83);//rotate rear right leg 15 deg backward(83deg)
 Servo10.write(90);//rotate front right leg 15 deg backward(90deg)
 delay(100); //give 0.1 second delay
 Servo8.write(180);//rotate rear left leg back to original position(180deg)
 delay(100);

 Servo3.write(25);//lift front left leg 30deg(25deg)
 Servo9.write(90);//rotate front left leg backward (90deg)
 delay(100); //give 0.1 second delay
 Servo6.write(117);//rotate rear left leg 15 deg forward(117deg)
 Servo10.write(75);//rotate front right leg 15 deg backward(75deg)
 Servo7.write(68);//rotate rear right leg 15 deg backward(68deg)
 delay(100); //give 0.1 second delay
 Servo3.write(0);//rotate the front left leg back to original position
 delay(100);//give 0.1 second delay

 break;
 case 148: //("Mute")button is pressed; // Transform
 Servo2.write(140); // different side, pull up legs to highest point
 Servo3.write(25); // by giving pulse for slightly higher angle
 Servo4.write(30); //every 0.3 seconds. (since the weight of the project is quite heavy
 Servo8.write(155); //the project crashes on floor when it transform unless we do this)
 delay(300); //give 0.3 second delay
 Servo2.write(130);
 Servo3.write(35);
 Servo4.write(40);
 Servo8.write(140);
 delay(300); //give 0.3 second delay
 Servo2.write(120);
 Servo3.write(45);
 Servo4.write(50);
 Servo8.write(125);
 delay(300); //give 0.3 second delay
 Servo2.write(110);
 Servo3.write(63);
 Servo4.write(65);
 Servo8.write(113);
 delay(300); //give 0.3 second delay
 Servo2.write(98); // different side, pull up legs to highest point
 Servo3.write(80);
 Servo4.write(78);
 Servo8.write(105);
 delay(300); //give 0.3 second delay
 Servo6.write(165); // when in vehicle mode
 Servo7.write(5); //all horizontal movement motors
 Servo9.write(140); //are parallel to the sides of main body frame.
 Servo10.write(25);
 delay(700);
 tr = 0; //since the project is back to vehicle mode, tr = 0
 break;
 case 165: //("AV/TV")button is pressed;

 break;
 case 149:
 // ("Power")button is pressed;

 break;

 }
 }

 }

 }

 int getIRKey() {
 int data[12];
 int i;

 while(pulseIn(irPin, LOW) < start_bit); //Wait for a start bit

 for(i = 0 ; i < 11 ; i++)
 data[i] = pulseIn(irPin, LOW); //Start measuring bits, I only want low pulses

 for(i = 0 ; i < 11 ; i++) //Parse them
 {	
 if(data[i] > bin_1) //is it a 1?
 data[i] = 1;
 else if(data[i] > bin_0) //is it a 0?
 data[i] = 0;
 else
 return -1; //Flag the data as invalid; I don't know what it is! Return -1 on invalid data
 }

 int result = 0;
 for(i = 0 ; i < 11 ; i++) //Convert data bits to integer
 if(data[i] == 1) result |= (1<<i);

 return result; //Return key number
}

Code for the remote controller verification

/*
 SparkFun Electronics 2011
 OSHW License http://freedomdefined.org/OSHW

 IR TX(LED) and RX(Receiver) demo at 38k Hz
 -Outputs a 38KHz wave on pin 11
 -takes input from TSOP382 on pin 2

 The IR LED carrier wave of 38kHz is turned on and off
 to blink and LED.

*/

//define your square wave frequency
#define IR_CLOCK_RATE 38000L

int ledPin = 13; // the pin that the LED is attached to

void setup() {
 // toggle pin 11 on compare
 TCCR2A = _BV(WGM21) | _BV(COM2A0);
 TCCR2B = _BV(CS20);

 // 38kHz timer
 OCR2A = (F_CPU/(IR_CLOCK_RATE*2L)-1);
 pinMode(11, OUTPUT);

 //endable an interrupt on pin 2, when there is a falling edge
 //jump to the blink function
 attachInterrupt(0, blink, FALLING);

