

Automotive Racing Video Data Logger

ECE445 Fall 2012
Final Paper
TEAM 5: Andrew Wesly, Nick Greenway, Tung Do
TA: Igor Fedorov
December12th, 2012

Abstract
	The motivation of this project is to develop an automotive racing data logger which provides a car driver with real-time information of his car overlaid on real-time video images taken from a camcorder placed on the car windshield. This device also offers the ability to store the overlaid video images on a storage device (SD card), so that the driver can review at a time later. The device helps a car racer better manage his car while racing and also offers a lower price alternative compared to current products available on the market.

Contents
	I. Introduction…………………………………………………………………………......
1.1 Purpose and usefulness of project…………………………………………………....
1.2 Project functions/specifications…………………………………………………......
1.3 Blocks and Subsystems…………………………………………………...................

	 1
 1
 1
 2

	II. Design………………………………………………………………………………........
2.1 General Design………………………………………………………………...........
2.2 Detailed Description of Design……………………………………………………...
2.2.1 Hardware Design………………………………………………….........
2.2.2 Software Design – Input Module………………….…………...............
2.2.3 Software Design – Storage Module………………………..…………..
2.2.4 Software Design – Display Module……………………………............
2.2.5 Power Module………………………………………………….............
2.3 Simulations, Calculations and Equations…………………………………..…..........
2.4 Top Level Schematic ……………………………………………………..…...........

	 3
 3
 4
 4
 6
 8
 9
10
11
12

	III. Requirements and Verification………………………………………………………..
3.1 Testing Procedures………………………………...
3.2 Quantitative Results……………………………...
3.3 Discussion of Results and failed Verifications………………………………............
	13
13
15
16

	IV. Cost………………………………………………………….….......................................

	17

	V. Conclusion……………………………………………………………….........................
5.1 Accomplishments……………………………………………………........................
5.2 Uncertainties…………………………………………………………........................
5.3 Future Work……………………………………………….…………........................
5.4 Ethical Considerations……………………………………….………........................
5.5 References……………………………………………………………........................

VI. Appendix A: System Block Diagram……………………………………….................
6.1 OBD II Block Diagram………………………………………...................................
6.2 Storage Module Block Diagram……………………………………………………...
6.3 Video Display Module Block Diagram………………………………………………
6.4 Power Module Block Diagram……………………………………………………….

VII. Appendix B: Simulations…….……………………………………................................

VIII. Appendix C: Requirement and Verification Details….………………………………
8.1 Input Module…………………………………………………………………………
8.2 FPGA and Control Module…………………………………………………………..
8.3 Storage Module………………………………………………………………………
8.4 Display Module………………………………………………………………………
8.5 Power Module……………………………………………………………………..…

IX. Appendix D: System Flow Charts……………………………………………………..
9.1 Storage Module Software Development Flow Chart………………………………...
9.2 Overall System Flow Chart…………………………………………………………..

X. Appendix E : System Schematics………………………………………………………
	19
19
19
19
19
20

21
21
21
22
22

23

24
24
26
28
30
31

33
33
34

35

9

	
	

I. INTRODUCTION
	We designed an Automotive Racing Video Data logger that took in video data and automotive diagnostic data to be displayed and stored in appropriate modules. Due to an extensive design and limited time resources for this project, not every module is 100% complete as of this writing. A contingency plan was followed, positive results were obtained, and directions for total project completion were formulated. This paper covers project progress.

1) Purpose and usefulness of Project:

	The project goal was to develop a data logger video overlay that can be used in a car by amateur racers. The final product was desired to acquire near real-time engine data through the On-Board Diagnostic Port (OBDII) installed in a car. Also desired was for the logger take video of a ride through the car’s windshield with user supplied standard definition camera because these consumer grade cameras are pervasive in society. Next, our design was to overlay OBD data onto the captured video and store it in a portable medium. The video stored in the media was intended to be in a computer readable video format like JPEG2000. Raw OBDII data also was intended to be stored as a file in the storage media. The driver could then select playback video on the spot with overlay or replay the video with data at a time later.
	This product will aid in automotive racing and tuning by being more intuitive for driver’s to use and have better functions than existing products on the market.

2) Project Functions and Specifications:
	The system is specified to have analog video as input and to take on-board diagnostics data as input. We chose to use standard definition (NTSC-M) video because these video sources are commonplace and require the smallest bandwidth, least data to process, and they are the easiest to interface with out of all video formats. NTSC-M signals are generated at 27MHz rates and after digital conversion have a resolution of 720X480 pixels. Additionally, format information is readily available and easy to use.
On-board diagnostic data capture rates were to be as fast and stable as possible. We estimated that a baud rate of 9600 bits per second would be a reasonable rate to achieve because this goal because this data rate is most commonly used for interfaces and is used for OBD interface chips.
	System power should be less than 12W and run from 12V. These specifications are in place because 12V is the voltage supplied by automobile accessory outlets, and 1000mA appears to be maximum power draw from the outlet in the test car, a Honda Civic.
Video rates of at least 10 frames per second (fps) were specified as that number is correlated to FPGA resources and hardware storage rates. To specify storage data rates and vice versa, consider the following equation:
 EQ. 1
For a 10 fps sample rate with an 8 bit wide signal, we arrive at:
 EQ. 2
	108 bits per second (~108MHz) is an achievable data rate for storage hardware.
	Logger system is also specified to playback video on demand. This specification is in place for system set-up and the ability to look at race video in real time.
	Initially JPEG2000 hardware video compression was specified for this project. However, due to time and budget constraints, the JPEG200 compression module was dropped from the design. Along those lines, a standalone FPGA system was to be developed for this project and as such would require a bootloader to initialize the system. Due to time constraints, this approach was dropped in favor of a contingency plan and no bootloader was created.

3) Blocks and Subsystems:

[image:]
Figure 1.1: Top Level Block diagram

II. DESIGN
2.1 General Design

Input Data Module: This module obtains input data such as information from the OBD II and the video images from the camera. The module then converts them into digital form using an ADC and transmits this digital data to the FPGA.
a. Analog Video: The analog video obtained from the camera on the windshield. The image will be sent to the ADC to be converted into digital form.
b. ADC: The Analog-to-Digital converter that converts standard definition analog video input into a digital form so it can be used by the FPGA. ADC input is analog video, which is converted to digital images and are then routed to the FPGA.
c. OBD II: The On-Board Diagnostic system on a car is where information such as the MIL (malfunction indicator light), DTC (diagnostic trouble code), I/M (inspection and maintenance) info, etc. can be extracted from. We will focus on polling operating data like engine RPM, temperature, etc. The information obtained from this block is sent to the FPGA.
FPGA and Control Module: This module is the “brain” of the entire circuit. It receives the OBD II data and video images from the input module, processes them, overlays the data onto the video stream. It then routes the overlaid video to the storage and display modules. This entity also manages video stream compression/decompression. This block also boots the system.
a. JPEG2000 Decoder/Encoder: A device that compresses/decompresses digital video for extended storage and computer access. This block receives processed video and data from the FPGA and routes decompressed output back to the FPGA so that video can be routed to other entities.
b. FPGA: The integrated circuit that will be used to design the digital system to process the images and data obtained from the OBD II. This block obtains video from the camera and data from the OBD II, process them, and routes signal through a video compressor/decompressor. FPGA also streams processed to a storage device (the MMC) and controls data display for the attached TFT screen.
Storage Module: This module receives the overlaid video from the FPGA and control module and stores it on a storage device for later use. A compact flash MMC may be used as the storage device. User can also replay video from the storage medium.
a. SDHC Flash Memory Card: The flash memory data storage device where the video and data obtained will be stored. This block obtains the processed video and data from the FPGA.
a. USB: It is possible to achieve higher storage speeds with an FUSB PHY chip over USB interface. This item may be used depending on time remaining for project completion.
Display Module: This module displays the overlaid video on a LCD screen from storage through the FPGA/control block.
a. TFT Display: The LCD display where the processed video obtained from the FPGA will be displayed.
Power Module: This module supplies power to the FPGA and Control Module.

2.2 Detailed Description of Design
2.2.1 Hardware Design
Input Data Module - Hardware:
The design of this entity incorporates analog to video data conversion rates as well as querying an automobile for real-time diagnostics data. We chose an off-the-shelf Sparkfun module to handle the OBD II interface for us. Key technical issues to overcome with this interface are voltage level and signaling standard translations like SEA-J1850 PWM and SAE-1850 VPW that differ between automobile manufacturers while maintaining a single communications protocol between this entity and other entities within the data logger project. We desired a minimum of 9600bps data stream for overlay updates. Alternative to this design is to use a custom microcontroller with appropriate line drivers/opto-isolaters or to use an ELM327 integrated circuit and peripherals. Although these solutions are within the skill level of this design team, the complexity of these alternatives is tantamount to a senior design project in and of itself.
Video design procedure is that analog NTSC-M video enters the input module and a digital signal that we can use is output from this entity. A key concept to understand is that signal levels must fall within the LVTTL (Low Voltage Transistor to Transistor Logic) level specifications to interface with other components. With this concept in mind, the MAXIM MAX9526 chip was chosen. This chip met specified performance specifications. Alternative chips included the Intersil TW9906, Texas Instruments TVP5150 and TVP5158. Drawback to these ICs is that they had a high level of configuration complexity, came with unwanted 4 plus channel support as well as undesired resolutions high-definition resolutions or lower than standard definition resolutions. Additionally, some of these alternative ICs came difficult to mount SMT casestyle package. The MAX9526 overcomes this hurdle in a 28-QSOP SMT package.

