

Automotive Racing Video Data Logger
ECE445 Fall 2012

Design Review

TEAM 5: Andrew Wesly, Nick Greenway, Tung Do

TA: Igor Fedorov

October 1st, 2012

1

Contents

I. Introduction…………………………………………………………………………......

 2

II. Design………………………………………………………………………………........

2.1 Block Diagrams………………………………………………………………...........

2.2 Block Descriptions…………………………………………………………………...

2.2.1 Overall Summary………………………………………………….........

2.2.2 Input Module…………………………………………………...............

2.2.3 FPGA and Control Module……………………………………………..

2.2.4 Storage Module…………………………………………………............

2.2.5 Display Module…………………………………………………............

2.2.6 Power Module…………………………………………………..............

2.3 Schematics of Overall System………………………………………………….........

2.4 Simulations and Calculations…………………………………………………..........

 3

 3

 7

 7

 8

10

13

17

19

21

40

III. Requirements and Verification………………………………………………………..

3.1 Requirements & Verifications………………………………...................................

3.1.1 Requirements Summary………………………………………………...

3.1.2 Verifications Summary…………………………………………………

3.1.3 Input Module…………………………………………………...............

3.1.4 FPGA and Control Module……………………………………………..

3.1.5 Storage Module…………………………………………………............

3.1.6 Display Module…………………………………………………...........

3.1.7 Power Module…………………………………………………..............

3.2 Tolerance analysis…………………………………………………………………...

3.3 Ethical Issues…………………………………………………..................................

45

45

45

45

46

48

51

55

56

56

56

IV. Cost and Schedule………………………………………………………….…...............

4.1 Cost Analysis………………………………………………………………...............

4.2 Schedule……………………………………………………………….......................

4.3 Contingency Plan…………………………………………………............................

58

58

60

61

V. References……………………………………………………………….........................

62

2

I. Introduction

1) Statement of Purpose:

The project goal is to develop a data logger video overlay that can be used in a car. The final

product should be able to acquire near real-time engine data through the On-Board Diagnostic

Port (OBDII) installed in a car. This product will also take video of a ride through the car’s

windshield with user supplied standard definition camera. Next, it will overlay OBD data

onto the captured video and store it in a portable medium. The video stored in the media

should be in a computer readable video format like JPEG2000. Raw OBDII data should also

be stored as a file in the storage media. The driver can select playback video on the spot with

overlay or replay the video with data at a time later.

This product will aid in automotive racing and tuning by being more intuitive for driver’s to

use and have better functions than existing products on the market.

2) Benefits and Features:

Currently, products like Dashware create a data video overlay AFTER a user uploads their

video and data to a home computer. This feature is not suitable for amateur racers because

they may need to review video and data immediately after a race. Also, this style of

operation makes system set-up difficult because they cannot test their logging systems in real-

time.

Our logger solves this problem with the abilities to:

 Record video and create an overlay in real-time and

 Use logger hardware to playback captured video.

 Capture standalone OBDII data

According to a few internet reviews, some users prefer to have a data logger record video

with OBDII data overlayed on the screen, whereas other users prefer to have raw video

recorded and race data recorded separately. Currently, there are products like Track vision

that record the raw data onto an overlay but do not allow for separate video/OBDII streams.

Our product solves this problem by allowing the user to manually select a recording

mode. They can pick either OBD II on video overlay raw video recorded with an associated

OBDII data file for later analysis.

We will also implement an intuitive interface for drivers to use with mechanical

switches. Interface with the data logger should be intuitive for fast set-up times and can be

done by feel. Some products on the market require a computer to set-up the logger, which is

not conducive for race conditions when time between race events is critical for success.

3

II. Design

2.1 Block Diagrams

Figure 1: Top Level Block diagram

4

Figure 2: OBD II Block diagram

Figure 3: Bootloader Block diagram

BOOTLOADER

Basys2 Development

Board
FPGA Board

5

Figure 4: Storage Module Block diagram

Figure 5: Video Display Module Block diagram

STORAGE MODULE

FPGA or MCU ALFAT SD

Card Writer

Storage Media

(SD Card)

6

Figure 6: Power Module Block diagram

POWER MODULE To other modules

CAR DC/DC

Converter

DC/DC

Converter

DC/DC

Converter

DC/DC

Converter

12V 5V

1.5V 1.8V

3.3V

7

2.2 Block Descriptions

2.2.1 Overall Summary:

1) Input Data Module: This module obtains input data such as information from the

OBD II and the video images from the camera. The module then converts them into

digital form using an ADC and transmits this digital data to the FPGA.

a. Analog Video: The analog video obtained from the camera on the

windshield. The image will be sent to the ADC to be converted into digital

form.

b. ADC: The Analog-to-Digital converter that converts standard definition

analog video input into a digital form so it can be used by the FPGA. ADC

input is analog video, which is converted to digital images and are then

routed to the FPGA.

c. OBD II: The On-Board Diagnostic system on a car is where information

such as the MIL (malfunction indicator light), DTC (diagnostic trouble

code), I/M (inspection and maintenance) info, etc. can be extracted from. We

will focus on polling operating data like engine RPM, temperature, etc. The

information obtained from this block is sent to the FPGA.

2) FPGA and Control Module: This module is the “brain” of the entire circuit. It

receives the OBD II data and video images from the input module, processes them,

overlays the data onto the video stream. It then routes the overlaid video to the

storage and display modules. This entity also manages video stream

compression/decompression. This block also boots the system.

a. Boot loader: The boot loader is a nonvolatile memory circuit and co-

processor that configures the FPGA for use when system is powered on.

b. JPEG2000 Decoder/Encoder: A device that compresses/decompresses

digital video for extended storage and computer access. This block receives

processed video and data from the FPGA and routes decompressed output

back to the FPGA so that video can be routed to other entities.

c. FPGA: The integrated circuit that will be used to design the digital system to

process the images and data obtained from the OBD II. This block obtains

video from the camera and data from the OBD II, process them, and routes

signal through a video compressor/decompressor. FPGA also streams

processed to a storage device (the MMC) and controls data display for the

attached TFT screen.

3) Storage Module: This module receives the overlaid video from the FPGA and

control module and stores it on a storage device for later use. A compact flash MMC

may be used as the storage device. User can also replay video from the storage

medium.

a. SDHC Flash Memory Card: The flash memory data storage device where

the video and data obtained will be stored. This block obtains the processed

video and data from the FPGA.

b. USB: It is possible to achieve higher storage speeds with an FUSB PHY chip

over USB interface. This item may be used depending on time remaining for

project completion.

4) Display Module: This module displays the overlaid video on a LCD screen from

storage through the FPGA/control block.

a. TFT Display: The LCD display where the processed video obtained from

the FPGA will be displayed.

5) Power Module: This module supplies power to the FPGA and Control Module.

8

2.2.2 Input Module

OBD II Interface:

Register Control

Inputs: There are individual signals from each register specifying the last instruction that was

sent or that the last requested data was received. Only one of these signals is ever high at any

given time. There is also a reset input to restart and initialize the entity.

Outputs: Each instruction register and the data register have individual enables, only one of

which is high at any given time. Also, enables are sent to the converter entities depending on the

latest data that was received from the OBDII.

