
ShowerSync

ECE 445 Project Proposal

Team 21:

Reet Tiwary - rtiwary2

Edward Xiong - exiong2

Keshav Dandu - kdandu2

TA: Nikhil Arora

February 8th, 2024

1. Introduction

■ Problem:

Imagine running late for something. You are not only scrambling to finish last minute

work, but you also still need to shower. Now you have to wait on your water getting just to

the right temperature, but also waste a ton of water in the process of it all, altogether causing

you to just show up late and increasing your water bill.

With this type of situation, there are already products in the market that can adjust

temperatures beforehand and have it as a preset. For example, smart showers are nice in that

way because users can have a chance to control their desired water temperature, allowing

time for the water to reach the desired preference all through a mobile application with

Bluetooth included. But not everyone can afford a smart shower as it is expensive and

requires a whole shower/bath renovation process. Additionally, how can we come up with the

solution of not wasting water and being able to reuse it for alternative purposes while also

being cost-effective?

■ Solution:

A high-level idea of our solution is to create a convenient and efficient self-adjusting

shower knob/pin system with a compartment to store and reuse any water outside of the

desired temperature. This would aim towards cost-effectiveness, a user-friendly interaction, a

simple installation, and an environmental-friendly approach to a convenient shower process.

How we would implement this solution would be broken into system compartments/parts.

The system comprises a temperature sensor, a motorized knob mechanism that can be

easily attached to various shower knobs and faucet pins using a two-piece design, and finally

a removable container located near the faucet which stores any water outside of the desired

temperature through a tubing system into the container to be reused. When the sensor is able

to detect the correct temperature through the faucet, the faucet pin is pulled through the linear

actuator system, allowing the accurate water temperature to be dispersed through the shower

nozzle and saving the user’s time as well as their showering process.

The temperature sensor accurately gauges the water temperature passing through the

faucet system, while the motorized knob system ensures that the shower knob is adjusted to

match a predefined temperature setting and that the faucet pin is pulled when the desired

temperature is reached, indicating to the user that the shower is ready. When the desired

temperature has not been reached, the faucet has a tubing system that stores any water

outside of the desired temperature into a container which can be removed and reused for

other household purposes.

The entire system is controlled by a microcontroller, and to enhance user experience, we

plan to incorporate wireless communication using a Bluetooth module. This wireless

capability allows users to remotely adjust the shower temperature without the need to

physically interact with the knob and pin, so the shower is ready to go.

The self-adjusting shower knob/pin system and the faucet tubing system provide comfort

and convenience but also minimizes water wastage by precisely regulating the desired water

temperature and saves any water outside of temperature regulation into a usable container for

alternative purposes.

Finally additional features, such as a user-friendly mobile app interface and real-time

temperature feedback, can be integrated for an enhanced and customizable showering

experience while also being cost-effective.

■ Visual Aid:

Rough Sketch of the visual aid for ShowerSync which uses a temperature sensor located

underneath the faucet to preset the user's desired water temperature signaling the shower

knob to find the right temperature and finally signaling the faucet pin to allow water through

the nozzle. Any water outside of the desired temperature will be kept in a portable container.

1) The faucet as shown in the visual aid shows how the water temperature sensor

will be located underneath the faucet as it needs to detect the temperature of the

water for verification that the desired temperature has been acquired.

2) The faucet also has a tubing system set up to initiate the water-saving aspect for

this project to prevent any loss of water. Beneath the faucet we will have a tubing

system that will not expose the opening of the faucet to the rest of the tub. The

tube is adjustable and it will allow water to flow into the portable container which

is beneath the faucet held by a container holder which can be easily mounted.

3) The shower knob/handle communicates with the temperature sensor in that it

should be able to find the temperature desired. We will utilize a stepper motor that

moves the knob/handle where the desired temperature may be. To waterproof the

shower knob/handle, we will encase it since the user does not have to manually

touch the knob/handle at all. To encase it we will either use a waterproof clear

encasing or whichever may be suitable.