Processing Hardware Design
Initial design called for an EP2C35F672C7 FPGA and ADV212BBCZRL JPEG2000 encoder/decoder chip. The EP2C35 FPGA has over 35,000 Logic elements for use in design. Since we could not completely estimate as to the minimum and maximum number of logic elements required until software compilation, we speculated that 35,000 elements would be appropriate.
The ADV212 IC also allowed for the 8-bit wide ITU.656 data conversion to JPEG2000 compression at required data rates no greater than 200Mbits/second. This module was dropped entirely due to time constraints and high-project complexity. Alternatives considered were Maxim MPEG4 encoders and TI MPEG4 encoder ics, however the cost was beyond project range.

Display Hardware Design
Key concepts for the Display hardware is that it would be portable and addressable in either a luma/chroma format or RGB format and have minimum 720X480 output resolution. Justifications for these features is that this module is should be used as part of an output stream and display full NTSC-M images. Displaying full NTSC-M images would alleviate the implementation of a software scaler and save implementation time. The screen selected was the KENTEC ELECTRONICS - K50DWN0-V1-F - LCD MODULE, 5", 800X480 resolution display. No viable alternatives were available at the time of component specification.

Power Module: Hardware
The power module design is to supply modules proper voltages and adequate current from the automobile. With this in mind, this design uses three DC/DC converters. The first converter is the IL1205S that takes a range of voltages from 10.5V to 13V as input and converts to ~5V output at 400ma. We chose this converter because automotive voltages may vary during car operation and 400ma is above maximum current draw. This 5V supply powers various modules as well as other DC/DC converters that supply 3.3V for signaling power and 1.8V for the ADC module.

Storage Module - Hardware:
One of the sub functions of the final device is the ability to store overlaid video onto a storage device (so that the driver can review at a time later). To simplify the process of writing the file to disk (which involves writing complex memory card and USB drivers and manipulate buggy file system), the ALFAT SoC Processor is used. Below is the ALFAT OEM Board – FAT32 SD card writer from GHI Electronics:

[image:]
Figure 2.1: ALFAT OEM Board (ALFAT SoC Processor User Manual, p. 45) [3]
This is a high performance FAT file system SoC processor with dual USB Host interfaces and 4-bit SD interface, controlled through UART, SPI and I2C.
The ALFAT SoC processor gives the FPGA a simple way to access storage medias such as SD cards and USB Mass Storage devices in a very short time. Its key features are as follows:
· LFN (Long File Name) supports.
· FAT16 and FAT32 systems.
· Friendly user-interface through UART, SPI, I2C.
· No limits on media size, file size, or file/folder count.
· Up to 8 simultaneous file access.

2.2.2 Software Design - Input Module

OBD II Interface:
Register Control
Inputs: There are individual signals from each register specifying the last instruction that was sent or that the last requested data was received. Only one of these signals is ever high at any given time. There is also a reset input to restart and initialize the entity.
Outputs: Each instruction register and the data register have individual enables, only one of which is high at any given time. Also, enables are sent to the converter entities depending on the latest data that was received from the OBDII.
Description: This entity consists of a state machine that performs a loop through a series of states that send and then received data from the OBDII Communications Board. The states go from transmitting data, to receiving data, then back to sending, etc. First, an enable is sent to one of the instruction registers to allow a certain instruction to be sent to the OBDII. Then, once a signal is received from the register indicating that the data has been sent, the data register is enabled so as to receive the requested information from the OBDII. Once this data is received, a signal from the register is made high and sent to the register control, indicating that the data was received properly. Then the control moves to the next instruction and enables the appropriate register, but also sends a signal to the converter bank and the video interface indicating what the last received information was, and enabling the correct conversion entity depending on that data. Note that only one register enable and one converter enable are ever high at any given time to ensure that only one instruction is sent or received at a time to ensure that no data gets garbled and to ensure that all the data is sent and received in a clear order.
Instruction Register Bank
Inputs: Each register has an enable sent from the register control, a clock based on the baud rate, and a reset for initialization purposes.
Outputs: Data is outputted and transmitted via RS-232 UART. Also, a signal from each individual register is sent to the register control, which is low unless a complete instruction has been sent.
Description: Upon initialization or reset, a 6 byte data command is put into the register. If the enable is active, then the most significant bit of the command is outputted. Then, the signal is shifted to the left by one bit, and a counter increases by one. This continues until the counter reaches the number of bits in the instruction. Then, the signal going to the control register becomes active, indicating that the message has been sent. This causes the state in the control register to change, causing the enable to go low and the register to reinitialize to its original value.
Instructions we plan to use:
x0105: Engine coolant temperature
x010A: Fuel pressure
x010C: Engine RPM
x010D: Vehicle speed
x010F: Intake air temperature
x0111: Throttle position
x0146: Ambient air temperature
x015C: Engine oil temperature

Note that these commands could easily be changed if different information from the car was desired.

Data Register
Inputs: One of the inputs is the data being received from the OBDII Communication Board via RS-232 UART. Also, there are two enables for this register; one indicating that the data being received is one byte long, the other indicating that it is two bytes long. There is also a reset for initialization and a clock signal based on the baud rate.

Outputs: The data received from the OBDII is sent to the ASCII to Hexadecimal Converter, and there is also a signal sent to the register control that is high when a complete message has been received.
Description: When enabled, this register receives data from the OBDII one bit at a time. When a bit is received, the register shifts the bits to “make room” for the next one. Also, a counter is used to keep track of the amount of data received. Once all of the data is received, a signal is sent to the register control to indicate such. Notice that the counter counts to different values depending on whether one or two bytes are being received. It is also worth noting that the OBDII Communication Board sends a stop bit after every byte, which is taken into account and is therefore not a part of the outputted signal.

ASCII to Hexadecimal Converter
Inputs: Two bytes of the received data is inputted into this module. Note that the two bytes represent one ASCII character.
Output: One byte of data is sent out, representing the hexadecimal equivalent of the inputted ASCII character.
Description: This entity receives one of the ASCII characters obtained from the OBDII Communication Board and converts it into a hexadecimal value that is outputted to the Converter Bank. Note that this module assumes that the only ASCII values possible are 0-9 and A-F, since all of the inputted information should be ASCII representations of hexadecimal values.

Converter Bank
Inputs: The data received from the OBDII is the primary input. This is one or two bytes depending on the information received. Also, each converter entity has an enable and a reset.
Outputs: Two bytes of data are outputted to the Video Interface. This data is the actual/converted value of the data received.
Description: When enabled, the converter uses an arithmetic equation to change the data received into the actual, factual information from the engine. The equations used are explained in the calculations section. These new values are then sent to the video interface. Note that if the converter is not enabled, the previously converted value is sent to the Video Interface.

OBDII Emulator
Inputs: This entity receives a command serially from the Instruction Register Bank, as well as an enable signal. It is also given a clock at the baud rate and a reset.
Output: Either two or four bytes with one stop bit are outputted serially. Note that these bytes represent ASCII characters which represent a hexadecimal value.
Description: When enabled, this module receives a command from the Instruction Register Bank. Using a clock to determine if an entire command has been read, the module then outputs a certain ASCII value, with stop bits between each byte, depending on the command received. Note that this entity was used to debug our project and test the interlay function of the Video Interface.

2.2.3 Software Design - Storage Module
To write the streaming data and video from the input to a file, the ALFAT OEM board is used. Software development for this device is as follows,
In order to use this ALFAT SoC Processor, one must develop an interface so that the FPGA board can communicate with the ALFAT SoC Processor (specifically, the FPGA must be able to send ASCII commands to the ALFAT device, and receive ASCII error codes from the device). Furthermore, a protocol (among UART, SPI, and I2C) must be chosen and implemented. For my design, I choose to implement the UART interface.
Because the software to obtain video and OBDII inputs is developed using VHDL, the original plan was to also use VHDL and the Altera DE2 board to develop the software to communicate with the ALFAT board. However, to simplify the process of software development and software testing, and also to maximize the time to work on individual components (2 people can’t have access to the Altera DE2 board at the same time), we switched to using the ArduinoDuemilanove to communicate with the ALFAT device.
According to the Arduino project main page [4],the Arduino Duemilanove uses the ATmega328 microcontroller and has 2 serial lines TX and RX, so there is no need to develop codes for UART. Furthermore, Arduino hardware is programmed using a Wiring-based language similar to C, so it simplifies the process of sending ASCII commands to the ALFAT board greatly. The Arduino also offers the ability to set the baud rate manually, so there is no need to convert the baud rate to a clock signal, which might generate even more errors should the conversion is incorrect. The block diagram for this subsystem is as follows,
[image:]
Figure 2.2: Block diagram for the storage module
Software development for writing to a SD card starts with choosing an interface for communicating with the ALFAT board, then wait for a recommended time of 50 milliseconds before start sending ASCII commands from the Arduino to the ALFAT board. Upon receiving a command, the ALFAT board responds with an error code indicating whether the command sent was successful or not. The flowchart in Appendix D Section 9.1 illustrates software development for this module.

2.2.4 Software Design - Display Module
Video is inputted into the module from the ADC chip as luma and chroma data, which is stored in a register. This data is then converted to the RGB color space and is sent to the Color Mapper. The data from the OBDII module is also sent to the Color Mapper, which uses a ROM to call upon and display the correct character sprites. Te RGB video data of the video with overlaid data are outputted.