Description: This entity consists of a state machine that performs a loop that first initializes the

ELM327 chip and then loops through a series of states that send and then received data from the

ELM327. The states go from transmitting data, to receiving data, then back to sending, etc. First,

an enable is sent to one of the instruction registers to allow a certain instruction to be sent to the

OBDII. Then, once a signal is received from the register indicating that the data has been sent, the

data register is enabled so as to receive the requested information from the OBDII. Once this data

is received, a signal from the register is made high and sent to the register control, indicating that

the data was received properly. Then the control moves to the next instruction and enables the

appropriate register, but also sends a signal to the converter bank and the video interface

indicating what the last received information was, and enabling the correct conversion entity

depending on that data. Note that only one register enable and one converter enable are ever high

at any given time to ensure that only one instruction is sent or received at a time and that only one

parameter is being converted at a time to ensure that no data gets garbled and to ensure that all the

data is sent and received in a clear order.

Instruction Register Bank

Inputs: Each register has an enable sent from the register control, a clock based on the baud rate,

and a reset for initialization purposes.

Outputs: Data is outputted and transmitted via RS-232 UART. Also, a signal from each

individual register is sent to the register control, which is low unless a complete instruction has

been sent.

Description: When a register is first initialized, a 4 or 6 byte data signal is set, depending on the

instruction being sent. If the enable is active, then the most significant bit of the data signal is

outputted. Then, the signal is shifted to the left by one bit, and a counter increases by one. This

continues until the counter reaches the number of bits in the instruction. Then, the signal going to

the control register becomes active, indicating that the message has been sent. This causes the

state in the control register to change, causing the enable to go low and the register to reinitialize

to its original value.

Instructions we plan to use:

x0105: Engine coolant temperature

x010A: Fuel pressure

x010C: Engine RPM

x010D: Vehicle speed

9

x010F: Intake air temperature

x0111: Throttle position

x0146: Ambient air temperature

x015C: Engine oil temperature

Note: These may be changed depending on parameters available for the car we test. The one we

use may not be compatible with some of the instructions listed.

Data Register

Inputs: One of the inputs in the data being received from the ELM327 via RS-232 UART. Also,

there are two enables for this register; one indicating that the data being received is one byte long,

the other indicating that it is two bytes long. There is also a reset for initialization and a clock

signal based on the baud rate.

Outputs: The data received from the OBDII is sent to the converter bank, and there is also a

signal sent to the register control that is high when a complete message has been received.

Description: When enabled, this register receives data from the OBDII one bit at a time. When a

bit is received, the register shifts the bits to “make room” for the next one. Also, a counter is used

to keep track of the amount of data received. Once all of the data is received, a signal is sent to

the register control to indicate such. Notice that the counter counts to different values depending

on whether one or two bytes are being received.

Converter Bank

Inputs: The data received from the OBDII is the primary input. This is one or two bytes

depending on the information received. Also, each converter entity has an enable and a reset.

Outputs: Two bytes of data are outputted to the video interface. This data is the actual/converter

value of the data received.

Description: When enabled, the converter uses an arithmetic equation to change the data received

into the actual, factual information from the engine. The equations used are explained in the

calculations section. These new values are then sent to the video interface. Note that if the

converter is not enabled, its output is set to high impedance, so that only one output is being

transmitted at any time.

10

2.2.3 FPGA and Control Module

a. Boot loader

According to the Cyclone II Device Handbook, Cyclone II devices use SRAM cells to store

configuration data. Because SRAM memory is volatile, all configuration data will be lost once

the device powers off. Therefore, there’s a need to implement a boot loader to download

configuration data to the Cyclone II devices every time the device powers up.

In our design, we’ll use the Digilent Basys2 development board as the FPGA’s boot loader.

The Cyclone II (or the EP2C35 processor) supports 3 configuration schemes: AS (active serial),

PS (passive serial) and JTAG-based configuration. To select a configuration scheme, the MSEL [

] must be connected to the appropriate digital logic.

Figure 7: Cyclone II Configuration Schemes (Cyclone II Device Handbook, Volume 1, p. 356)

For our design, the AS scheme will be used, since it has the ability to configure the device at a

high frequency (40MHz).

Figure 8: Single Device AS Configuration (Cyclone II Device Handbook, Volume 1, p. 362)

11

The EP2C35 essentially goes through 3 states (RESET, CONFIGURATION and

INITIALIZATION) before USER MODE, as depicted below,

Figure 9: Cyclone II device configuration states

RESET CONFIGURATION INITIALIZATION USER MODE

12

No

No

Yes

Yes

Yes

Yes

Yes

Device (EP2C35) in neutral

Successful?

Power-on reset

Enter configuration mode

Choose configuration scheme (AS)

FPGA enables config device (Basys2)

Successful?

FPGA sends command and address signals to Basys2

Successful?

Basys2 provide FPGA with configuration data

Done?

Go to initialization state

Wait 299 cycles to initialize properly

Done?

Initialization done, go to USER MODE

No

No

No

The EP2C35configuration flowchart is as follows,

13

2.2.4 Storage Module

After the video is processed with the overlaid data, it will be stored on a storage device. We’ll

choose the Transcend 16 GB SDHC Class 10 Flash Memory Card as our storage device. To

simplify the process of writing the file to disk (which involves writing complex memory card and

USB drivers and manipulate buggy file system), we’ll use the ALFAT OEM Board – FAT32 SD

card writer from GHI Electronics.

Figure 10: ALFAT OEM Board (ALFAT SoC Processor User Manual, p. 45)

The ALFAT SoC processor gives the FPGA a simple way to access storage medias such as SD

cards and USB Mass Storage devices in a very short time. Its key features are as follows:

 LFN (Long File Name) supports.

 FAT16 and FAT32 systems.

 Friendly user-interface through UART, SPI, I2C.

 No limits on media size, file size, or file/folder count.

 Up to 8 simultaneous file access.

For our design, we choose to implement it using the UART interface. A simple schematic of how

the ALFAT SoC interacts with other devices is as follows,

Figure 11: ALFAT SoC interface (ALFAT SoC Processor User Manual, p. 5)

14

After power-up, the Host MCU (our FPGA board) controls the ALFAT SoC by sending in

commands in human-readable ASCII format. The command list is as follows,

Figure 12: ALFAT Command Set (ALFAT SoC Processor User Manual, p. 19)

The command will be send via a UART interface, which uses 3 hardware signals,

 UART_TX signal to send data out from ALFAT

 UART_RX signal to receive data to ALFAT

 UART_BUSY signal which should be monitored while sending data to ALFAT. When

hi, no more data should be transmitted to ALFAT until it gets lo.

Besides, commands are terminated with line-feed, and the user must read back the responses for

each command properly and check whether the command was successful.

To write a file to a storage device, we need the following commands:

 I – Initialize and mount the storage device. If this command is not called first, the file

system can be corrupted, and other file related commands will fail.

 O – Open file for Read, Write and Append, and give write privileges to it. If the file

already existed, it will be erased and rewritten.

 W – Write to file through a file handle assigned to an open file with write mode. This

command is accomplished through 3 steps:

1) Send W command with file handle and the data size

2) Wait til you get the acknowledge

3) Send the data

15

To make sure the data is written to a file, the file must be flushed or closed when done or

there will be a risk of losing data or corrupting the file system if the storage media was

removed or if there was a power loss.

 F – Flush the data of an opened file. This command is useful to make sure all the data are

physically saved in the media.

 C – Close file. This command issues a flush internally and then release the file handle.

The flowchart for a WRITE operation is as follows,

16

To store a file on an SD card:

Yes

Yes

Yes

Yes

Yes

Yes

Device (ALFAT) neutral

Power on?

Hold reset pins lo =>go to reset state

Wait 50ms?

Select UART interface

Set reset pins hi

Send I (initialize) command

Successful?

Send O (open) command

Successful?

Wait for ACK

ACK received?