4) The faucet-pin will use a linear actuator which will be pulled up once the user

confirms that they are ready to begin the shower process. Otherwise, we will need

to determine how long the linear actuator can wait to lift up. When the user has

completed their showering process, the linear actuator will allow the faucet-pin to

drop down, once the knob/handle is back to rest.

5) The mobile application communicates with the faucet to set and find the user’s

desired temperature, then it will communicate again with the entire shower system

when the knob/handle locates the temperature (angle wise), notifying to the user

that desired temperature has been reached and whether they want to proceed with

showering or not. This will communicate with the faucet-pin to either be lifted to

allow the water to pass through the shower head and the showering process begins

or to wait until the user is ready. Finally, the mobile application will send a signal

to the shower knob/handle to return to rest and return the faucet pin back to rest as

well.

■ High-Level Requirements List:

1. When activated by the user, the ShowerSync system should automatically turn on the

faucet and redirect the water to a separate storage until the matching user temperature is

reached (i.e. 80 degrees). The temperature should be accurate to an error of 6 degrees.

2. Once the shower knob/handle has acquired the desired temperature, the shower system

should be able to notify the user to begin the shower process by initiating the faucet-pin

subsystem. The time between when the desired temperature is reached and when the pin

is pulled should be no more than 25 seconds.

3. The device should be able to react to remotely-issued commands. The entire device

should be able to respond and begin the entire process within 10 seconds of the

remotely-issued command.

2. Design

■ Block Diagram:

■ Subsystem Overview:

1) Shower Knob Subsystem:

The Shower Knob Subsystem contains the temperature sensor and a stepper motor

for the shower knob/handle. How it connects to other subsystems is that the ESP32

microcontroller will receive preset information from the user and send it toward the

shower knob subsystem. The shower knob subsystem will take in the data and set the

temperature accordingly with the sensor and use the motorized mechanism to find the

correct temperature. Once the desired temperature has been achieved, the microcontroller

communicates the fact that the desired temperature has been received and the mobile

application notifies the user about this. Once the user is prompted to begin their shower,

this will initiate the faucet-pin subsystem which will allow the shower process through

the nozzle/shower head. Any water that is outside of the desired temperature will

automatically go into the water-saving subsystem which just stores water outside of user

preference for external use.

With the components, the DS18B20 temperature sensor (5V) is a sensor that is

specifically designed to be used for reading water temperature. We chose this sensor due

to it being designed specifically with similar applications in mind and since it is

cost-effective. The N17 stepper motor (12V) is the motor we plan to use to rotate the

shower knob. It would be configured to do a pushing or pulling motion based on the

temperature reading. Due to our system being in a shower and likely having water get all

over it, we have begun looking into ways to waterproof the system beginning with the

electrical components. We found waterproof wiring that we would likely use between the

sensor to the PCB and the PCB to the motor. We also have to consider water getting onto

pieces such as the motor so we are also looking into the possibility of a 3D printing

material that would be waterproof so that we could create perfect structures to encase the

motor and other delicate components in. If this is not feasible the next option we would

consider is waterproof encasing that are premade and are made of a material similar to

silicon.

2) Faucet-Pin Subsystem:

The Faucet-Pin Subsystem connects to other subsystems in that once the the

ESP32 microcontroller receives the sensing from the temperature sensor that the user’s

desired temperature has been reached, this will send the data to the transmission

subsystem which will prompt the user if they are ready to start their shower process. User

will either select “ready” which will send the data to the microcontroller which will send

the data to the faucet-pin subsystem where the faucet pin will utilize a linear actuator

mechanism to lift the pin up, allowing the water to go through the shower head/nozzle. If

the user selects “no” then the faucet-pin subsystem will not be initiated. When the user is

finished with their shower, they can select “done” which will allow the microcontroller to

send the data to the shower knob subsystem to go back to resting position and once the

shower knob subsystem goes back to rest, then the microcontroller will signal the

faucet-pin subsystem that the shower-knob has been returned to its original state and

allow the linear actuator to drop the faucet pin down to rest as well, switching off/ closing

off any water flow.

The faucet-pin subsystem would use a servo-based setup similar to the shower

knob subsystem which would pull the pin that would switch the water from coming out

of the faucet to coming out of the shower head. We would likely use the N17 stepper

motor for simplicity instead of trying to figure out how to use a second type of motor. We

will also use the waterproofing solutions from the shower knob system to find ways to

protect the electronics in this subsystem.