[bookmark: _GoBack]Video Conversion Module [17]
Inputs: This module takes in the luma and chroma data bytes from the ADC chip, as well as the sync timing information. It also receives the 27MHz and 50MHz clock signals for the timing of the ADC chip and internal VGA Controller, respectively.
Outputs: This entity outputs 8 bit long R, G, and B signals based upon the inputted luma and chroma data. It also outputs X and Y counters to keep track of pixel location on screen.
Description: This module takes the inputted luma and chroma data bytes and converts them to RGB data byte signals. It also includes a VGA Controller that syncs the incoming data to be outputted to a VGA display. This VGA Controller also outputs X and Y counters that are used in the Color Mapper to display the overlaid car information. Please note that the code for this module was acquired from the University of Toronto's website.

Color Mapper
Inputs: The converted RGB values are received by the Video Conversion Module. Also, the data from the Converter Bank in the OBDII Interface is inputted. Also, data is received from the Sprite ROM for overlaying text onto the display. The X Counter and Y Counter from the Video Conversion Module are also inputted to keep track of pixel location on screen.
Outputs: A two byte signal is sent to the Sprite ROM for summoning certain sprites, which are all letter and number characters, to be displayed. Also, the RGB signal is outputted to the VGA display.
Description: The Video Conversion Module will output information for each individual pixel going from left to right, then up to down. It will output the input for most of these pixels. However, at some points this entity will call upon the Sprite ROM, which then sends back 8 data bytes, each corresponding to 8 pixels on a single row of pixels. For each pixel, if the bit from the Sprite ROM is low, then the video outputted will simply be the RGB value inputted. However, if the value from the ROM is high, then the pixel will be changed to a different color. This will create characters on the screen. Some of these will be constant to describe the parameters, such as RPM, air temperature, etc. Others will be determined by the integer values of the data sent from the OBDII Interface. These will be the numeric characters, and an if/then statement will be used to display the appropriate character.

Sprite ROM
Inputs: The address being summoned by the Color Mapper is inputted. There is a clock input as well.
Outputs: The ROM outputs the data bytes from the addresses received.
Description: This entity acts as a simple read-only ROM, which outputs prewritten data to the Color Mapper, depending on the address requested. One address is read from at a time, and one address is outputted at one time. Each address is two bytes and each line of data is 1 byte long.

2.2.5 Power Module
The Automotive Racing Video Data Logger device gets power from the 12V car battery. However, 12V is higher than needed for our device, so DC/DC voltage converters will be included in the power module to step down 12V to other useful voltages.
Specifically, here are the power requirements for all the components from the device:

	Devices
	Voltage(s) needed

	Digilent Basys2 Development Board
ALFAT OEM Board
FPGA board
TFT LCD display
	3.5V-5.5V
3.3V
3.3V, 1.8V, 1.5V, 1.2V
5V

From the 12V car battery, the voltage will be stepped down to 5V, and then 5V will be stepped down one more time to get 3.3V to supply power to the ALFAT OEM Board, the FPGA Board, etc.
3.3V will then be stepped down again to 1.8V and 1.5V to supply power to logic signals on the FPGA board. The power module block diagram is available in Appendix A section 6.4

2.3 Simulations, Calculations and Equations
OBDII Parameters:
The OBDII sends one or two bytes of information which then need additional calculations to determine the correct values of the parameters. These are done with the following equations, where A denotes the first byte of data and B denotes the second, if there is a second data byte.
Temperature:
Data = A – 40 (degrees C)
Fuel Pressure:
	Data = A * 3 (kPa)
Engine RPM:
	Data = ((A * 256) + B) / 4 (rpm)
Vehicle Speed:
	Data = A (km/hr)
Throttle Position:
	Data = (A * 100) / 255 (%)

Simulation

[image:]
Figure 2.4: Waveform Simulation for sending out and receiving back signals from RS232 to OBD II

2.4 Top Level Schematic
[image:]Figure 2.5: Top Level Schematic of FPGA
The EP2C35F672C6 FPGA has 8 IO banks and 4 on-chip PLLS. It also has 672 pins as displayed in the top-level diagram above. Schematics that follow are zoomed in on FPGA sections.

III. REQUIREMENTS AND VERIFICATIONS
3.1 Testing Procedures
OBDII Module
	Since the OBDII Communication Board requires a baud rate of 9600, the onboard 27MHz clock was divided down to 9600Hz using a counter. That signal was then sent to an output that was checked with an oscilloscope to ensure the correct frequency was outputted.
	We also needed to ensure that the correct information was being read from the OBDII computer of the car. Unfortunately, because we were unable to establish communication with the vehicle, we could not test this. However, we created a software emulator using VHDL and ensured that the outputted information matched what was being displayed on screen.
	Finally, we needed to make sure that the conversions of the OBDII data were being done correctly. To do this, a simulation was run, looking at the inputs and outputs of the Converter Bank and making sure all of the conversions were being executed properly.
[image:]
Fig.3.1: This shows simulation of communication between OBDII Interface and OBDII Emulator. The signals of importance are the RS232_in representing signals being received from the emulator and RS232_out representing signals being sent to the emulator.

Video Module
	Since we used a code from the University of Toronto to convert our luma and chroma data into the RGB color space, we simply outputted that video to a VGA display to ensure that everything looked correct.
	The same was done for the overlaid video. We did this to ensure that the overlay was at a constant location on screen and that the overlaid numbers matched the inputted numbers from the OBDII Interface software.
	Finally, during testing, we hooked up the VGA Clock and the sync outputs to an oscilloscope to ensure that they were being outputted correctly. The clock was a constant 25MHz frequency, while the horizontal and vertical syncs were also outputted correctly.
	Although we were unable to get our MAX9526 chip to work properly, we did attempt to initialize and set it using the I2C ports of the chip. In Figure ##, it can be seen that the FPGA sends the signal x42 to write to the chip. It then receives an acknowledge from the chip, which is not shown because we could not get our chip working, then sends x0D to choose that register. Then, after another acknowledge signal, the FPGA sends x0C to change the register to allow the chip to be clocked by an external oscillator and to also send horizontal and vertical sync signals.
[image:]Fig.3.2: The top signal is the SCL (clock) and the bottom signal is the SDA (data) for the I2C Interface. Note that the clock is set high when no information is being sent or received.

Storage Module
The requirement and verification table for this module is shown in Appendix C section 8.3.
There are essentially three different tests: power supply test, signal test, and written file test.
Firstly, to test if the ALFAT OEM board and the media storage get enough power, a USB with an LED that turns on whenever there is enough power is used. This USB is mainly used to check if the wiring is correct, because if the wiring is wrong, there is no power supplied to the ALFAT OEM board and the storage media. After making sure the connection is correct, a power supply is used to check the amount of current drawn for the storage device. From experiment, the current needed to power on an SD Card through the ALFAT OEM board varies from 53 mA to 64 mA.
The storage device is also tested successfully and works on a 5V battery.
Secondly, to test if the ASCII commands sent out from the Arduino are correct, two devices are used: an oscilloscope and an LCD.
The oscilloscope is used first and it is connected to the serial UART output (UART_TX) on the Arduino to make sure that the correct ASCII command signals are sent out from the Arduino to the ALFAT OEM board. Furthermore, the oscilloscope is also connected to the serial UART input (UART_RX) of the Arduino to check if the ALFAT OEM sends back ASCII error codes.
Once it is made sure that there are signals coming out of the Arduino, and error codes coming back to the Arduino, a code is written to display these signals in ASCII form on an LCD display. The figure below shows the connection of the storage module, with an LCD for debugging and testing.

[image: DSC00254.JPG]Figure 3.3: Storage module. The ALFAT board is on the left, and the Arduino is on top. The LCD is showing a successful error code (0x00) for a WRITE command, and the actual bytes written (0x04 for 4 bytes)

Lastly, once all the commands and error codes are successfully tested, the module should be able to write a text file to an SD card. A laptop with an SD slot is used to read the SD card and the text file content. The figures in the next section show that a text file is successfully written onto an SD card.
3.2 Quantitative Results
The storage module was able to write a text file to an SD card. The figure below shows an OPEN ASCII command sent from the Arduino and a successful error code sent back from the ALFAT device.

[image: O error code.png][image: TExt File.PNG]
Figure 3.4: Figure demonstrating a successful development for the storage module

We were also successful in overlaying data on a processed analog video, as illustrated in the figure below,

[image: DSC00260.JPG]Figure 3.5: Figure showing the FPGA successfully captures analog video, processes it, overlays data and displays on an LCD monitor

3.3 Discussion of Results and failed Verifications
Verification for OBDII
	Although we verified that our OBDII Communication Board was powered on and appeared to meet requirements, we were unable to communicate to the OBDII computer. This was determined because the LED lights on the board were never lit to declare proper communication, and also because no information from the OBDII computer was received by the FPGA. Further testing is needed in order to discover why communication is not being made, since it appears as if our interface is set up properly.
Verification for Video Module
	Although we set up the correct I2C Communication to initialize the MAX9526 chip, we blew out the chip before we were able to test it. We therefore had to use ADV8171 that is on the FPGA board. Also, we did not have time to implement our encoder/decoder chip. Although we were unable to make communication with the OBDII computer, we were able to display overlaid information onto the screen from our programmed emulator. Finally, we were able to display video through the VGA port of the FPGA, although when we connected the signals to our display we were unable to get a response. We checked the signals using an oscilloscope and they seem correct, so it could potentially be the result of an initialization error. Or alternatively, we could have an error or issue concerning the PCB.
Verification for Storage Device
The development for the storage device was successful in writing a text file to an SD card. During the development, there were several difficulties such as the scarcity of sample code for ALFAT OEM board because the device was developed very recently in 2012. Furthermore, some commands seemed to terminate only with carriage return (‘\r’) even though the manufacturer said we could use either linefeed (‘\n’) or carriage return (‘\r’).