Send data to SD card

Write successful?

Close the file using “C” command

Send W (write) command

No

No

No

No

No

No

17

2.2.5 Display Module (Software)

Video is inputted into the module from the ADC chip as luma and chroma data, which is stored in

a register. This data is then converted to the RGB color space and is sent to the VGA Controller.

The data from the OBDII module is also sent to the VGA Controller, which uses a ROM to call

upon and display the correct character sprites. Both the raw RGB video data and that of the video

with overlaid data are outputted.

YCrCb Register Bank

Inputs: 1 byte of data from the ADC chip. Also, there is an enable for each register, and a clock

based on the video input.

Outputs: There are 3 bytes of outputs: one for luma and two for chroma values.

Description: 1 byte is sent from the ADC at one time, but the information changes between the

luma value and the chroma value, which is two bytes. There are 3 registers then to hold the last

value sent for each of those. There is also a counter that controls the enable for each register,

which is timed by the input clock. Each of these registers then outputs that byte to the YCrCb to

RGB converter.

Figure 13: BT.656 8-bit parallel interface data format for 525/60 video systems (from

AN9728 Application Notes)

YCrCb to RGB Converter

Inputs: The Y, Cr, and Cb bytes from the YCrCb register bank. There is also a clock, as well as

horizontal and vertical syncs.

Outputs: 3 bytes are outputted: one for red, one for green, and one for blue.

Description: the Y, Cr, and Cb values are all constantly inputted. Then, they are converted into

the RGB color space. The conversion calculations are explained in the next section. Once the

conversions have been performed, the RGB values are sent to the VGA Controller as 3 separate

bytes.

18

VGA Controller

Inputs: The converted RGB values are received by the VGA Controller. Also, the data from the

Converter Bank in the OBDII Interface is inputted, as well as the corresponding signals indicating

the last parameter from the OBDII that was received and converted. Also, data is received from

the Sprite ROM for overlaying text onto the display. The horizontal sync and the vertical sync are

also inputted for timing purposes.

Outputs: A two byte signal is sent to the Sprite ROM for summoning certain sprites, which are

all letter and number characters, to be displayed. Also, the video signal is outputted to the encoder

one byte at a time.

Description: The VGA Controller will output information for each individual pixel going from

left to right, then up to down. It will output the input for most of these pixels. However, at some

points this entity will call upon the Sprite ROM, which then sends back 8 data bytes, each

corresponding to 8 pixels on a single row of pixels. For each pixel, if the bit from the Sprite ROM

is low, then the video outputted will simply be the RGB value inputted. However, if the value

from the ROM is high, then the pixel will be changed to a different color. This will create

characters on the screen. Some of these will be constant to describe the parameters, such as RPM,

air temperature, etc. Others will be determined by the integer values of the data sent from the

OBDII. These will be the numeric characters, and an if/then statement will be used to display the

appropriate character.

Sprite ROM

Inputs: The address being summoned by the VGA Controller is inputted.

Outputs: The ROM outputs the data bytes from the addresses received.

Description: This entity acts as a simple read-only ROM, which outputs prewritten data to the

VGA, depending on the address requested. One address is read from at a time, and one address is

outputted at one time. Each address and each line of data are both 1 byte each.

19

2.2.6 Power Module

The Automotive Racing Video Data Logger device gets power from the 12V car battery.

However, 12V is higher than needed for our device, so DC/DC voltage converters will be

included in the power module to step down 12V to other useful voltages.

Specifically, here are the power requirements for all the components from the device:

Devices Voltage(s) needed

Digilent Basys2 Development Board

ALFAT OEM Board

FPGA board

TFT LCD display

3.5V-5.5V

3.3V

3.3V, 1.8V, 1.5V, 1.2V

5V

From the 12V car battery, the voltage will be stepped down to 5V, and then 5V will be stepped

down one more time to get 3.3V to supply power to the ALFAT OEM Board, the FPGA Board,

etc.

3.3V will then be stepped down again to 1.8V and 1.5V to supply power to logic signals on the

FPGA board. The power module block diagram from section 2.1 is copied below to illustrate

how the car power supply will be converted to use on the device:

Figure 14: Power Module Block diagram

POWER MODULE To other modules

CAR DC/DC

Converter

DC/DC

Converter

DC/DC

Converter

DC/DC

Converter

12V 5V

1.5V 1.8V

3.3V

20

Overall the digital flowchart of the system is as follows,

Figure 15: Overall Digital Flowchart

Has data for a

particular

parameter been

received from the

ELM327?

Is video being

received from

our

camcorder?

Place data in appropriate

register

Initialize ELM327

Convert the data into the

appropriate decimal values

Convert video to RGB

Compress video

Send video to

storage unit (flash)

Interlay found values onto

the screen with the original

video in the background

Organize information into

a text or excel file

Send that file to the

storage device

Compress video

Request the next

parameter from the

ELM327

Send video to the

storage device

No No

Yes
Yes

21

2.3 Schematic of Overall System

Figure 16: Schematic of the Bootloader. There is a 4 pin header, P1 for Active Serial

Configuration. It connects to the Basys2 bootloader configured board. Switches MSEL0 and

MSEL1 are used to set boot configuration schemes such as Active Serial, Passive Serial and JTAG.

22

Figure 19: Schematic of the Control Switches. Only a few switches are required for

Play,Stop,Record, Next File, Previous File and New File settings. We design for 16 switches

because we can use them for future functions. Software changes are cheap, hardware

modifications are expensive!

23

Figure 20: Schematic of the TFT Display. This schematic is a 40-pin TFT header that connects to

the Kentec LCD display module. All signals are 3.3V compatible and the screen backlight is

powered by on-board 3.3V power. Present are 8-bit RGB signals and HSYNC/VSYNC lines for

video timing information

24

Figure 21: Schematic of the Decoder/Encoder. The Encoder/Decoder schematic depicts an Analog

Devicse ADV212 JPEG2000 encoder/decoder. Module input and output include HDATA (Host Data)

bus that is used to configure the device and transport video to the FPGA. VDATA lines are also used

to stream video through the device. Also present in this module are decoupling capacitors that are used

to decouple this device from board power. This way, power draw at another part of the board does not

cause this component to fail, nor does a large instantaneous power draw from this component cause

another component to fail.

25

Figure 22: Schematic of the RS232 module. The RS232 module takes 3.3V CMOS signals from

the on-board FPGA and converts them to +/-12V levels used for RS-232 communications with

the OBDII module. Input is UART protocol signaling from the FPGA that is input to the

MAX232ACPE level converter chip. This chip is powered by on-board 3.3V power that is

stepped up to +/-12V by IC charge pumps. Output from the MAX232ACPE is then routed to a

DB9 connector that is connected to the OBDII communications module.

26

Figure 23: Schematic of the Storage Header. The Storage header allows for I2C, UART and SPI

connectivity to the the ALFAT storage unit. We intend to use one protocol, however during the course

of this design another choice may be needed, therefore all types of signal protocols are chosen for this

project. Not the 10KOhm pull-up resistors – they are used to pull-up the I2C bus per manufacturer

recommendations.

27

Figure 24: Top Level Schematic of ADC – Storage – Bootloader

This figure shows a hierarchical schematic connection between ADC, Bootloader, Storage

and FPGA modules.

28

Figure 25: Top Level Schematic of Encoder/Decoder

This figure shows connections between the FPGA and ADV212 JPEG2000

ENCODER/DECODER module.