3) Water-Saving Subsystem:

The Water-Saving Subsystem contains a water tubing configuration that will be

attached to the faucet and have the other end connected to the portable container which

stores any water outside of the desired temperature. The container is held by a container

holder which will be mounted underneath the faucet on the side of the tub to allow the

portable container to be held. The portable container will be removable by the user to use

any water stored in it for external use.

How the water-saving subsystem works with the other subsystems is that while it

does not need to use any electronic device in its configuration, once the shower knob

subsystem receives the desired temperature the user has requested (from transmission

subsystem to microcontroller to the shower knob subsystem), then while the shower knob

is adjusting itself to reach the user’s desired temperature, the faucet is basically opening

allowing any water that is not reaching the desired temperature to be wasted. Rather than

being wasted with the tubing system in place, any water outside of the desired

preferences will automatically store into the portable container and altogether save any

water to be wasted externally into the tub drain. The portable container will be big

enough to store enough water outside of desired temperatures and the container holder

should be able to hold it up based on how much water is being carried over. This

subsystem interacts with all of the subsystems altogether since it is storing the water and

at the end the user can use the portable container for other external uses.

With the components, the faucet tube is adaptable and can be adjusted from our

side to keep the water flowing into the water container/storage which can be held on the

bathroom shower wall beneath the faucet in a straight manner allowing the flow of the

water to enter into the container. The mounting strips mount the container holder where

we can place the water container in and users can move the container in and out of the

holder easily and use it for other household purposes.

4) Transmission Subsystem:

The Transmission Subsystem contains a mobile application where the user can set

a temperature request, start the shower process and end the shower process with ease.

How it connects to other subsystems is that it will signal to the ESP32

microcontroller to deliver the preset information. ESP32 will receive preset information

from the user and send it toward the shower knob subsystem. The shower knob

subsystem will take in the data and set the temperature accordingly with the sensor and

use the motorized mechanism to find the correct temperature. Once the desired

temperature has been achieved, the microcontroller communicates the fact that the

desired temperature has been received and the mobile application notifies the user about

this. Once the user is prompted to begin their shower, this will initiate the faucet-pin

subsystem which will allow the shower process through the nozzle/shower head. Any

water that is outside of the desired temperature will automatically go into the

water-saving subsystem which just stores water outside of user preference for external

use. After the shower process is complete, the transmission subsystem will take in the

user’s “done” indicating that he/she is finished with the shower which will allow the

microcontroller to indicate to the shower-knob system to return the knob/handle back to

rest, which will allow the microcontroller to indicate to the faucet-pin subsystem to drop

the faucet pin down to rest, switching/closing off all water and completing the shower as

a whole.

With the components, the HC-05 transceiver is a very cost-effective receiver that

would be compatible with our board. We currently are planning on using Bluetooth

connectivity in our app to connect with our system or doing it over a WIFI network. In

either case, the transceiver would be able to do the job. The ST7735R is a component in

the case that we decide to pivot from the original idea of using a phone application and

instead opt for a system where we would implement buttons or connect some kind of

remote to control the temperature. It is unlikely that we choose to go in that direction but

we have gone ahead and found this component as a starting point just in case.

5) Microcontroller Subsystem:

The Microcontroller Subsystem is perhaps the second most crucial part of the

project aside from the power subsystem. How the ESP32 microcontroller connects to

other subsystems is that it will receive preset information from the user which is from the

transmission subsystem and send the data toward the shower knob subsystem. The

shower knob subsystem will take in the data and set the temperature accordingly with the

sensor and use the motorized mechanism to find the correct temperature. Once the

desired temperature has been achieved, the microcontroller communicates the fact that

the desired temperature has been received and the mobile application notifies the user

about this. Once the user is prompted to begin their shower, this will initiate the

faucet-pin subsystem which will allow the shower process through the nozzle/shower

head. Any water that is outside of the desired temperature will automatically go into the

water-saving subsystem which just stores water outside of user preference for external

use. After the shower process is complete, the transmission subsystem will take in the

user’s “done” indicating that he/she is finished with the shower which will allow the

microcontroller subsystem to indicate to the shower-knob system to return the

knob/handle back to rest, which will allow the microcontroller subsystem to indicate to

the faucet-pin subsystem to drop the faucet pin down to rest, switching/closing off all

water and completing the shower as a whole.