IV. COST
a. Labor
	Name
	Rate
	Hours
	Total
	Total x 2.5

	Tung Do
	$50/hr
	180
	$9000
	$22500

	Nick Greenway
	$50/hr
	180
	$9000
	$22500

	Andrew Wesly
	$50/hr
	180
	$9000
	$22500

	Total
	$67500

b. Parts
	Description
	#
	Manufacturer
	Vendor
	Cost/unit
	Total Cost

	ADV212BBCZRL-150 JPEG2000 Encoder/Decoder
	1
	Analog Devices
	Digikey
	$48.984
	$48.984

	Development Board
	1
	Altera DE2
	NA
	$269
	0 - Have

	ELM327 OBD Interpreter
	1
	Elm Electronics
	ELM Electronics
	$23.50
	$23.50

	MAX9526 Video Decoder
	1
	Maxim Integrated
	Mouser
	$7.97
	$7.97

	OBD-II UART
	1
	Sparkfun Electronics
	
	$49.95
	$49.95

	Control Switches
	6
	C&K Compnents
	Mouser
	$6.25
	$37.50

	ALTERA EP2C35F672C6 FPGA
	1
	Altera
	Altera
	$149.50
	$149.50

	ALFAT-SD-337 – FAT32 SD card writer
	1
	GHI Electronics
	GHI Electronics
	$59.95
	$59.95

	K50DWN2-VI-FE – TFT Display
	1
	Kentec
	Newark
	$65.22
	$65.22

	10085901-6015elf– TFT Display Connector
	1
	FCI
	Mouser
	$1.46
	$1.46

	Transcend 16 GB SDHC Class 10 Flash Memory Card TS16GSDHC10E
	1
	Transcend
	Amazon
	$11.92
	0 – Have

	RC55LF-D-10K-B-B: Metal Film Resistor 1/4W 10K 0.1%
	2
	TT Electronics
	Mouser
	$1.32
	$2.64

	PR01000103300JR500: Metal Film Resistor 1watt 330ohms 5%
	3
	Vishay
	Mouser
	$0.34
	$1.02

	LT CN5M-FBGB-25-1-Z: High Power LED - Green 1/2 Watt 528nm, 140mA
	2
	OSRAM
	Mouser
	$3.25
	$6.50

	173D105X9025UWE3: Tantalum Capacitor, 1uF 25V 10% Axial
	5
	Vishay
	DigiKey
	$1.15
	$5.75

	DE09P064HTXLF: D-Sub Standard Connector 9P PIN SOLDER BUCKET
	1
	FCI
	Mouser
	$0.90
	$0.90

	1531A2L12: Toggle Switches SPDT ON-OFF SOLDER
	18
	Apem
	Mouser
	$3.42
	$61.56

	78SR-5/2-C: DC/DC Converters 8-32Vin 5Vout 2A SIP Switching Reg.
	1
	Murata
	Mouser
	$12.36
	$12.36

	NDTS0503C: DC/DC Converters 5Vin 3.3Vout 909mA Isolated 3W 24 pin
	1
	Murata
	Mouser
	$16.95
	$16.95

	LSN-1.8/16-W3-C: DC/DC Converters 28W 5V to 1.8V 16A
	1
	Murata
	Mouser
	$18.75
	$18.75

	LSN-1.2/10-D5-C: DC/DC Converters 12W 5V to 1.2V 10A
	1
	Murata
	Mouser
	$21.13
	$21.13

	PCB – All boards
	1
	PCBFABEXPRESS
	PCBFABEXPRESS
	$200
	$200

	Total
	$791.59

	Total Labor Cost
	Total Parts Cost
	Total Project Cost

	$67,500
	$791.59
	$68,291.59

V. CONCLUSION
5.1 Accomplishments
We have successfully processed the analog video input from a camcorder, converted it into digital video and overlaid information on top of it and finally displayed the overlaid video onto an LCD monitor. We have also successfully developed a portably power system to bring in the car, and also a working storage device which can write text file into an SD Card.

5.2 Uncertainties
After getting results from several components, we haven't been able to do extensive testing, so there are some uncertainties such as how reliably the Arduino can write a big file into the SD card. Our test suggests that for a bigger file, the Arduino code might not work all the time. Furthermore, the color conversion for the video module still needs to be looked at since it hasn't outputted images in appropriate RGB color. Also, we have been unsuccessful at communicating with the OBDII computer.

5.3 Future Work
Given the scope of the project and within a semester, we think we have made successfully achievement in getting results from different components in different modules. However, to make our device marketable, we need to finalize proof of concept, invest in compact PCB and make further market research.

5.4 Ethical Considerations

The purpose of this project is to develop a data logger device for racer, which helps them to better manage the condition of the car while racing. With such function, our device helps increase the safety and health of the driver, which is consistent with the first code of the IEEE Code of Ethics [9]:

1. to accept responsibility in making decisions consistent with the safety, health, and welfare of the
public, and to disclose promptly factors that might endanger the public or the environment;[9]

One of the factors that cause car accidents is system defects. Our device helps prevent these kinds of accidents by giving drivers immediate information about the system of the car while also provide them with video of a driving car.
Throughout the development of the device, we followed the third IEEE code [9] closely, and only make claims and estimates based on real data acquired from our data logger.

3. to be honest and realistic in stating claims or estimates based on available data;[9]

Working with a data logger device, the most importance factor is the accuracy of the information obtained from the system. We made honest efforst and did not falsify the data acquired from our test procedures.
From this project, we have learned a great deal about various real-world industrial systems such as the On-board Diagnostic (OBD II) system, the SD Flash memory FAT 32 file system, or the ITU-R BT 656 protocol. This has improved our understanding of these technologies and their applications, and also has improved our technical competence, as directed in the 5th and 6th codes of the IEEE Code of Ethics [9]:

5. to improve the understanding of technology; its appropriate application, and potential consequences;
6. to maintain and improve our technical competence and to undertake technological tasks for others only if qualified by training or experience, or after full disclosure of pertinent limitations;[9]

5.5 References

[1] 78SR 2 Amp Series, Murata, Mansfield, MA, 2009. [Online]. Available: http://www.murata-ps.com/data/meters/mpm_78sr-2a_a00.pdf

[2] ADV212, Rev. B, Analog Devices, Norwood, MA, 2010. [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADV212.pdf

[3] ALFAT SoC Processor User Manual, Rev. 1.12, GHI Electronics, Macomb Township, MI, 2012. [Online]. Available: http://www.ghielectronics.com/downloads/ALFAT/ALFAT%20SoC%20Processor%20User%20Manual.pdf

[4] Arduino Main Page. [Online]. Available: http://www.arduino.cc/

[5] BT.656 Video Interface for ICs, Intersil, Milpitas, CA, 2002. [Online]. Available: http://www.intersil.com/content/dam/Intersil/documents/an97/an9728.pdf

[6] Cyclone II Device Handbook, Volume 1, Altera, San Jose, CA, 2008. [Online]. Available:http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf

[7] ELM327, ELM, Toronto, [Online]. Available: http://elmelectronics.com/DSheets/ELM327DS.pdf

[8] FS-K50DWN0-V1-F, Rev. 2, Kentec Display, 2011. [Online]. Available: http://www.kentecdisplay.com/uploads/soft/Products_spec/K50DWN0-V1-F-01_KED_.pdf

[9] IEEE Code of Ethics [Online]. Available: http://www.ieee.org/about/corporate/governance/p7-8.html

[10] MAX9526, Rev. 3, Maxim Integrated, San Jose, CA, [Online]. Available: http://datasheets.maximintegrated.com/en/ds/MAX9526.pdf

[11] MPDTY Series, Murata, Mansfield, MA, [Online]. Available: http://search.murata.co.jp/Ceramy/image/img/A14X/M07E1.pdf

[12] NDTS Series, Murata, Mansfield, MA, 2012 [Online]. Available: http://www.murata-ps.com/data/power/ncl/kdc_ndts.pdf

[13] OBD-II UART [Online]. Available: https://www.sparkfun.com/products/9555

[14] Recommendation ITU-R BT.601-5: Studio Encoding Parameters of Digital Television for Standard 4:3 and Widescreen 16:9 Aspect Ratios, 1995. [Online]. Available: http://www.intersil.com/content/dam/Intersil/documents/an97/an9728.pdf

[15] Single Output LSN-10A Models, Murata, Mansfield, MA, 2009. [Online]. Available: http://www.murata-ps.com/data/power/lsn10a-d5.pdf

[16] Single Output LSN-W3 Models, Murata, Mansfield, MA, 2009. [Online]. Available: http://www.murata-ps.com/data/power/lsn16a-w3.pdf

[17] Video In Controller. University of Toront. [Online]. Available: http://www.eecg.toronto.edu/~jayar/ece241_08F/AudioVideoCores/vin/vin.html#pinchange

VI. Appendix A : System Block Diagram
6.1 OBD II Block Diagram

[image:]

6.2 Storage Module Block Diagram
[image:]

6.3 Video Display Module Block Diagram

[image:]

6.4 Power Module Block Diagram
[image:]

VII. Appendix B : Simulations
[image:]

Figure 7.1: Waveform Simulation for sending a command to ALFAT

[image:]
Figure 7.2: Waveform Simulation for sending out and receiving back signals from RS232 to OBD II

VIII. Appendix C : Requirement and Verification Table
8.1 Input Module

	Requirements
	Verifications
	Verification Status?
(Y or N)

	Camcorder:
Output video signal is analog SD NTSC-M signal

	Ensure analog source, the camcorder, is powered on and output is enabled by:
1) Pressing ‘ON’ button on camera
2) Default video setting is NTSC-M
3) Connect minijack-to-RCA cable to camera video output
4) Connect RCA output to the one RCA input connector on main circuit board
5) Set scope probe to High-Z (1MOhm or higher)
6) Press probe connector onto RCA connector center (signal) wire
7) View scope pattern – an NTSC-M characteristic signal should be present on screen.