29

Figure 26: Top Level Schematic of FPGA

This schematic shows the inputs and outputs from the FPGA module to all

other devices

30

Figure 27: Top Level Schematic of Power Module

The power module is comprised of DC/DC converters that take 12V Automotive

voltage and supply 1.5V, 1.2V, 3.3V and 1.8V to appropriate on-board modules.

31

Figure 28: Top Level Schematic of Switches – RS232 – Display

This figure shows connectiveity between control switches, RS232 communications

module and the Display module

32

Figure 29: Top Level Schematic of Switches – RS232 – Display

33

Figure 30: Top Level Schematic of FPGA The EP2C35F672C6 FPGA has 8 IO banks and 4 on-

chip PLLS. It also has 672 pins as displayed in the top-level diagram above. Schematics that

follow are zoomed in on FPGA sections.

34

 Figure 31: Schematic of FPGA bank 1 and bank 2. Schematic banks one and two

are connected to 3.3V for IO power. IO power is 3.3V for signaling voltage.

Bank one is connected to switches for control inputs. Banks two is connected to

the ADC. Pinouts may change during the PCB layout stage for ease of FPGA

signal extraction.

35

Figure 32: Schematic of FPGA bank 3 and bank 4 are both connected to

+3.3V for signaling.Bank3 is connected to the ALFAT storage module and

Bank 4 is connected to the ADV212 JPEG 2000 ENCODER/DECODER

Module.

36

Figure 33: Schematic of FPGA bank 5 and bank 6. These banks are connected to +3.3V for

signal levels. Bank 5 has some Encoder/Decoder pins. Bank 6 is has pins nCEO and

INIT_DONE that are connected to the Bootloader module for FPGA programming.

37

Figure 34: Schematic of FPGA bank 7 and bank 8. These IOBANKS are left

unconnected

38

Figure 35: Schematic of FPGA Clock – PLL – GND . Current design requires one

clock signal that is connected to FPGA global clock network. Internal FPGA

PLLs may need to be powered on for correct operation. This design aspect is

subject to change during the building process.

39

Figure 36: Schematic of FPGA JTAG Program Power

40

2.4 Simulations and Calculations

Color Conversion Calculations:

From Poynton's "Introduction to Digital Video" (p. 176, equations 9.6 and 9.7), the formula to

convert RGB to YCbCr signal is,

 where,

 [

]

and,

 [

]

This equation can be rewritten as,

where,

 [

]

Color Conversion Simulation:

 Using the derived equations, we implement our color conversion on MATLAB as follows,

41

function [R, G, B , rgb] = YCbCr2RGB(Y, Cb, Cr)
%Function to convert from YCbCr to RGB used for simulation
 % Input checks
 if (Y>255 || Y<0 || Cb>255 || Cb<0 || Cr>255 || Cr<0)
 error('Invalid Input Range');
 end

 % Converting to fixed point
 max = 255;
 Y_r = (Y/max)*(2^7);
 Cb_r = (Cb/max)*(2^7);
 Cr_r = (Cr/max)*(2^7);

 % New fixed point inputs
 YCbCr = [Y_r; Cb_r; Cr_r];

 % T matrix and offset used for calculations
 T = [65.481 128.553 24.966; -37.797 -74.203 112; 112 -93.786

-18.214];
 offset = [16;128;128];
 % Inverting the T matrix
 Tinv = T^-1;

 % The final RGB map result
 rgb = Tinv*(YCbCr-offset);

 % Converting the fixed point to RGB results
 R = (rgb(1)/(2^7))*max;
 G = (rgb(2)/(2^7))*max;
 B = (rgb(3)/(2^7))*max;

 Some results from this MATLAB code are as follows,

42

43

Data Rate:

Our data capture rate is limited by our storage rates. Maximum write speed for the storage

module, ALFAT SoC is only 1400 Kbytes/s, so there will be a need for storage device speed-up

and video capture down-sampling. The FUSB2805 transceiver can be soldered into the ALFAT

SoC to increase the data rate transfer speed. On a FUSB2805, data can be transmitted and receive

at high speed (480Mbps), full speed (12Mbps) and low speed (1.5Mbps) through a 12-bit (SDR)

interface. In other words, 12Mbps is an achievable speed and data rate design calculations use

this rate as a bench mark.

In this project, we use the MAX9526 as our ADC to convert Analog Video into digital signal.

The MAX9526 is a 10-bit 4x oversampling (54Msps) ADC with true 10-but digital processing.

To decrease bandwidth because of storage limitations, however, we will down-sample the video

signals twelve times. We down-sample by 4 to achieve a video rate of 30 fps. After that, we

further down-sample by 3 to achieve 10 fps. In other words, we will sample at a rate of,

The FPGA gets the digital video signal from at this rate from the MAX9526 ADC, processes it,

overlays it with the data obtained from the OBDII, and sends it to the ADV212 encoder. The

ADV212 has the following data input rates:

Figure 37: Maximum Pixel Data Input Rates for 121-Ball Package (ADV212 Datasheet, p. 32)

44

According to the table, for a VDATA irreversible 10-bit data, with an input of 48 Msps, it is

guaranteed to have the output rate in the range of [98, 150] Mbps.

With our input coming in at a rate of 4.5Msps, the ratio of the actual input rate to the input rate

limit is,

This gives us a new range of output rate of,

[] []

OBDII Parameters:

The OBDII sends one or two bytes of information which then need additional calculations to

determine the correct values of the parameters. These are done with the following equations,

where A denotes the first byte of data and B denotes the second, if there is a second data byte.

Temperature:

Data = A – 40 (degrees C)

Fuel Pressure:

 Data = A * 3 (kPa)

Engine RPM:

 Data = ((A * 256) + B) / 4 (rpm)

Vehicle Speed:

 Data = A (km/hr)

Throttle Position:

 Data = (A * 100) / 255 (%)

45

III. Requirements and Verification

3.1 Requirements

3.1.1 Requirements Summary:

1) Input Module: This module should successfully obtain the captured video from the

camera and convert it into digital form using an ADC. Besides, this module also

sends the OBD II data to the FPGA and control module without errors.

2) FPGA and Control Module: This module should successfully overlay the data

obtained from the OBD II on the video received from the input module.

3) Storage Module: This module should successfully store the overlaid video without

corrupting the file system at a reasonable frame rate.

4) Display Module: This module should display the overlaid video without any glitches

or freezes.

5) Power Module: This module should supply enough steady power to the circuit.

3.1.2 Verifications Summary

1) Input Module: The video input can be tested simply by displaying the image from

the camcorder onto a screen. The latest OBD II information will be stored in a

register, so we can display the contents of the register onto the screen to be sure they

are correct. If possible we will use an OBD II simulator to verify our measurements.

2) FPGA and Control Module: This can be verified by checking the information from

the OBD II in relation to what is present on the screen. Since most of the information

needs to have a calculation done to it, we will have to make sure that this calculation

is done accurately.

The signal inputs and outputs will be verified with a logic analyzer to ensure

accuracy.

3) Storage Module: We will do a simple check to make sure that both of our videos

(the raw video and the video with the overlay) are stored properly by playing them

back off of the storage device. One method to check this is by displaying the videos

through a computer and the other is local playback.

4) Display Module: We will verify that the real-time video is displayed on our screen.

5) Power Module: We will do a simple check to see if the power supply supplies the

expected voltage and that the circuit stays powered on during an extended period of

time.