 //initialize serial
 Serial.begin(9600);
}

void loop() {
 //turn the 38kHz carrier wave off and on
 TCCR2B = 0;
 delay(500);
 TCCR2B = _BV(CS20);
 delay(500);
}
void blink() {
 //blink the LED and print 'hit'
 digitalWrite(ledPin, HIGH);
 Serial.println("hit");
 delay(800);
 digitalWrite(ledPin, LOW);
}

/* Code for testing serial output of the remote controller
SparkFun Electronics 2010
Playing with IR remote control

IR Receiver TSOP382: Supply voltage of 2.5V to 5.5V
With the curved front facing you, pin 1 is on the left.
Attach
Pin 1: To pin 2 on Arduino
Pin 2: GND
Pin 3: 5V

This is based on pmalmsten's code found on the Arduino forum from 2007:
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1176098434%2F0

This code works with super cheapo remotes. If you want to look at the individual timing
of the bits, use this code:
http://www.arduino.cc/playground/Code/InfraredReceivers

This code clips a lot of the incoming IR blips, but what is left is identifiable as key codes.

*/

int irPin = 50; //Sensor pin 1 wired to Arduino's pin 50
int statLED = 13; //Toggle the status LED every time Power is pressed
int start_bit = 2200; //Start bit threshold (Microseconds)
int bin_1 = 1000; //Binary 1 threshold (Microseconds)
int bin_0 = 400; //Binary 0 threshold (Microseconds)

void setup() {
pinMode(statLED, OUTPUT);
digitalWrite(statLED, LOW);

pinMode(irPin, INPUT);

Serial.begin(9600);
Serial.println("Waiting: ");
}

void loop() {
int key = getIRKey(); //Fetch the key

if(key != 0) //Ignore keys that are zero
{
Serial.print("Key Recieved: ");
switch(key)
{
case 144: Serial.print("CH Up"); break;
case 145: Serial.print("CH Down"); break;
case 146: Serial.print("VOL Right"); break;
case 147: Serial.print("VOL Left"); break;
case 148: Serial.print("Mute"); break;
case 165: Serial.print("AV/TV"); break;
case 149:
Serial.print("Power");
if(digitalRead(statLED) != 1) //This toggles the statLED every time power button is hit
digitalWrite(statLED, HIGH);
else
digitalWrite(statLED, LOW);
break;

default: Serial.print(key);
}

Serial.println();
}
}

int getIRKey() {
int data[12];
int i;

while(pulseIn(irPin, LOW) < start_bit); //Wait for a start bit

for(i = 0 ; i < 11 ; i++)
data[i] = pulseIn(irPin, LOW); //Start measuring bits, I only want low pulses

for(i = 0 ; i < 11 ; i++) //Parse them
{
if(data[i] > bin_1) //is it a 1?
data[i] = 1;
else if(data[i] > bin_0) //is it a 0?
data[i] = 0;
else
return -1; //Flag the data as invalid; I don't know what it is! Return -1 on invalid data
}

int result = 0;
for(i = 0 ; i < 11 ; i++) //Convert data bits to integer
if(data[i] == 1) result |= (1<<i);

return result; //Return key number
}

Appendix C – Requirement and Verification

	Requirement
	Verification

	Arduino Mega 2560
The Arduino Mega is the board we use for the circuit part. The operating voltage is 5V, but the recommended voltage is 7~12V, so we will use 9V batteries to help better performance. The current capacity for I/O pin is 40mA. 1)

The Arduino Mego should have a capability of supporting synchronized signal to the all the components connected to it.

	1. Arudino Mega should give a synchronized signal to all the motors with a desired pulse signal. All the servo motors should work in the range of pulse width of 750us ~ 2250us2) and Arduino Mega can provide these pulses from the PWM output. We can check this using the oscilloscope.
Once we have verified the motors and the PWM outputs, we can check the synchronization between the PWM output and the motors by checking if the motor is in a position described by the pulse width.