Component-wise, the ESP32 WROOM board is very powerful with a dual-core

processor and Bluetooth and WIFI connectivity which is specifically useful to make our

transmission subsystem. It is also compatible with Arduino DOIT which could simplify

work down the line. It is also very compact and has a very low power consumption while

having a wide range of pins which would be useful in our case since we would want to

make it as small as possible since it would make waterproofing or making a waterproof

encasing easier.

6) Power Subsystem:

The power subsystem is an important part of this entire project as it supplies

everything to work the way it may need to (other subsystems will not be able to

communicate with each other without this). We will encase the power supply to be safe

from water, details regarding this are further discussed in this proposal.

■ Subsystem Requirements:

REQUIREMENTS: VERIFICATION:

Shower Knob Subsystem:

● Must be able to move the shower

knob as necessary effectively within

the range of motion (about 60-90

degrees).

● Should be able to communicate

effectively with the microcontroller

relaying the temperature.

● Should be able to give readings of

the temperature within three degrees

of the actual temperature.

● Would require 6 V to power the

motor from the power subsystems,

and a 3.3 V for the temperature

sensor.

● The motor should be able to turn the knob in

both directions to turn the water on and off.

We should be able to measure the change in

the angle of the shower knob handle using a

simple measurement from something such as

a protractor.

● Microcontroller should be able to effectively

control the motor based on readings and

create the intended motion.

● If another temperature sensor is used it

should give a reading within the same range.

This can be tested using cups of water at

different heats and comparing readings.

● Effectively provide voltage to the motor as

necessary. This can be verified by using a

multimeter to read the voltage going into the

component.

Faucet-Pin Subsystem:

● Must be able to effectively switch

between the shower head and the

faucet at the bottom based on the

microcontroller.

● Must be able to work on multiple

instances back-to-back without

manual intervention being required.

● Would require 3.3 V supplied by the

power subsystem to power the motor.

● When the user is ready to shower it goes to

the shower head and when the user is

finished with their shower it goes back to the

faucet.

● Upon use for one shower, it should not mess

with the setup or require a person to go and

adjust the motor to function a second time.

● Effectively provide voltage to the motor as

necessary. This can be verified by using a

multimeter to read the voltage going into the

component.

Water Saving Subsystem:

● Must effectively hold excess water as

the water is heating up and be able to

store all the water.

● Should not require any voltage and

include preliminary precautions to

avoid safety risks.

● Extra water during the process of the water

heating up should all be stored in some form

of container. That is convenient for users to

remove and use as they choose to later.

● No components should be able to be or

within 10 inches of electrical components to

avoid contact between electricity and water

for safety.

Transmission Subsystem:

● Must accurately receive information

from the User via an application and

send it to the microcontroller.

● Must allow the user to control certain

parameters such as temperature and

notify the user when the water is

ready.

● Must be able to see clear interaction of data

between microcontroller and application

where they can see information from each

other.

● When users set parameters or inputs such as

temperature there should be effective

communication to the user when the water is

at that temperature.

Power Subsystem:

● Must be able to consistently maintain

and regulate voltage levels for each

of the subsystems.

● Supplies 3.3 V to Shower Knob

Subsystem, Transmission Subsystem,

Micro-Controller Subsystem and

Faucet-Pin Subsystem.

● Supplies 6 V to Shower Knob

Subsystem.

● We should be able to monitor the voltage

being passed throughout different

components and consistently see effective

regulation without noticeable fluctuation.

● If monitored using a multimeter, we should

be able to effectively see that the anticipated

voltages are sent to each individual

component as planned.

Microcontroller Subsystem:

● Must be able to effectively

communicate with the other

subsystems. Relaying data to and

from every subsystem as intended.