46

3.1.3 Input Module

Requirements Verifications

Camcorder:

1) Output video signal is analog SD NTSC-M

signal

MAX9526:

2) Output video is ITU-R.656 uncompressed

digital video

3) Ensure that the ADC chip is powered at the

correct wattage

Camcorder:

1) Ensure analog source, the camcorder, is

powered on and output is enabled by:

a. Pressing ‘ON’ button on camera

b. Default video setting is NTSC-M

c. Connect minijack-to-RCA cable to

camera video output

d. Connect RCA output to the one RCA

input connector on main circuit board

e. Set scope probe to High-Z (1MOhm or

higher)

f. Press probe connector onto RCA

connector center (signal) wire

g. View scope pattern – an NTSC-M

characteristic signal should be present

on screen.

MAX9526:

2) Check ADC chip power:

a. Connect three (3) oscilloscope probes’

local GND to board GND (pin 23)

closest to ADC GND pin

b. Attach a probe to ADC power pin

VAVDD (pin 5). Voltage should be

+1.8V nominal. Voltage should not

exceed 2V. Voltage should not be less

than 1.5V

c. Attach a probe to ADC power pin

VDVDD (pin 22). Voltage should be

+1.8V nominal. Voltage should not

exceed 2V. Voltage should not be less

than 1.5V

d. Attach a probe to ADC power pin

VDVDDIO (pin 24). Voltage should

be +3.3V nominal. Voltage should not

exceed 3.3V. Voltage should not be

less than 3.0V

3) Input format settings

a. Connect Logic Analyzer Ground to

GND closes to ADC DGND (pin 23)

b. Connect Logic Analyzer probe pin 1 to

DEVADDR (pin 9)

c. Connect another Logic Analyzer probe

pin 2 to SDA (chip pin 12)

d. Connect a third logic analyzer probe #3

to ADC SCL pin (#13)

e. Connect 4
th
 Logic Analyzer probe to

ADC pin 14 and monitor NOT(IRQ)

f. Set Logic Analyzer to record

47

4) Configure the MAX9526 correctly

WIG-09555:

5) Input data signal is OBDII data from car

6) OBDII to ELM signaling is set to ISO

9141-2 for Asian make vehicles

7) Output data is OBDII info over RS-232

interface

g. Reset FPGA (press reset button and

record data

h. Use the Logic Analyzer to ensure that

the FPGA sends the correct signals to

read from register x0D, the clock and

output control register, and that the

data read is x04, meaning the vertical

and horizontal syncs are enabled.

4) Enable the horizontal and vertical syncs

a. Set up the Logic Analyzer using the

above instructions.

b. Using the SLA and SLD signals, call

upon the x0D register, which controls

the output and the clock. Then write

x04 to the register to enable the

horizontal and vertical sync signals.

Use the Logic Analyzer to ensure that

this is done correctly.

WIG-09555:

5) Ensure car is powered on:

a) Insert key into automotive ignition

b) Turn key into Start

c) Release key and allow car to idle

6) Check automotive accessory power outlet

for 12V:

a. Turn multimeter on

b. Place multimeter negative lead to

outer shell of automotive accessory

outlet (GND)

c. Place positive multimeter lead to

center pin of automotive accessory

adapter

d. Reading should be 12V nominal,

voltages from 11.5V to 12.5V are

acceptable. –AJW verify

7) Verify OBDII ISO 9141-2 signaling

scheme is selected by:
a. Connect OBDII GND and pins to

headers on Logger board

b. Connect Logic Analyzer Ground to

OBDII GND

c. Connect Logic Analyzer probes to

the RS-232 Tx and Rx signals

connecting the WIG-09555 and the

FPGA.

d. Use the logic analyzer to make

sure OBDII module is powered on

and is set correctly. Store sent

information in a register, and use

the hex display on the FPGA to

48

check that the correct data is

received and stored

3.1.4 FPGA and Control Module

Requirements Verifications

FPGA:

1) Module passes ITU.656 video with

overlay to ENCODER/DECODER chip

during record

2) Module overlays OBD II data onto

ITU.656 stream

3) Module takes in OBD II data.

FPGA:

1) Ensure FPGA is powered on by the +1.2V

power power supply and +3.3V for signal

voltage levels by:

a. Connect Multimeter Ground to

onboard ground

b. Connect Multimeter positive

connector to VCCINT test pad

(Test pads will be added during

PCB Layout process)

c. Read voltage – it should be 1.2.V

nominal, minimum of 1.15V,

maximum of 1.25V

d. Iterate a-d for each test pad

e. Connect Multimeter positive

connector to FPGA VCCIO test

pads (Test pads will be included in

PCB Layout)

f. Voltage should read 3.3V nominal.

Minimum voltage is 3.135V.

Maximum is 3.6V

g. Iterate steps e-f for each test pad

h. Connect multimeter positive probe

to VCCA-PLL test pads (Pads will

be included in PCB layout)

i. Voltage should read 1.2V nominal,

1.15V minimum, 1.25V maximum

2) Ensure digital timings and internal

character mappings are at standard. Timing

will be ensured by using a 100 to 200MHz

clock driver, as well as the FPGA’s internal

20MHz clock for configuration. Test

timing signal by:

a. Set oscilloscope probe input to

High-Z (~1MOhm or greater)

b. Place oscilloscope probe on timing

chip output pin

c. Confirm frequency

d. Change clock chip settings

3) Ensure FPGA configures OBD II circuit

49

4) Module passes compressed JPEG2000

stream to storage module during record

5) Module passes compressed JPEG2000

video from storage module to JPEG2000

ENCODER/DECODER chip during

playback

6) Module processes decompressed

JPEG2000 to ITU.656 video and passes it

to display module during playback

Switches:

7) User selects video playback and record

functions such as (stop, play, record, next

file, previous file)

module for correct operation. We can also

test the individual OBDII UART board

with a terminal program to ensure that it is

receiving and transmitting data correctly.

Test module by:

a. Connect a Logic Analyzer to

circuit ground

b. Connect Logic Analyzer probe

pins to UART signals.

c. Test for signal transmission and

patterns

4) Ensure FPGA is set to route video to the

storage device. We can then test that the

video can be opened and viewed directly

from said device Testing is done with:

a. Connect logic analyzer to FPGA-

to-ALFAT transmission traces

5) Ensure FPGA is set to route video from

ENCODER/DECODER module and has

device settings configured properly

a. Connect Logic Analyzer probes to

HDATA and VDATA lines. Video

data and configuration data should

be present

b. Connect Logc Analyzer to

ADV212 configuration signal

lines. Chip should be enalbled

6) Ensure FPGA is set to route video to the

display,

a. Trace each TFT connector with

oscilloscope probe. Voltages

should be LVCMOS +3.3V levels

b. Connect Logic Analyzer to TFT

signal pins. Test for video signal

c. Qualitatively observe video stream

on screen.

Switches:

7) Test for switch power connectivity by:

a. Place multimeter negative lead to

switch ground pin 3

b. Place multimeter positive probe to

switch power of 3.3V at pin 1

c. Iterate for each switch

8) Test for switch functionality:

a. Place multimeter negative lead to

switch ground on pin 3

b. Place multimeter positive lead to

switch output on pin 2

c. Toggle switch to “OFF” – output

should read 0V

d. Toggle switch to “ON” – output

50

Boot loader/Digilent Basys2:

10) Ensure power inputted is correct

11) The Basys2 Development Board powers

on

12) The AS (active-serial) scheme is selected

for configuration

13) The FPGA and the Basys2 (used as

bootloader) are on when being configured

14) The FPGA goes through all 3 states

(RESET, CONFIGURATION,

INITIALIZATION) before entering

USER MODE

should be 3.3V

e. Iterate for each switch

9) Test for switch connection to FPGA:

a. Since we cannot probe electrical

connection from switch output to

FPGA input, test is a software

stimulus

b. Set FPGA switch register to

ON/OFF state for switch function

[play, stop, etc]

c. Compile code and check output

d. If output changes with respect to

software change and not switch

state, switch is not connected

e. If output does not change with

respect to software stimulus

change, software is broken.

f. Iterate step 9 for each switch.