2. We can test the current value from I/O pin of Arduino Mega using resistor and some calculation. First, we connect resistor at I/O pin and Measure voltage across the resistor with voltage meter. Then we will be able to calculate the current coming out from the arduino using the following equation.
VR/R = Imain = 40mA (with 5% error)

	Servo Motors
The voltage capacity for the servo motors is 4 to 6V, and the current capacity is 140~ -50mA at 6V when it’s idle.6),7) The communication should be through pulse-width modulation for the motors.

	1. By using a function generator, check how much a motor rotates by a given pulse. For the standard servo motor, the motor should rotate the amount of angle described by the table below. 2)

r

	Pulse width
	Degree

	750~900s
	0~18degree

	1400~1600s
	78~102degree

	2100~2250s
	162~180degree

[image: Description: The width of pulses determines the position of the servo]
[image: Description: The width of pulses determines the speed and direction of the servo]

	5V regulator
The 5V regulator should make the7.4 V to 5V for the voltage for the motors. 12)
	1. By using voltmeter, the input node of the regulator should show 7.4V 5%, and the output node of the regulator should show 5V 5%.
2. Voltage regulator max current output = 1.5A
Therefore, we check the endurance of the regulator to make sure that this device is sufficient.

	IR receiver
The Receiver (TSOP382) only reads modulated 38kHz IR radiation, which means we need to pulse the LED at 38kHz for the data stream. For each bit of information, the LED will either be off for about 600us or on modulating at 38kHz for 600us, as shown below.4)
[image: Description: http://www.sparkfun.com/tutorial/ir_control_retail/38k_small.jpg]
 Figure 15.4)
The current capacity is 27~45mA, normally 35mA. If there is sunlight, the typical current would be around 0.45mA due to Electric field generated (E = 40klx). The voltage capacity is 2.5~5.5V, and the maximum distance for the remote control is 45m. 9)

	Test for receiving

Check if the receiver receives the modulated 38 kHz pulse signal from the IR LED. The <code1>4) given by Sparkfun Electronics, the product company, will check if the signal is transmitted by printing ‘hit’ on the screen. [image: Description: http://www.sparkfun.com/tutorial/ir_control_retail/setup_small.jpg]

The circuit above basically sends received serial data to Arduino to print out the data.
[image: C:\Users\Kee Woong Haan\Dropbox\ece310\ECE 445\Individual report files\IR Receiver\IR receiver testing schematic.png]
On each button on controller
	Button
	Print out
	Button
	Print out

	Up
	144
	Quadpod
	148

	Down
	145
	Car
	165

	Left
	147
	Stop
	149

	Right
	146
	
	

This should show the serial data that each button on controller has.
[image: C:\Users\Kee Woong Haan\Dropbox\ece310\ECE 445\Individual report files\IR Receiver\IR receiver serial monitor.png]
The code for verifying this is attached on the appendix B.

Distance Check
The controller spec shows that Receiver can get signal up to 45M. However, we are testing this project in the Senior Project Room; we use the length of the room to measure.
The IR receiver received the signal from the door of the room to the window. (14.7M)

Current and Voltage Check
The maximum current that can flow into IR receiver is 45mA. Because we are using Arduino as a source, current will be approximately 40mA which is in tolerance range.

Power consumption
Because we know the voltage and the current, we are able to calculate power consumption.
40mA × 5V = 200mW ± 5% error

	Proximity Sensor
The sensor requires the current capacity larger than 2mA, and the voltage capacity 2.5~5.5VDC.
This sensor is capable of detecting 6 inch to 255 inch.
	1. Voltage and Current check
Because the power source for sensor is from the Arduino Mega 5V output, the voltage across the proximity sensor is very accurate.
Also, the Arduino mega 5V ÷ 5% error output pin can produce up to 40mA.

2. Signal output check
Check what value the sensor creates while varying distance from the sensor and an object.

image1.png
Schematic Descriptions:

IR receiver Sensors

Power

Main Station

Infrared data
transmission

h Remote
Controller

Power Supply (9V)

Figure 7.