● Would require 3.3 V supplied by the

power subsystem to power the

ESP32 Microcontroller.

Must be able to do the following:

1. Receive readings from the

temperature sensor and instruct the shower

knob subsystem’s motor.

2. Be able to send information to and

receive information from the application and

be able to see them correctly on both sides.

3. Be able to instruct the motor in the

faucet-pin subsystem based on inputs from

the transmission subsystem.

● Effectively provide voltage to the motor as

necessary. This can be verified by using a

multimeter to read the voltage going into the

component.

Tolerance Analysis:

1) Power Analysis

A factor that we have to consider is how much power our system needs to be able to

operate. If we do not choose a correctly-rated battery/power system, then we are unable to power

all the parts successfully. Initially, we were thinking of using a typical six-cylinder 5V battery

that would provide us around 550 mAh. Additionally, we would regulate the voltage to match the

necessary voltages we would need for our parts. Unfortunately, many of our parts did not provide

a clear measurement of the power consumption, so we had to create an educated guess on what

the power consumption would be based on similar parts.

The N17 stepper motor we plan on using did provide a power consumption of 120mA at

a nominal voltage of 12V. Since we are not using a 12V power source, we estimate that the

motor would take about 150mA. The ESP32 microcontroller we plan on using does not provide a

power rating but it is mentioned in the description that it is an ultra-low power consumption

board. As such, we give a generous estimate of around 200 mA for the microcontroller. Since we

plan on using an app to connect with our Bluetooth/wifi transceiver, we will not need to power a

remote for our project. The only remaining part that we have to power is the DS18B20

temperature sensor, but sensors like these consume little power, so we can assume it takes 1mA.

With all the parts accounted for, we can calculate the necessary power supply we need.

First, let’s assume we use a 550mAh battery. To account for potential losses to heat and voltage

variation, we assume that only 70% of the 550mAh is available to use.

0. 7 × 550𝑚𝐴ℎ = 385𝑚𝐴ℎ

Our total power consumption needed from all our parts can be calculated as follows:

150𝑚𝐴 + 100𝑚𝐴 + 1𝑚𝐴 = 251𝑚𝐴

To calculate how many hours of use we get, we divide the two numbers:

385𝑚𝐴ℎ/251𝑚𝐴 = 1. 53 ℎ

This value of 1.53 hours is fairly low considering that we want the battery to last for

numerous showers before having to replace it. As such, we decided to look into batteries with a

higher power rating. We eventually found a 5V battery that could provide 2500mAh to our

system. By doing the same calculations again, we can find the number of hours our device lasts

again.

0. 7 × 2500𝑚𝐴ℎ = 1750𝑚𝐴ℎ

1750𝑚𝐴ℎ/251𝑚𝐴 = 6. 97 ℎ

This estimate of 6.97 hours is much higher than our initial 1.53 hour estimate. Assuming

the average user takes 10 minute showers, we reach a usage of around 41 showers. Although this

number is not as ideal as we hoped for, it is still a reasonable amount of showers for the price of

one battery.

2) Voltage Regulation

To regulate the different voltages we need for our project, we plan on using a LM317

voltage regulator. As such, we need to analyze the temperature it operates on to ensure that we

don’t have any issues with the regulator. To start we know that the max temperature the LM317

can operate regularly at is 150 C. To calculate the max temperature we may encounter, we use

the following equation.

𝑇 = 𝑖 𝑜𝑢𝑡 * (𝑉 𝑖𝑛 − 𝑉 𝑜𝑢𝑡) * (Θ 𝑗𝑎) + 𝑇 𝑎

Next, we need to find all the unknowns in this equation. We know our Vin is 5V and the lowest

Vout we have is 3.3V, so we can substitute those numbers immediately. From the datasheet, we

also know that is 100C/W and Ta is 40 C. To calculate i out, we can assume that i in = i outΘ 𝑗𝑎

and calculate the current within our system. From the ESP-32 WROOM1 datasheet, we see that

there is a current draw of 165 mA on average and 211 mA in the worst case. For our purpose, we

assume the worst case. Our DSB18B20 temperature sensor only has a current draw of 1mA.