Boot loader/Digilent Basys2:

10) Use a multimeter to verify that the input

voltage is between 3.135 and 3.465 V and

that it draws to more than 150 mA of

current

11) The Basys2 Development Board is

supplied with power from a USB connector

or an external 3 AA batteries giving it a

4.5V power supply

a. A multimeter will be used to check

if the batteries are supplying 4.5V

± 0.15 V

12) Ensure the digital logic for pins MSEL []

is 00 for the 20MHz AS configuration

a. A logic probe will be used to check

the digital logic of the MSEL []

pins

13) Connect the pull-up resistors to a 3.3-V ±

0.15 V supply

a. A multimeter will be used to

measure the voltage and the

resistance

14) Ensure each state completes successfully

before going to the next state by checking

the appropriate pin signals

a. A logic probe will be used to check

the logic signal of the nSTATUS

pin. If it is HI, the RESET state has

been completed

b. A logic probe will be used to check

the logic signal of the

51

15) The Basys2 Development Board

downloads the program to the FPGA

board

16) The FPGA board goes to USER MODE

successfully

CONF_DONE pin. If it is HI, the

CONFIGURATION state has been

completed

c. A logic probe will be used to check

the logic signal of the INIT_DONE

pin. If it goes form LOW to HI, the

INITIALIZATION state has been

completed

15) Ensure the Basys2 Development Board can

communicate with the FPGA Board and

vice versa by initiating test hand-shake

programs

a. The ECE385 Altera DE2 Board

will be used to test the program

from the bootloader. If the

bootloader successfully downloads

the program to the Altera DE2

board, it should also be able to

download program to the PCB

board

b. The Altera DE2 Board can also be

used as a debugging tool to see if

the configuration data has been

sent to the PCB or not.

16) The FPGA board goes to USER MODE

successfully. The user can use the program

downloaded to the FPGA board from the

Basys2 Development Board

a. A “Hello World” user program

will be written to check if the PCB

goes to the user mode or not

3.1.5 Storage Module

Requirements Verifications

TS16GSDHC10E:

1) Video stored in computer readable format

TS16GSDHC10E:

1) Ensure FPGA commands sent to storage

SoC properly set-up file saves and the file

saved in the standard video format

a. We’ll use the ECE385 Altera DE2

board to display and check the

commands sent to the storage

device

52

2) Video read from device is realtime

JPEG2000 format

3) The user can playback the video stored on

the storage media device at a time later

ALFAT OEM Board:

4) The ALFAT OEM Board powers on

5) The media device (SD card) receives

enough power and works reliably

b. To check if the file is readable, a

PC will be used later to check if

the file can be opened and played

2) Ensure FPGA control commands sent to

storage SoC properly set-up file reads

provided condition in step 1 is met.

a. After checking that file save is

successful, a PC will be used to

analyze the format of the video

file, bit rates of the video and the

text file

b. A PC will be used to ensure that

the video file is in the JPEG2000

format

c. The text file which stores the

information from the OBD II will

also be read on a PC to make sure

that the data is correct and the file

is readable

3) The video file on the storage media can be

played on a PC or other devices

a. If file saves and file reads are

successful, the video file should be

playable on a PC

b. The text file should also be

readable on a PC

ALFAT OEM Board:

Note: The ECE385 Altera DE2 Board will be used

to test the storage device individually (specifically,

to check if the codes sent to the ALFAT OEM

Board is in correct format, and to read the error

codes returned from the ALFAT OEM Board). It

won’t be included in the final product. Rather, it

will be used as a debugging tool.

4) Ensure the ALFAT OEM Board is powered

on with a 3.3V power source

a. Use a multimeter to check that the

ALFAT OEM Board is supplied

with 3.3V ± 0.15V

b. Use a oscilloscope to check if the

3.3V ± 0.15 V voltage supply is

steady

5) The media may not work on an unstable

source. Make sure the power source to the

storage media is reliable and there is a

large enough capacitor as close as possible

to the media power pins. 0.1uF and 22uF

capacitors are recommended

53

6) The ALFAT OEM board receives the

commands form the FPGA board

successfully without error

7) The ALFAT OEM Board receives separate

commands from the FPGA board and stack

them up if needed

8) The ALFAT OEM Board can communicate

with the FPGA Board. Data can be sent out

to and received from the FPGA board

a. Use a oscilloscope to make sure

that the supplied power voltage is

steady at 3.3V ± 0.15 V (as of part

4)

b. Use a multimeter or a capacitance

meter to measure and make sure

that the recommended capacitors

0.1uF and 22uF at the media power

pins

6) Ensure the returned error codes are

checked by the user every time a command

is sent.

a. The Altera DE2 will be used to

check the returned error codes

b. The DE2 board interfaces with the

ALFAT OEM DE2 board and

receives signals from it similarly to

what has been done in ECE385

with the keyboard interface

c. The returned error codes will be

displayed on the LEDs on the DE2

board for verifications

7) Make sure commands are terminated by

line-feed

a. The Altera DE2 board will be used

to display and check the

commands sent to the ALFAT

OEM Board, and check if each

command terminates with a line-

feed

b. When sending the commands,

successive commands will be sent,

and the error codes will be checked

using the Altera DE2 board to see

if the stacked up commands are

received and completed by the

ALFAT OEM board one command

at a time

8) Ensure the UART_TX signal send data out

from ALFAT

UART_RX receive data to ALFAT

Ensure no more data is sent when the

UART_BUSY signal is high

a. The Altera DE2 Board will be used

to test this. The UART_TX,

UART_RX, and the UART_BUSY

signals are hooked to the DE2

Board so that those signals can be

read and displayed by Altera DE2

Board

b. The Altera DE2 board will display

54

9) The ALFAT OEM Board initialize and

mount the storage device successfully

10) The ALFAT OEM Board Opens a new file

successfully for read

11) The ALFAT OEM Board Writes to file

successfully

12) The ALFAT OEM Board Flushes or Closes

file successfully

the UART_TX and UART_RX

signals using the 7-segment LEDs

or the on-board LCD display

c. The Altera DE2 board will display

the UART_BUSY signal using an

on-board LED

9) 0x00 (successful command) is sent back as

error code for INITIALIZE instead of 0x10

or 0x11 (Initialize media failed)

a. The Altera DE2 board will be used

to check if UART_TX sends out

0x00 from the ALFAT OEM board

for a successful command

b. The Altera DE2 board will also be

used to check the UART_RX

sends out a correct INITALIZE

command is sent out successfully

to the ALFAT OEM Board device

10) 0x00 (successful command) is sent back as

error code for OPEN instead of 0x21

(Failed to open the file). INITIALIZE must

be called first before OPEN

a. The Altera DE2 board will be used

to check if UART_TX sends out

0x00 from the ALFAT OEM board

for a successful command

b. The Altera DE2 board will also be

used to check the UART_RX

sends out a correct OPEN

command is sent out successfully

to the ALFAT OEM Board device

11) 0x00 (successful command) is sent back as

error code for WRITE instead of 0x30-

0x37 (file handle invalid). Wait to get

acknowledge after sending the W

command before actually sending the file.