	Y

	Requirements
	Verifications
	Verification Status?
(Y or N)

	MAX9526:
Output video is ITU-R.656 uncompressed digital video

	
Check ADC chip power:
1) Connect three (3) oscilloscope probes’ local GND to board GND (pin 23) closest to ADC GND pin
2) Attach a probe to ADC power pin VAVDD (pin 5). Voltage should be +1.8V nominal. Voltage should not exceed 2V. Voltage should not be less than 1.5V
3) Attach a probe to ADC power pin VDVDD (pin 22). Voltage should be +1.8V nominal. Voltage should not exceed 2V. Voltage should not be less than 1.5V
4) Attach a probe to ADC power pin VDVDDIO (pin 24). Voltage should be +3.3V nominal. Voltage should not exceed 3.3V. Voltage should not be less than 3.0V

	N

	Ensure that the ADC chip is powered at the correct wattage
	Input format settings
1) Connect Logic Analyzer Ground to GND closes to ADC DGND (pin 23)
2) Connect Logic Analyzer probe pin 1 to DEVADDR (pin 9)
3) Connect another Logic Analyzer probe pin 2 to SDA (chip pin 12)
4) Connect a third logic analyzer probe #3 to ADC SCL pin (#13)
5) Connect 4th Logic Analyzer probe to ADC pin 14 and monitor NOT(IRQ)
6) Set Logic Analyzer to record
7) Reset FPGA (press reset button and record data
8) Use the Logic Analyzer to ensure that the FPGA sends the correct signals to read from register x0D, the clock and output control register, and that the data read is x04, meaning the vertical and horizontal syncs are enabled

	Y

	Configure the MAX9526 correctly

	Enable the horizontal and vertical syncs
1) Set up the Logic Analyzer using the above instructions.
2) Using the SLA and SLD signals, call upon the x0D register, which controls the output and the clock. Then write x04 to the register to enable the horizontal and vertical sync signals. Use the Logic Analyzer to ensure that this is done correctly.

	Y

	Requirements
	Verifications
	Verification Status?
(Y or N)

	WIG-09555:
Input data signal is OBDII data from car

	WIG-09555:
Ensure car is powered on:
1) Insert key into automotive ignition
2) Turn key into Start
3) Release key and allow car to idle

	Y

	OBDII to ELM signaling is set to ISO 9141-2 for Asian make vehicles

	Check automotive accessory power outlet for 12V:
1) Turn multimeter on
2) Place multimeter negative lead to outer shell of automotive accessory outlet (GND)
3) Place positive multimeter lead to center pin of automotive accessory adapter
4) Reading should be 12V nominal, voltages from 11.5V to 12.5V are acceptable. –AJW verify

	Y

	Output data is OBDII info over RS-232 interface
	Verify OBDII ISO 9141-2 signaling scheme is selected by:
1) Connect OBDII GND and pins to headers on Logger board
2) Connect Logic Analyzer Ground to OBDII GND
3) Connect Logic Analyzer probes to the RS-232 Tx and Rx signals connecting the WIG-09555 and the FPGA.
4) Use the logic analyzer to make sure OBDII module is powered on and is set correctly. Store sent information in a register, and use the hex display on the FPGA to check that the correct data is received and stored

	N

8.2 FPGA and Control Module

	Requirements
	Verifications
	Verification Status?
(Y or N)

	FPGA:
Module passes ITU.656 video with overlay to ENCODER/DECODER chip during record

	FPGA:
Ensure FPGA is powered on by the +1.2V power power supply and +3.3V for signal voltage levels by:
1) Connect Multimeter Ground to onboard ground
2) Connect Multimeter positive connector to VCCINT test pad (Test pads will be added during PCB Layout process)
3) Read voltage – it should be 1.2.V nominal, minimum of 1.15V, maximum of 1.25V
4) Iterate a-d for each test pad
5) Connect Multimeter positive connector to FPGA VCCIO test pads (Test pads will be included in PCB Layout)
6) Voltage should read 3.3V nominal. Minimum voltage is 3.135V. Maximum is 3.6V
7) Iterate steps e-f for each test pad
8) Connect multimeter positive probe to VCCA-PLL test pads (Pads will be included in PCB layout)
9) Voltage should read 1.2V nominal, 1.15V minimum, 1.25V maximum

	N

	Module overlays OBD II data onto ITU.656 stream

	Ensure digital timings and internal character mappings are at standard. Timing will be ensured by using a 100 to 200MHz clock driver, as well as the FPGA’s internal 20MHz clock for configuration. Test timing signal by:
1) Set oscilloscope probe input to High-Z (~1MOhm or greater)
2) Place oscilloscope probe on timing chip output pin
3) Confirm frequency
4) Change clock chip settings

	Y

	Module takes in OBD II data.

	Ensure FPGA configures OBD II circuit module for correct operation. We can also test the individual OBDII UART board with a terminal program to ensure that it is receiving and transmitting data correctly. Test module by:
1) Connect a Logic Analyzer to circuit ground
2) Connect Logic Analyzer probe pins to UART signals.
3) Test for signal transmission and patterns

	Y

	Module passes compressed JPEG2000 video from storage module to JPEG2000 ENCODER/DECODER chip during playback

	Ensure FPGA is set to route video from ENCODER/DECODER module and has device settings configured properly
1) Connect Logic Analyzer probes to HDATA and VDATA lines. Video data and configuration data should be present
2) Connect Logc Analyzer to ADV212 configuration signal lines. Chip should be enabled

	N

	Module processes decompressed JPEG2000 to ITU.656 video and passes it to display module during playback

	Ensure FPGA is set to route video to the display,
1) Trace each TFT connector with oscilloscope probe. Voltages should be LVCMOS +3.3V levels
2) Connect Logic Analyzer to TFT signal pins. Test for video signal
3) Qualitatively observe video stream on screen.

	N

	Requirements
	Verifications
	Verification Status?
(Y or N)

	Switches:

User selects video playback and record functions such as (stop, play, record, next file, previous file)

	Test for switch power connectivity by:
1) Place multimeter negative lead to switch ground pin 3
2) Place multimeter positive probe to switch power of 3.3V at pin 1
3) Iterate for each switch

	N

	Same
	Test for switch functionality:
1) Place multimeter negative lead to switch ground on pin 3
2) Place multimeter positive lead to switch output on pin 2
3) Toggle switch to “OFF” – output should read 0V
4) Toggle switch to “ON” – output should be 3.3V
5) Iterate for each switch

	N

	Same
	Test for switch connection to FPGA:
1) Since we cannot probe electrical connection from switch output to FPGA input, test is a software stimulus
2) Set FPGA switch register to ON/OFF state for switch function [play, stop, etc]
3) Compile code and check output
4) If output changes with respect to software change and not switch state, switch is not connected
5) If output does not change with respect to software stimulus change, software is broken.
6) Iterate step 9 for each switch.

	N

8.3 Storage Module

Notes: For development and testing purpose, the DE2 Altera was substituted by the Arduino.
	Requirements
	Verifications
	Verification Status?
(Y or N)

	The ALFAT OEM Board powers on.
	Ensure the ALFAT OEM Board is powered on with a 3.3V power source.
1) Use a multimeter to check that the ALFAT OEM Board is supplied with 3.3V ± 0.15V.
2) Use a oscilloscope to check if the 3.3V ± 0.15 V voltage supply is steady.

	Y

	The media device (SD card) receives enough power and works reliably.

	The media may not work on an unstable source. Make sure the power source to the storage media is reliable and there is a large enough capacitor as close as possible to the media power pins. 0.1uF and 22uF capacitors are recommended.
1) Use a oscilloscope to make sure that the supplied power voltage is steady at 3.3V ± 0.15 V (as of part 4).
2) Use a multimeter or a capacitance meter to measure and make sure that the recommended capacitors 0.1uF and 22uF at the media power pins.

	Y

	The ALFAT OEM board receives the commands from the Arduino board successfully without error.

	Ensure the returned error codes are checked by the user every time a command is sent.
1) An Arduino-programmed LCD is used to check the returned error codes.
2) The Arduino board interfaces with the ALFAT OEM board and receives signals from it.
3) The returned error codes are displayed on the LCD and the oscilloscope for verification.

	Y

	The ALFAT OEM Board receives separate commands from the FPGA board and stack them up if needed.

	Make sure commands are terminated by line-feed/carriage return.
1) An Arduino-programmed LCD is used to display and check the commands sent to the ALFAT OEM Board, and check if each command terminates with a line-feed.
2) When sending the commands, successive commands will be sent, and the error codes will be checked using an LCD to see if the stacked up commands are received and completed by the ALFAT OEM board one command at a time.

	Y

	The ALFAT OEM Board can communicate with the Arduino board. Data can be sent out to and received from the Arduino.