Finally, our motor has a current draw of 120 mA. Adding these up, we get a current of around

332 mA. Now, we can plug into the equation.

𝑇 = 332𝑚𝐴 * (5 − 3. 3) * 100 + 40 = 96. 44𝐶

As we can see, this value is much lower than the 150 C threshold provided by the datasheet, so

we know it is safe for us to apply the voltage regulator on our design.

3. Ethics and Safety

The main IEEE ethical dilemma we are facing with ShowerSync is the safety aspect of

water with all of the components and materials we will be utilizing. A lot of our safety features

regarding ShowerSync will have the involvement of water and how to prevent the aspect of

electrocution. As we are using a waterproof-based temperature sensor, which will interact

directly with the water, we also need to make sure that anything that we are using to mount any

of the motorized-based components with the various subsystems is also waterproof.

Additionally, we need to take into consideration the power source of ShowerSync and

how that can be affected by any interaction of the water if it so happens. We will not have a

battery near any water because that will be dangerous and will pose a risk factor. However, we

plan on keeping any of the components out of reach from the water by mounting them in an

encasing near the wall above the shower head tub configuration and allow water proof based

wirings to help serve as the motor based systems and anything we may need to connect our

divide too. By encasing the power source, using waterproof-based encasing and waterproof

wirings whilst also being mounted above the shower head where it would be attached to the wall

of the building, there can be a guarantee that water will not disrupt the system and neither will

humidity.

Our solution approach supports Section 1.1 of the IEEE Code of Ethics which states “to

hold paramount the safety, health, and welfare of the public, to strive to comply with ethical

design and sustainable development practices, to protect the privacy of others, and to disclose

promptly factors that might endanger the public or the environment” (IEEE Code of Ethics). It is

important to have safety considered in ShowerSync because we need to protect not only the user,

but also the components and materials we will be utilizing to create the interaction with water as

safely as possible. This will also allow us to focus on the device’s design from the perspective of

how we can achieve our goals whilst also remaining safe and use materials that will allow the

user to be safe while delivering its purpose.

By mounting the waterproof encasing/box which will contain the batter and controller

and use waterproof wiring and waterproof wiring for the motor system this will allow any

prevention of water disrupting the device. The waterproof temperature sensor will be placed

inside of the faucet, since it is waterproof and sensing just the water temperature, we believe that

it should be fine if the enclosing of it is also waterproof. We would need an encasing or box

based material which will be impermeable to water and can withstand any pressure or impact

that it may receive if it does.

Moreover, it will be critical for ShowerSync to provide instructions to users on how to

use the device properly so that there are no issues with any short circuiting, and to prevent bigger

issues like hazardous fires starting. This supports the ACM Code of Ethics Section 2.7 because

we are “foster[ing] public awareness and understanding of computing, related technologies, and

their consequences” (ACM Code of Ethics). With this, ShowerSync will highlight the

importance of keeping the features waterproof and dry so materials are not malfunctioning either.

If there is damage to the wirings, there will be information on how to handle the device and who

to contact if there are any issues.

Lastly, the IEEE’s Code of Ethics and ACM’s Code of Ethics both explain the duties that

engineers must adhere to in their professional careers. Section 2.2 of IEEE states to “support

colleagues and co-workers[,] to strive to ensure the code is upheld, and to not retaliate against

individuals reporting a violation” (IEEE Code of Ethics). With ShowerSync being a project

where a device is being created to help user’s with an end goal, it is important that the users’

safety and welfare come first. With reference to ACM’s Code of Ethics Section 3.7, “[we need

to] recognize and take special care of systems that become integrated into the infrastructure of

society” (ACM Code of Ethics), implying to us that it is also important that we as engineers are

truthful in our job and do not engage in any areas of unethical based actions as well as conflicts,

by doing this we will uphold the value and standards of engineers and ShowerSync’s standards

as well as safety concerns.

References:

“ACM Code of Ethics.” Code of Ethics, www.acm.org/code-of-ethics. Accessed 21 Feb.

2024.

“IEEE Code of Ethics.” IEEE, www.ieee.org/about/corporate/governance/p7-8.html.

Accessed 20 Feb. 2024.