Ensure the sent data size matches the size

declared in the command. Make sure the

file is FLUSHed or CLOSEd when done

a. The Altera DE2 board will be used

to check if UART_TX sends out

0x00 from the ALFAT OEM board

for a successful command

b. The Altera DE2 board will also be

used to check the UART_RX

sends out a correct WRITE

command is sent out successfully

to the ALFAT OEM Board device

12) 0x00 is returned for CLOSE or FLUSH

command

a. The Altera DE2 board will be used

55

to check if UART_TX sends out

0x00 from the ALFAT OEM board

for a successful command

b. The Altera DE2 board will also be

used to check the UART_RX

sends out a correct CLOSE or

FLUSH command is sent out

successfully to the ALFAT OEM

Board device

3.1.6 Display Module

Requirements Verifications

ADV212:

1) Displays decompressed video equivalent to

capture rate

2) Video output size maximum of 800X480

resolution

3) Configure the ADV212 correctly

4) Ensure that the ADV212 is powered

correctly

5) ADV212 must be initiated properly

ADV212:

1) Use an oscilloscope to ensure that the

crystal used to configure the interface clock

is oscillating at 27MHz.

2) Ensure JPEG2000 video is decompressed

and scaled properly; ensure the whole

video is on the screen by comparing it with

the camcorder.

3) This can be checked by communicating

with the chip through a CPU via a free

software codec such as Kakadu and

ensuring that the chip is operating in single

component mode.

4) Power settings

a. Check that VDD (pins 3, 8, 40, 84,

120) is 1.5V ±0.175V by using a

multimeter.

b. Also, we must check that VDDIO

(pins 17, 28, 30, 38, 52, 74, 82, 93,

104, 105, and 106) is 3.3V ±

0.165V.

5) Initializing the chip

a. Connect the first Logic Analyzer

probe to ground.

b. Connect the Logic Analyzer to the

4 address signals (pins 87, 88, 96,

97, and 107).

c. Using the Logic Analyzer, first

ensure that 0x400 is written to the

EIRQIE at address 0x5. Then, the

IRQ pin will go low, and we will

check that EIRQFLG[10] is set

using the FPGA and a simple code.

We will also use the FPGA to read

the application ID to ensure that

the chip was correctly initialized.

56

K50DWN0-V1-F:

6) Ensure the correct power wattage is being

sent to the display

K50DWN0-V1-F

6) Power Settings

a. Use a multimeter to ensure that

VCC is between -0.3 and 5.0V and

ICC is between 25 and 35 mA.

b. Also, VDD must be between 3.0 and

3.6 V and IDD has to be between 15

and 19 mA.

3.1.7 Power Module

Requirements Verifications

Power:

1) Supply enough voltage to power on the

board

2) Supply constant power to the board

3) The car voltage is stepped down correctly

to 5V, 3.3V, 1.8V, 1.2V and 1.5V

4) All the individual components power on

and work consistently

Power:

1) Car outlet is live. A multimeter will be

used to check if the voltage output from the

car is 12V

2) The board doesn’t power off intermittently.

An oscilloscope will be used to check if the

voltage signal is steady.

3) A multimeter will be used to check the

voltage output of each DC/DC converter to

see if 5V, 3.3V, 1.8V, 1.2V and 1.5V are

achieved. The error tolerance should be

about ± 0.15V

4) Ensure each component is connected to its

correct voltage supply by checking the

voltage before connecting it to a

component.

3.2 Tolerance Analysis

Oscillator Frequencies: Verify that the ADC oscillator crystal has a frequency of 27 MHz, plus

or minus 50 ppm. We can verify this using either an oscilloscope, an ADC output with logic

analyzer, or a frequency analyzer. We need to have oscillator frequency at 27MHz so that the

ADC can lock onto an input NTSC video signal.

3.3 Ethical Issues

The purpose of this project is to develop a data logger device for racer, which helps them to better

manage the condition of the car while racing. With such function, our device helps increase the

safety and health of the driver, which is consistent with the first code of the IEEE Code of Ethics:

1. to accept responsibility in making decisions consistent with the safety, health, and welfare of

the public, and to disclose promptly factors that might endanger the public or the environment;

57

One of the factors that cause car accidents is system defects. Our device helps prevent these kinds

of accidents by giving drivers immediate information about the system s other car while also

them with video of a driving car.

Throughout the development of the device, we will follow the third code closely, and only make

claims and estimates based on real data acquired from our data logger.

3. to be honest and realistic in stating claims or estimates based on available data;

Working with a data logger device, the most importance factor is the accuracy of the information

obtained from the system. We will be honest and will not falsify the data acquired from our test

procedures.

After this project, we will have learned a great deal about various real-world industrial systems

such as the On-board Diagnostic (OBD II) system, the SD Flash memory FAT 32 file system, or

the ITU-R BT 656 protocol. This will improve our understanding of these technologies and their

applications, and also improve our technical competence, as directed in the 5
th
 and 6

th
 codes of the

IEEE Code of Ethics:

5. to improve the understanding of technology; its appropriate application, and potential

consequences;

6. to maintain and improve our technical competence and to undertake technological tasks for

others only if qualified by training or experience, or after full disclosure of pertinent limitations;

Furthermore, while working on the project, we will build an environment that promote engineer

professionalism, which welcomes constructive and honest criticisms, acknowledges errors, assists

peer workers with their professional and academic developments, and credits appropriate

contributions, as cited in the 7
th
 and 10

th
 codes of the IEEE Code of Ethics:

7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct

errors, and to credit properly the contributions of others;

10. to assist colleagues and co-workers in their professional development and to support them in

following this code of ethics.

Following the 9
th
 code of the IEEE Code of Ethics,

9. to avoid injuring others, their property, reputation, or employment by false or malicious

action;

We will make sure that the data logger device developed from this project will offer the users

with data that is as accurate as possible, and will not provide them with false information, in order

to avoid damaging that could occur to the users’ health, their car or other properties.

58

IV. Cost and Schedule

4.1 Cost Analysis

a. Labor

Name Rate Hours Total Total x 2.5

Tung Do $50/hr 180 $9000 $22500

Nick Greenway $50/hr 180 $9000 $22500

Andrew Wesly $50/hr 180 $9000 $22500

Total $67500

b. Parts

Description # Manufacturer Vendor Cost/uni

t

Total

Cost

ADV212BBCZRL-150

JPEG2000

Encoder/Decoder

1 Analog Devices Digikey $48.984 $48.984

Development Board 1 Altera DE2 NA $269 0 - Have

ELM327 OBD

Interpreter

1 Elm Electronics ELM Electronics $23.50 $23.50

MAX9526 Video

Decoder

1 Maxim Integrated Mouser $7.97 $7.97

OBD-II UART 1 Sparkfun

Electronics

 $49.95 $49.95

Control Switches 6 C&K Compnents Mouser $6.25 $37.50

ALTERA

EP2C35F672C6 FPGA

1 Altera Altera $149.50 $149.50

Digilent Basys2

Development Board –

used as bootloader

1 DigilentInc DigilentInc $100.00 0 - Have

ALFAT-SD-337 –

FAT32 SD card writer

1 GHI Electronics GHI Electronics $59.95 $59.95

K50DWN2-VI-FE –

TFT Display

1 Kentec Newark $65.22 $65.22

10085901-6015elf–

TFT Display

Connector

1 FCI Mouser $1.46 $1.46

Transcend 16 GB

SDHC Class 10 Flash

Memory Card

TS16GSDHC10E

1 Transcend Amazon $11.92 0 – Have

RC55LF-D-10K-B-B :

Metal Film Resistor

1/4W 10K 0.1%

2 TT Electronics Mouser $1.32 $2.64

PR01000103300JR500

: Metal Film Resistor

1watt 330ohms 5%

3 Vishay Mouser $0.34 $1.02

LT CN5M-FBGB-25- 2 OSRAM Mouser $3.25 $6.50

59

1-Z: High Power LED

- Green 1/2 Watt

528nm, 140mA

173D105X9025UWE3

: Tantalum Capacitor,

1uF 25V 10% Axial

5 Vishay DigiKey $1.15 $5.75

DE09P064HTXLF: D-

Sub Standard

Connector 9P PIN

SOLDER BUCKET

1 FCI Mouser $0.90 $0.90

1531A2L12: Toggle

Switches SPDT ON-

OFF SOLDER

18 Apem Mouser $3.42 $61.56

78SR-5/2-C: DC/DC

Converters 8-32Vin

5Vout 2A SIP

Switching Reg.