Power Supply (5V)

image2.jpeg

image3.jpeg

image4.png
* 1300 ps: Turn clockwise
* 1500 ps: Stops the motor
* 1700 ps: Turn counterclockwise

Pulse length
changes to control
servo direction

[e—I

Counter

clockwise
1700 ps

Stopped
1500 ps

Clockwise
1300 ps

image5.png
2000 ps

Pulse length
changes to control
servo position

1500 ps

1000 ps

_O(oLO)

Centered

image6.png
mﬂk s %—%I« e

image7.png
ECE445 Team &
QuadPod Transform Uehicle

image8.jpeg

image9.jpeg
0412888aRDC

2000 MULTIMETER

image10.png
B 1 Schematic - Hi\quadpod schematic.sch - EAGLE 6.20 Light

e o

Fie Edt Draw View Tools Library Options Window Help

s o e 8 x fotnnes2n [
i
L 34 m

88

£
£

N

w B O 8

(o]
[]
A

®

H o

 Left-click to start wire

W EEAAARY o~ PE 7

o) -

eailci
ELA

i

RuLsE

SRERagiiEs

:@Tg

-

2
Gho
Gho
Gho
Gho
GNo

12
1406)
15
100a)
16
e
TG0
08
ety
7

)

2

i

S

o

=

=

@

3

2

=

a4

8

@

@

=

@

@

@

b

&

w

b

b

@

b

@

@

3

2

=

iﬁ"k%a

SRR

HRHE:

AR

R A e

ARDUNO-MEGAFULL

FR_VERTICAL _MOTOR

image11.png
@ sketch_oct23a | Arduino 10.1 s - = =

File Edit Sketch Tools Help

- - - ‘. » [E— _

sketch_oct23a§ -
void setw () ((=] fmti]

piriiods (statlED, oUTRUT); cong

digicalicice (statlED, LOW); | S

pintioge (1xFin, TUPUT) ; aicing

ey Recieveds Down(dscalss)

Serial.beqin(9600) ; ey Recieved: Down(detalss)

Serial.princin("Vaiting: “); ey Recieved: Up(datalsd)
) ey Recieved: Up(datalsd)

Key Recieved: Left(datald?)
void loop() { Koy Recieved: Left(datald?)

int key = getIRKey(]: J/Feteh the key Koy Recieved: Right(datalds)
Koy Recieved: Right(datalds)

if(key != 0) //Ignore keys that are zero Koy Recieved: stop(datalss)
f Key Recieved: stop(datalds)
Serial.print("Key Recieved: "); Koy Recieved: quadpod (datalds)
switen (key) Koy Recieved: quadpod (datalds)
B Key Recieved: vehicle(datalds)
case 144: Serial.print("Up(dataldd]”); bresk: Koy Recieved: vehicle(datalss)
case Serial.print("Down(datalds)”); break.
case Serial.print("Right (datalds)"); break. p— =

case 147: Serial.print("left(datald?]”); break:
Serial.print{"guadpod(datalds)”) ; break,

Serial.print{ vehicle datales)"); bresk;

Serial.print{"stop(datalds)”) ;

if(digitalRead(statlED) = 1) //This toggles the statlED every time pover button is hit
151 taliri te (statlED, HIGH);

else

< ’

Done uploading.

Arduin

image12.jpeg
KEITHLEY

image13.jpeg
04.2888aA0C

2000 MULTIMETER

image14.jpeg

image15.gif
Distance (inch)

image16.gif
Distance(inch)e| Measurede |*
8o 127 o
9¢ 1450 |o
10- 167 o
1o 187 o
127 1850 |e
130 200 o
140 220 o
150 240 o

162 267 o

image17.png
Keep the vertical leg 210 deg.
‘position i relaton to the
motor.

Check ifstop Iestop:

£
signal=0.

T ,
B
Right signal=0.
—
e
o
_—
—
- Leftmotor and Right motor
Forward signal = 0. runs backward.

Rotate ll 4 verical legs a1 90 degrees and transfomm to
‘quadped mode

image18.png
Check is Forward
signal =1 or 0

If Forward =1

Lift frontleft leg while moving
it Forward.

Lower down the frontleft leg
while moving it Forward.

while moving it
Forward.

Lower down rear left leg while
moving it Forward

Lift front right leg while
‘moving it Forward.

Lower down the front right leg,
while moving it Forward.

Liftrearrightleg while moving
it Forward.