	Ensure the UART_TX signal send data out from ALFAT.
UART_RX receive data to ALFAT.
Ensure no more data is sent when the UART_BUSY signal is high.
1) An Arduino-programmed LCD is used to test this. The UART_TX, UART_RX, and the UART_BUSY signals are hooked to the Arduino Board so that those signals can be read and displayed on the LCD.
2) The Altera DE2 board will display the UART_TX and UART_RX signals using the 7-segment LEDs or the on-board LCD display.
3) The Altera DE2 board will display the UART_BUSY signal using an on-board LED.

	Y

	The ALFAT OEM Board initializes and mount the storage device successfully.

	0x00 (successful command) is sent back as error code for INITIALIZE instead of 0x10 or 0x11 (Initialize media failed).
1) An Arduino-programmed LCD is used to check if UART_RX receives 0x00 from the ALFAT OEM board for a successful command.
2) The Arduino-programmed LCD is also used to check if the UART_TX sends out a correct INITALIZE command to the ALFAT OEM Board device.

	Y

	The ALFAT OEM Board Opens a new file successfully for write.
	0x00 (successful command) is sent back as error code for OPEN instead of instead of 0x21 (Failed to open the file). INITIALIZE must be called first before OPEN.

1) An Arduino-programmed LCD is used to check if UART_RX receives 0x00 from the ALFAT OEM board for a successful command.
2) The Arduino-programmed LCD is also used to check if the UART_TX sends out a correct OPEN command to the ALFAT OEM Board device.

	Y

	The ALFAT OEM Board Writes to file successfully.

	0x00 (successful command) is sent back as error code for WRITE which is followed by the actual number of bytes written.
1) An Arduino-programmed LCD is used to check if UART_RX receives 0x00 from the ALFAT OEM board for a successful command.
2) The Arduino-programmed LCD is also used to check if the UART_TX sends out a correct WRITE command to the ALFAT OEM Board device.

	Y

	The ALFAT OEM Board Closes file successfully.
	0x00 (successful command) is sent back as error code for CLOSE which is followed by the actual number of bytes written.
1) An Arduino-programmed LCD is used to check if UART_RX receives 0x00 from the ALFAT OEM board for a successful command.
2) The Arduino-programmed LCD is also used to check if the UART_TX sends out a correct CLOSE command to the ALFAT OEM Board device.

	Y

	The ALFAT OEM Board can write text file to the media device.
	A computer with an SD slot is used to read the content of the SD card to see if the text file is readable and if the content is as expected.
	Y

	The ALFAT OEM Board can write readable realtime JPEG2000 format to the media device.
	A computer with an SD slot is used to read the content of the SD card to see if the video file is readable and in the correct JPEG2000 format.
	N
(video input processing not yet fully-developed)

8.4 Display Module
	Requirements
	Verifications
	Verification Status?
(Y or N)

	Displays decompressed video equivalent to capture rate

	Use an oscilloscope to ensure that the crystal used to configure the interface clock is oscillating at 27MHz.

	Y

	Video output size maximum of 800X480 resolution

	Ensure JPEG2000 video is decompressed and scaled properly; ensure the whole video is on the screen by comparing it with the camcorder.

	N

	Configure the ADV212 correctly
	This can be checked by communicating with the chip through a CPU via a free software codec such as Kakadu and ensuring that the chip is operating in single component mode.

	N

	Ensure that the ADV212 is powered correctly

	Power settings
1) Check that VDD (pins 3, 8, 40, 84, 120) is 1.5V ±0.175V by using a multimeter.
2) Also, we must check that VDDIO (pins 17, 28, 30, 38, 52, 74, 82, 93, 104, 105, and 106) is 3.3V ± 0.165V.

	N

	ADV212 must be initiated properly

	Initializing the chip
1) Connect the first Logic Analyzer probe to ground.
2) Connect the Logic Analyzer to the 4 address signals (pins 87, 88, 96, 97, and 107).
3) Using the Logic Analyzer, first ensure that 0x400 is written to the EIRQIE at address 0x5. Then, the IRQ pin will go low, and we will check that EIRQFLG[10] is set using the FPGA and a simple code. We will also use the FPGA to read the application ID to ensure that the chip was correctly initialized.

	N

	Requirements
	Verifications
	Verification Status?
(Y or N)

	K50DWN0-V1-F:
Ensure the correct power wattage is being sent to the display
	K50DWN0-V1-F
Power Settings
1) Use a multimeter to ensure that VCC is between -0.3 and 5.0V and ICC is between 25 and 35 mA.
2) Also, VDD must be between 3.0 and 3.6 V and IDD has to be between 15 and 19 mA.

	Y

8.5 Power Module
	Requirements
	Verifications
	Verification Status?
(Y or N)

	Supply enough voltage to power on the board

	Car outlet is live. A multimeter will be used to check if the voltage output from the car is 12V

	Y

	Supply constant power to the board

	The board doesn’t power off intermittently. An oscilloscope will be used to check if the voltage signal is steady.

	Y

	The car voltage is stepped down correctly to 5V, 3.3V, 1.8V, 1.2V and 1.5V
	A multimeter will be used to check the voltage output of each DC/DC converter to see if 5V, 3.3V, 1.8V, 1.2V and 1.5V are achieved. The error tolerance should be about ± 0.15V

	Y

	All the individual components power on and work consistently

	Ensure each component is connected to its correct voltage supply by checking the voltage before connecting it to a component.

	Y

IX. Appendix D : System Flow Charts
9.1 Storage Module Software Development Flow Chart
[image:]Figure 9.1: Software flow chart to write a file to a storage media using ALFAT

9.2 Overall System Flow Chart

Overall the digital flowchart of the system is as follows,
[image:]
Figure 9.2: Overall Digital Flowchart

X. Appendix E : System Schematics

[image:]Figure 10.1: Schematic of the Bootloader. There is a 4 pin header, P1 for Active Serial Configuration. It connects to the Basys2 bootloader configured board. Switches MSEL0 and MSEL1 are used to set boot configuration schemes such as Active Serial, Passive Serial and JTAG.

[image:][image:][image:][image:][image:]Figure 10.2: Schematic of the Control Switches. Only a few switches are required for Play,Stop,Record, Next File, Previous File and New File settings. We design for 16 switches because we can use them for future functions. Software changes are cheap, hardware modifications are expensive!
Figure 10.3: Schematic of the TFT Display. This schematic is a 40-pin TFT header that connects to the Kentec LCD display module. All signals are 3.3V compatible and the screen backlight is powered by on-board 3.3V power. Present are 8-bit RGB signals and HSYNC/VSYNC lines for video timing information
Figure 10.4: Schematic of the Decoder/Encoder. The Encoder/Decoder schematic depicts an Analog Devicse ADV212 JPEG2000 encoder/decoder. Module input and output include HDATA (Host Data) bus that is used to configure the device and transport video to the FPGA. VDATA lines are also used to stream video through the device. Also present in this module are decoupling capacitors that are used to decouple this device from board power. This way, power draw at another part of the board does not cause this component to fail, nor does a large instantaneous power draw from this component cause another component to fail.
Figure 10.5: Schematic of the RS232 module. The RS232 module takes 3.3V CMOS signals from the on-board FPGA and converts them to +/-12V levels used for RS-232 communications with the OBDII module. Input is UART protocol signaling from the FPGA that is input to the MAX232ACPE level converter chip. This chip is powered by on-board 3.3V power that is stepped up to +/-12V by IC charge pumps. Output from the MAX232ACPE is then routed to a DB9 connector that is connected to the OBDII communications module.

Figure 10.6: Schematic of the Storage Header. The Storage header allows for I2C, UART and SPI connectivity to the the ALFAT storage unit. We intend to use one protocol, however during the course of this design another choice may be needed, therefore all types of signal protocols are chosen for this project. Not the 10KOhm pull-up resistors – they are used to pull-up the I2C bus per manufacturer recommendations.

[image:]Figure 10.7: Top Level Schematic of ADC – Storage – Bootloader
This figure shows a hierarchical schematic connection between ADC, Bootloader, Storage and FPGA modules.

[image:]Figure 10.8: Top Level Schematic of Encoder/Decoder
This figure shows connections between the FPGA and ADV212 JPEG2000 ENCODER/DECODER module.

[image:]Figure 10.9: Top Level Schematic of FPGA
This schematic shows the inputs and outputs from the FPGA module to all other devices

[image:]
Figure E.10: Top Level Schematic of Power Module
The power module is comprised of DC/DC converters that take 12V Automotive voltage and supply 1.5V, 1.2V, 3.3V and 1.8V to appropriate on-board modules.

[image:]

Figure 10.11: Top Level Schematic of Switches – RS232 – Display
This figure shows connectiveity between control switches, RS232 communications module and the Display module

[image:]
Figure 10.12: Top Level Schematic of Switches – RS232 – Display

[image:]Figure 10.13: Top Level Schematic of FPGA
The EP2C35F672C6 FPGA has 8 IO banks and 4 on-chip PLLS. It also has 672 pins as displayed in the top-level diagram above. Schematics that follow are zoomed in on FPGA sections.

[image:]Figure 10.14: Schematic of FPGA bank 1 and bank 2.
 Schematic banks one and two are connected to 3.3V for IO power. IO power is 3.3V for signaling voltage. Bank one is connected to switches for control inputs. Banks two is connected to the ADC. Pinouts may change during the PCB layout stage for ease of FPGA signal extraction.

[image:]Figure 10.15: Schematic of FPGA bank 3 and bank 4
Both are connected to +3.3V for signaling.Bank3 is connected to the ALFAT storage module and Bank 4 is connected to the ADV212 JPEG 2000 ENCODER/DECODER Module.