1 Murata Mouser $12.36 $12.36

NDTS0503C: DC/DC

Converters 5Vin

3.3Vout 909mA

Isolated 3W 24 pin

1 Murata Mouser $16.95 $16.95

LSN-1.8/16-W3-C:

DC/DC Converters

28W 5V to 1.8V 16A

1 Murata Mouser $18.75 $18.75

LSN-1.2/10-D5-C:

DC/DC Converters

12W 5V to 1.2V 10A

1 Murata Mouser $21.13 $21.13

PCB – All boards 1 PCBFABEXPRES

S

PCBFABEXPRE

SS

$200 $200

Total $791.59

Total Labor Cost Total Parts Cost Total Project Cost

$67,500 $791.59 $68,291.59

60

4.2 Schedule

Week Task Description Group

Members

9/16 Proposals Due

Software design for storage and boot loader Tung Do

Software design for OBD II and ITU-R BT. 656 Nick Greenway

Electronic hardware specifications/designs Andrew Wesly

9/23 Design Reviews Sign-up Closes

Software development for storage interface Tung Do

Software development for OBD II interface Nick Greenway

Finalize the schematic Andrew Wesly

9/30 Design Reviews

Test storage interface Tung Do

Test OBD II interface Nick Greenway

Board layout/order components Andrew Wesly

10/7

Software development for Boot loader Tung Do

Software development for Video interface Nick Greenway

Submit board for fab Andrew Wesly

10/14

Test boot loader Tung Do

Test video interface Nick Greenway

Assemble the boards Andrew Wesly

10/21 Individual Progress Reports Due

Test overlaid video on storage device Tung Do

Verify correctness of OBD II data obtained Nick Greenway

Test assembled boards Andrew Wesly

10/28

Assemble boot loader Tung Do

Assemble video Nick Greenway

Power board layout& Assemble FPGA Andrew Wesly

11/4 Mock-up Demos and Mock Presentation Sign-up closes

Mock Presentation – Control Slides Tung Do

Mock Presentation – Test Slides Nick Greenway

Mock Presentation – Design Slides Andrew Wesly

11/11 Last Day to Request 1
st
 Revision PCB Fabrication

Final software testing Tung Do

Final software testing Nick Greenway

Assemble everything in an enclosure Andrew Wesly

11/18 Thanksgiving Break, Last day to Request Final Revision PCB

fab

11/25 Demo and Presentation Sign-up closes

Final tests and verifications Tung Do

Final tests and verifications Nick Greenway

Final tests and verifications Andrew Wesly

61

12/2 Demos and Presentations

Demo, Final Paper – Intro & Conclusion Tung Do

Presentation, Final Paper – Testing & Verification Nick Greenway

Demo, Final Paper – Design Procedure Andrew Wesly

12/9 Presentations, Checkout, Final Paper, Lab Notebooks

Final Paper & Notebook review and hand-in Tung Do

Final Paper & Notebook review and hand-in Nick Greenway

Final Paper & Notebook review and hand-in Andrew Wesly

4.1 Contingency Plan

- In case of exorbitant pcb costs or a crunch for time the following contingency plan may be

executed to deliver on proposed Automotive Racing Video Data Logger.

- Replace FPGA IC, MAX9526 ADC IC, RS232 MODULE, and CONTROL switches with

Altera DE2 board.

- Modify power supply module to supply 9V to development board

- Connect ALFAT module to board, OBDII module to board

- Create TFT display connections

- Possibly implement JPEG2000 encoder/decoder.

- Frame rates may be as low as 1fps

62

References:

78SR 2 Amp Series, Murata, Mansfield, MA, 2009. [Online]. Available: http://www.murata-

ps.com/data/meters/mpm_78sr-2a_a00.pdf

ADV212, Rev. B, Analog Devices, Norwood, MA, 2010. [Online]. Available:

http://www.analog.com/static/imported-files/data_sheets/ADV212.pdf

ALFAT SoC Processor User Manual, Rev. 1.12, GHI Electronics, Macomb Township, MI, 2012.

[Online]. Available:

http://www.ghielectronics.com/downloads/ALFAT/ALFAT%20SoC%20Processor%20User%20Manual.

pdf

BT.656 Video Interface for ICs, Intersil, Milpitas, CA, 2002. [Online]. Available:

http://www.intersil.com/content/dam/Intersil/documents/an97/an9728.pdf

Charles A. Poynton, A Technical Introduction to Digital Video,

John Wiley & Sons, Inc., 1996, p. 175-176

Cyclone II Device Handbook, Volume 1, Altera, San Jose, CA, 2008. [Online]. Available:

http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf

Cyclone II EP2C35 PCI Development Board Reference Manual, Version 1, Altera, San Jose, CA, 2005.

[Online]. Available: http://www.altera.com/literature/manual/rm_pci_dev_bd_cyclone2_ed.pdf

Digilent Basys 2Board Reference Manual, Digilent, Pullman, WA, 2010. [Online]. Available:

https://www.digilentinc.com/Data/Products/BASYS2/Basys2_rm.pdf

ELM327, ELM, Toronto, [Online]. Available: http://elmelectronics.com/DSheets/ELM327DS.pdf

FS-K50DWN0-V1-F, Rev. 2, Kentec Display, 2011. [Online]. Available:

http://www.kentecdisplay.com/uploads/soft/Products_spec/K50DWN0-V1-F-01_KED_.pdf

IEEE Code of Ethics [Online]. Available: http://www.ieee.org/about/corporate/governance/p7-8.html

MAX9526, Rev. 3, Maxim Integrated, San Jose, CA, [Online]. Available:

http://datasheets.maximintegrated.com/en/ds/MAX9526.pdf

MPDTY Series, Murata, Mansfield, MA, [Online]. Available:

http://search.murata.co.jp/Ceramy/image/img/A14X/M07E1.pdf

NDTS Series, Murata, Mansfield, MA, 2012 [Online]. Available: http://www.murata-

ps.com/data/power/ncl/kdc_ndts.pdf

OBD-II UART [Online]. Available: https://www.sparkfun.com/products/9555

Recommendation ITU-R BT.601-5: Studio Encoding Parameters of Digital Television for Standard 4:3 and

Widescreen 16:9 Aspect Ratios, 1995. [Online]. Available:

http://www.intersil.com/content/dam/Intersil/documents/an97/an9728.pdf

63

Single Output LSN-10A Models, Murata, Mansfield, MA, 2009. [Online]. Available: http://www.murata-

ps.com/data/power/lsn10a-d5.pdf

Single Output LSN-W3 Models, Murata, Mansfield, MA, 2009. [Online]. Available: http://www.murata-

ps.com/data/power/lsn16a-w3.pdf