Lower down rearrightleg while

moving it Forward.

Liftall legs and ransform back
to vehicle mode.

image19.png
Check is Left
signal =1 or 0

Ifleft=1

Lift front right leg while
‘moving it Forward.

Lower down the front right leg.
while moving it Forward.

Lift rear right leg while moving
it Forward.

Lower down rear right leg while
‘moving it Forward.

Liftrearleftleg while movingit
backward

Lower down the rear left leg
while moving it backward.

Lift frontleft leg while moving
it backward.
Lower down frontleftleg while
‘moving it backward.

Liftall legs and ransform back |
to vehicle mode.

image20.png
Ifright=0.

Check is right
signal =1 or 0.

Ifright=1

Lift frontleft leg while moving
it Forward.

Lower down the frontleft leg
while moving it Forward.

Liftrear left leg while moving it
Forward.

Lower down rear left leg while
moving it Forward

Liftrearrightleg while moving
it backward.

Lower down the rear right leg
while moving it backward.

Lift front right leg while
‘moving it backward.

Lower down front right leg
while moving it backward

Liftall legs and ransform back
to vehicle mode.

image21.png
If Backward

Liftrearleftleg while movingit
backward

Lower down the rear left leg
while moving it backward

Lift frontleft leg while moving it
backward

Lower down front left leg while
‘moving it backward.

Liftrearrightleg while moving
it backward.

Lower down the rear right leg
while moving it backward.

Lift front right leg while
‘moving it backward.
Lower down front right leg
while moving it backward

Liftall legs and ransform back |
to vehicle mode.

image22.png
Agilent Technologies

FRI OCT 19 06:27:38 2012

image23.png
Agilent Technologies

FRI OCT 19 06:27:57 2012

image24.png
Agilent Technologies

FRI OCT 19 06:15:37 2012

image25.png
Agilent Technologies

FRI OCT 19 06:14:56 2012

image26.png
Agilent Technologies

FRI OCT 19 06:16:58 2012

image27.png
Agilent Technologies

FRI OCT 19 06:17:16 2012

image28.png
Agilent Technologies FRI OCT 19 06:21:05 2012

image29.png
Agilent Technologies FRI OCT 19 06:21:40 2012

image30.png
Agilent Technologies WED OCT 24 06:25:23 2012

image31.png
Agilent Technologies WED OCT 24 06:25:48 2012

image32.jpeg
—
KEITHLEY

0435138 ¥ IC

2000 MULTIMETER

image33.jpeg

image34.jpeg
| KEITHLEY

DOLLOOLCL
forme_me) Lrowmend Luwla (ol

) () Ay enen)

g4

POWER

image35.jpeg

image36.png
Horizontal H Horizontal
Servo Servo
Continuous
Servo
i I
| . 5 5
! >.:—:-=c Mega M £l M. Proximity
i With PCB on top 22| &5 sor
| RN
ﬁ 5 &
I

Continuous
Servo

Horizontal
Servo

Horizontal
Servo

image37.jpeg

image38.png
O
‘

JF_RECENER

§Irsnmxz

ONIC_RANGE_FINDER w

I
0251774200

7.4V, BLUE_LIPO_BATTERY

H
H

i
EERTCALIOTOR
s

7S
LoErTEAL T

T E T LT LLLLILL]

B

t
100251774200

ansBssasnian

FROUINGHEGAF UL

image39.png

image40.png
2000 ps

Pulse length
changes to control
servo position

1500 ps

1000 ps

Helcue))

Centered

image41.png
1700 ps

Pulse length
changes to control
servo direction

1500 ps

1300 ps.

Counter
clockwise

Stopped

Clockwise

image42.jpeg
600 us 600 ps

image43.jpeg
13

image44.png
Fie Edt Draw View Tools Library Options Window Help

QAaxa@o~ QR 7

i [Moes <)

oo S e

Srects & % [01nen (3739 |

’
%o

3

+

X 71
%

&

&

i
i

N

w B O 8

[]
A

el
®

H o

Ifrearleft
leg sensor =1

TS

PR

OO EEE RGO Ry 4K Y HE LE BB R R

FROUINGHEGAF UL