[image:]Figure 10.16: Schematic of FPGA bank 5 and bank 6.
These banks are connected to +3.3V for signal levels. Bank 5 has some Encoder/Decoder pins. Bank 6 is has pins nCEO and INIT_DONE that are connected to the Bootloader module for FPGA programming.

[image:]

Figure 10.17: Schematic of FPGA bank 7 and bank 8.
These IOBANKS are left unconnected

[image:]Figure 10.18: Schematic of FPGA Clock – PLL – GND .
Current design requires one clock signal that is connected to FPGA global clock network. Internal FPGA PLLs may need to be powered on for correct operation. This design aspect is subject to change during the building process.

[image:]

Figure 10.19: Schematic of FPGA JTAG Program Power

image1.png
Anilog
Video

ADC

OBDII

Input Module

FPGA and Cortrol
Boot loader

SDHC Flash
Memory
Card

Storage Module

JPEG2000

TFT
Decoder/

Displas
Encoder By

Display Module

Power

image2.png

image3.png
Commands

Arduino (ATM

image4.png
2Bus w15l 8 P 1ds 269
Nore:
@ bt Terp UEd]
B ot Terp [T X I3
B Fod Fressre 02
@ bidke Terp 153]
0L Tewp U3
R L
@ st TP
B ot Pos L0 T T
Rszn
Reserng ot
RSZ2 ot
B Reg.vobe Bk) ST W]

RS-232 Tx and Rx Signals

image5.png
]

nHmmmwvmnHwmnmmmmw

(I

T

image6.png
Bus 48757 us 488.85us 430.13us 4314108
Name
Frbient_Temp | [UE) IR UED]
Coolrt_Temp USRS S § 03
Fuel_Pressure TOJOI2A0]
take_Temp U]
U3
T
Speed TP
“Throttle_Pos oML) (IO TOI0ITTT
Rs220n LML LML UL LTI
Recieving_out
Rszzedt UMMV —————1 1 AU 1L AL Ar 1 1L
Regvaez [PEILTTEORZTTL JASAINASSANS ST 721215] Y TR T PP
Reg_vaue

image7.png
Agilent Technologies 315~ Agilent Technalogies

image8.jpeg

image9.png
Agilent Technologies SUN DEC 02 14:45:27 2012

image10.png
= 5

Fle Edt Search View Encodng Langua

[B3| D5 o || [0 Y-
address [Ry DATALOGGERD TXT

(2| DATALOGGERD
Text Document
1ke

DeowE

image11.jpeg

image12.jpeg
52327

Instuction Regiser

v

080 Emulator {4

L]

-

Imeger Bank

e
¥
.
! "o
B i
e o st o] o s
- ecchions
P P
—
P~ Cl TR

Integer values
Tovideoterface >

image13.jpeg
oM Aderess— 3]

l—sompata——

Sorie ROM

Videain
(composie)
ADDIAL Car Parameters
(Integers)
Vo
Video
v v
768 Video——]
WVtoRGE
Converter/ VGA Calor Mapper
Controller
[—xand v counters—»{
VGATiming 7B video Ot
Sinals it Overlay)
v

image14.png
12v 5V

CA R DC/DC DC/DC

3.3V

Converter Converter

DC/DC

DC/DC

Converter

Converter

POWER MODULE To other modules

image15.png
Sesonnc s

Vet 5 Lwel owm - o 5 o D
A n BBa Npe fpe e Wpe Wpe Spe W@e Sge Zps %%
3 Lol o

g m
L[Br] e

Cal

e — il

5] mom

2[o5] seaon

Slov] omom

The bittreams 100110010, This i the everse of an I,
which s 1000110

image16.png
(ALPAT) neutral

image17.png
Intialize ELM327

Has damfora
particoar

No

=< ‘parameter been
ceceived from the
ELMGTY

Yes

o Isvideo being
received from

Place data in appropriate
register

camcorder?

Yes

Convert video to RGB

Convert the datainto the.
appropriate decimal values

Interlay found values onto

Organize information into
atextor excelfile

Send that file to the
storage device

the screen with the original
video in the background

Compressvideo

Sendvideoto
storage unt (flash)

Compressvideo

Send video to the
storage device

Request the next
parameter from the
ELmz27

image18.png
[

S R 0TS P Sy i

(NE Tilgheh o

% i

wosuy suny | omg

a VI AV 11008

E
&
u
v

image19.png
S T o B2
Tiazheh o
7
v v
uny | ong
a SHHOLAS T04IN0D
.
2106 MY
& s S
o pas o,
aw ayo ayo ayo aw ayo
s ws T - Lassns T Laasns T Laasns T Laas s T
~ 2 T T T T
£ 4 3 & 3
L B A A Iz U e 2 G A S ace L B e
z : : 4 A
" aw ayo ayo ayo ay ayo
Laasns T Lassws T Lasns T Laasns T Laasns T Laas s T
T
[~ 4 2 T a T T T
4 &1 3 3 3
L e B e l2 A B e e % afe B e
o o @ R | PR
Lassws T Lassns T Laasns T Laasns T
T T
T T T T
adT 2 TR L S LS
L e A 2 A 2 At 2
2 s s N = F
= : :
v | CErmEs

image20.png
X1

R

TSer or
A

'DESIGN BY ANDREW WESLY

.
3
2
£ B
g
| &
Bidddddddddddddddddddddddddddddddddddd 5

image21.png
[

iR At b et

g

&

2EaE:

‘
G

image22.png
z,.ngE:
. iy
YAEEID SVIOHOIN XY ATSTA AAINY AU NOLLYOMIHS 194
i
oy suny ISTA AAONY AL SLVOS
N st - S 445 T4 VLY WO NI o
4
>
a5
oy aw
L AdOVIETX) h,
S ey B
—of N anoen p—
mx s
@ w0 e o GO
=] v [RGRCE # v ()
oo] .) o an
ES) c_ﬁw 2 |mz T i
E i —
S aeero aon B
o B w1 wn %,
T “
u ™ ¢ reer
%
a

[CRELAY
et

image23.png
[

SO AV FOVIOIS 0N PO SO S

T Tz i

x XIS ARIONY AT GENDISHQ M

oy sy ong

@ AHAVH FOVAOLS

oy
®
it
v

T

Vi
AT

SNIGTVNDIS 91X1 WO LVATY

image24.png
STORAGE_HEADER
STORAGE HEADER Schioc

FOOTLOADER.
BOOTLOADER_HEADER Schioc

image25.png
000000000 000 0000 U0 LU0

image26.png
00" 0000UOOU0NOT000UT00 l“llllllllllllgg

00/0/0/0/0060/0/0/0/0/0/0/0/0000006606000000)

image27.png
20qydsIIMOd
HAMOd

image28.png
For OBDII Modu ke

image29.png

image30.png
eSSBS

image31.png

image32.png
.

10, LVDS 1260
10, LVDS126p, (DPCLKTIDQSORV(DPCLKT/DQSOR)
10, LVDS 1350, DMORIDMIRVBWS#1R1)
10, LVDS125p,_/DQIRIT
10, LVDS124n
10,LVDS124p, DQIRTIDQIR 16|
10, LVDS123n DQIRSDQIRIS
10, LVDS123p, DQIRSIDQ!
10, LVDS1220, DQIR4DQ!
10, LVDS122p, DQIRI/DQ!
10, LVDS121n DQIRYDQIRT T
10,LVDS121p, DQIRIDQIR10|
10, DQURIDQIR9|
10, LVDS1200
10, LVDS 1200
10, VREFBNT
10,LVDS
10, LVDS119p
10, LVDS1 180
10, LVDS!18p
10, LVDS1170, DM2RADMIRVBWS#1RO)
10,LVDS!117p, /DQIRS|
10, DQIRTIDQIRT
10, LVDS 1160, DQ2R&DQIRS |
10,LVDS116p
0|
10, LVDS1150, DQIRS/DQIRS
10, LVDS 115, DQ2RYDQIR |
10, LVDS!1 140, DQ2RVDQIRS
10, LVDS114p. DQ2RYDOIR2
10, LVDS1130, DQ2RDQIRT
10, LVDS 113, DQ2RVDQIR|
10, LVDS 1120
10, LVDS112p, (CDPCLKS/DQS2RY(CDPCLKSIDQS2R)
of

BANK 5

10,LVDS111n
10,LVDS
10,LVDS
10, LVDS110p
10, LVDS1090
10, LVDS109
10, LVDS1080
10, LVDS108p
10, LVDS107n
10, LVDS107p
10, LVDS106n
10, LVDS106p
10, VREFBSN
10, LVDS1030
10, LVDS105p
10, LVDS104n
10, LVDS104p
10, LVDS103n
10, LVDS103p
10, LVDS1020
10, LVDS102p
of
10, LVDS101n
10, LVDS101p
10, LVDS100n
10, LVDS 1000
10, PLL2_OUTp|
10, PLL2_0UTH|

EPCTFaTIoRN

'ENCODE DECODE
PINS

CLK PORTS MAY
NEED TO CHANGE.
PINS

u

=

10, LVDS127p, (DPCLK&/DQS1RV(DPCLKSDS1R)
10,LVDS127n

10, LVDS128p. DQIRVDQ3RO)

10, LVDS128n DQIRVDQ3RT

10, DQIRYDQIR2

10, LVDS129p. DQIRYDQ3R3|

10,LVDS 1200

10,1vDS130p|

10, LVDS130n

10, LVDS131p. DQIRYDQ3RS

10, LVDS131n, DQIRSDQ3RS|

10,1VDS 1329

10,1VDS1320

10, VREFBGNO)

10, DQIR&DQIRS

10, LVDS133p, DQIRTIDQ3RT

10, LVDS133n DQIRYDQ3RS|

10, LVDS134p, (DMIR/BWS# [RV(DM3RIYBWS#3R0)|
10,LVDS 1340

10,1vDs135p|

10,1VDS135n

10, 1VDS136p|

10, LVDS136n, DQ3RUDQ3RY)

LVDS137p. DQ3RI/DQ3R 10|

LVDS137n DQIRUDQ3R11
LVDS 135, DQ3RIDQ3R12|
LVDS 138 DQIRYDQIRI3|
10, LVDS139p, (CDPCLKADQS3RY(CDPCLKADQSIR)
10, LVDS 1300

LVDS140p. DQ3RSIDQ3R 14|
LVDS140n. DQIR&DQ3R 15|
10, DQSRTDQ3RIS|

10, LVDS141p, DQIRYDQIRIT
10, LVDS141n, (DM3R/BWSERVDMIRVBWSESR)|
10,LVDS 1429

10,1VDS1420

10,1vDS 143

10,1VDS1430

10,1vDS14%p|

10,LVDS144n

10,1vDs145p|

10,1VDS 1430

10, VREFB6NT

10, LVDS 146p|

10,LVDS146n

10,1vDS147p|

10,LVDS147n

10,1vDS14sp|

10,1VDS 1480

10,PLL4 OUTp|

BANK 6

10, LVDS150p 1CEO)
10, LVDS150n (INIT_DONE)
o}

PSS TaTIoN

0433V

ez}
INIT DONE

image33.png
=

10, LVDS176p. (DPCLK4/DQS4BY(DPCLK4DQS4B)
10, LVDS 7en|

10, DQ4BS/DQSB14|

10, LVDS175p. DQ4B¥DQSB13.

10, LVDS175n, DQ4BYVDQSB12

10, LVDSI74p|

10, LVDS174n, DQ4BYDQSB1 1

10, LVDSI73p. DQBI/DQSBI0

10, LVDS173n, DQ4BO/DQSBY

10, LVDS72p|

10, LVDS172n, DM2R/(DMSBOBWS#SRB0)
10.LVDSI71p. /DQSBS

10, LVDS171n, DQ2B7/DQSBT

10, VREFBINI

10, LY DS 170p|

10, LVDS170n|

10, LYDS169p. DQ2B&QSB6

10, LVDS169n. DQ2BS/DQSBS

10, LVDS168p. DQ2B4DQSB4

10, LVDS168n, DQ2B3/DQSB3
(0. LVDS167p. DQ2BYDQSB2
10, LVDS167n, DQ2BI/DQSBI

10, LVDS166p, DQ2BODQSBO

10, LVDS166n|

10, LVDSI165p. (DPCLKS/DQS2BY(DPCLKYDQS2B)
10,LVDSI65n|

10, LVDSI6%p|

10, LVDSI64n|

10, LVDSI163p|

10, LYDSI163n|

10, LVDSI162p|

10, LVDS162n|

10, LVDS161p, DMOB/_

10.LVDSI617|

10, LVDS160p. DQOBT/_

10, LVDS160n, DQOB&/_|

10, LVDS159p, DQOBS/_

10, LVDS159n, DQOB4/_|

10, LVDS158p, DQOBY_

10, LVDSI1583|

10, VREFBTNO|

10. DQOBY/_|

10,LVDSI57p|

10, LVDSI57n|

10, L DS156p|

10, LVDS!156n|

10.LVDS155p. DQOBI/_

10, LVDS155n, DQOBO/_|

10, LVDS154p. (CDPCLKYDQSOBY(CDPCLKYDQS0B)
10, LVDSI54n|

10, LVDSI153p|
10, LVDSI153n|
10, LVDS152p|
10, LVDSI52n|
10,LVDSI51p|
10,LVDSI51n|

BANK7 |5

us

E

10, LVDS200n (DEV_OF)
10, LVDS200p. DMIB/_|
0, LVDS199p. DQIB7/
10, LVDS199n, DQIBG.
10, LVDS198p. DQIBS_
10, LVDS198n, DQIBA_
10, LVDS197p, (CDPCLKYDQSBY/(CDPCLKZDQS1B)
10,LVDS197n

10, LVDS196p. DQIBY_

10,LVDS1960

10, LVDS195p

10, LVDS 1950

10, VREFBSN1

10

10,LVDS194p

10, LVDS194n, DQIBY_

10, DQIBIL

10, LVDS193p. DQIBO_

10, LVDS193n, (DM3B/BWS#3BY(DM3BI/BWS#3B1)
10, LVDS192p, DQIBDQ3R1T

10,LVDS1920, DQ3BTDQ3BI6

10, DQIBI/DQ3IBIS

10, LVDS191p, DQIBIDQIBI4.

10,LVDS191n DQ3B#DQ3B13

10,LVDS190p, DQ3BYDQ3B12

10,LVDS190n DQ3BYDQ3B1T

10, LVDS189p. DQ3BI/DQ3BI10

10, LVDS189n, DQ3BUDQ3BY

10, LVDS188p, (DPCLKZDQS3B)/(DPCLKYDQS3B)
10,LVDS1880

10, LVDSISTp

10, LVDSI8Tn

10, LVDS186p, (DMSB/BWS#SBY(DM3BO/BWS#3B0)
10, LVDS 1860

10, LVDS185p, DQSBYDQ3BS

10, LVDS185n, DQSBI/DQ3BT

10, LVDS184p, DQSBS/DQ3BS

10, LVDS184n, DQSBSIDQ3BS

10, LVDS183p, DQSBYDQ3B4.

10, LVDS183n, DQSBYDQ3B3

10 DQSBYDQIB2

10, VREFBSNO)

10, LVDS182p, DQSBI/DQ3BI

10, LVDS182n, DQSBUDQ3BO

10.LVDSI81p

10, LVDSI81n

10, LVDS180p

10, LVDS1800

10, LVDS179p, DMABIDMSBY/BWS#5B1)

10, LVDS179n. /DQSBIT

10, LVDS178p, DQ4BI/DQSB16

10, LVDS178n, DQ4BIDQSBIS

10, LVDS177p, (DPCLKYDQSSB)/(DPCLKYDQSSB)
10,LVDSI7Tn

BANK 8

EPIC3SF6T2C6N

EPICISFT2CEN

image34.png
L2

UK

UL

CLK.

GND GND
GND

EPIC35F672C6N

GND GND
GND GND A% veea puur anpa e |
GND GND VCCD_PLLI GND PLLI (]
GND GND GND_PLLI
oNp-anp Jeit) F10
GND GND G131 veea P2 GNDA PLL2 (I
GND GND VCCD_PLL2 GND PLI2 (2L
GND GND GND_PLL2
GND GND @ -
GND GND 08 | veea PLL3 GNDA PLLS
GND GND VCCDPLL3 GND PLL3 [+
GND GND GND_PLL3
GND GND

GND GND AME veea pLLs GNDA PLLs (I
GND GND VCCD_PLL GND PLLs (20
GND GND GND_PLL4
GND GND e

op o EPICTSTGTI06N

GND GND

GND GND

GND GND

GND GND

GND GND

GND GND

GND GND

GND GND o N
GND GND = NC NC

GND GND NC

GND GND -

op o EPICSTETICEN
GND GND

GND GND

GND GND

GND GND

GND GND

GND GND

GND GND

GND GND

GND GND

um

CLKI15, LVDSCLK7p INPUT
LVDSCLK7n INPUT
LVDSCLK6p INPUT
LVDSCLK6n INPUT
LVDSCLKSp INPUT
LVDSCLKSn INPUT
CLK9, LVDSCLK4p INPUT
CLKS, LVDSCLK4n INPUT
CLK7, LVDSCLK3n INPUT
CLK6, LVDSCLK3p INPUT
CLKS, LVDSCLK2n INPUT
CLK4, LVDSCLK2p INPUT
CLK3, LVDSCLKIn INPUT
CLK2, LVDSCLK1p INPUT
CLK1, LVDSCLKOn INPUT
CLKO, LVDSCLKOp INPUT

CLOCK CIRCUITRY
SUBJECT TO
CHANGE

AIW- 93012

EPIC35F672C6N

image35.png
v v

i}
™

veeT
VCCINT
VCCINT
VCCINT
VCCINT
VeeINT
VCCINT
vecio2 VEOINT
VCCI02 VCCINT
VCCI02 VCCINT
VCCI02 VCCINT

"ITAG Sigaals may or
may o b wed

TCK
™S

DATAD R

MSELD
MSELI

ocE VOG0 VECINT
JEE veemT
peLk veeT
CONE DONE veenT
oCONFIG veenT
RSTATUS veenT
- veenT
PICTRTICEN VOO0 VECINT
VOCI03 VECINT

Y B VEaINT o

. vecios veeT <

VCCIo4 VCOINT
VCCIo4 VCOINT
VCCIo4 VCOINT

o 4o
Cap. Cap. Cap.
o lﬂ 1uF OluF

Haﬂ.,
S R
Voot Ve S Tom T,
S B

= =T

e

veeios
vecios
vecios
vecios
vecios
vecios
e

vecios
vecios
vecios
vecios
vecios
vecios
e

veeior
vecior
vecior
vecior
vecior
vecior
vecior
vecior
e

veeios
vecios
vecios
vecios
vecios
vecios
vecios

EPICTSFETICoN

