
Parallelizable Algorithm for
Hyperspectral Biometrics

Team #1:
Christopher Baker, Timothée Bouhour,

and Akshay Malik

ECE 445 Senior Design
December 10th, 2012

Introduction

•  Hyperspectral imaging provides useful
biometric information that can be used to
uniquely identify a person

•  This is useful in applications such as facial
recognition for security systems or any
other application where a person needs to
be identified

Objectives

•  Demonstrate the validity of hyperspectral
biometrics as part of an improved security
system
– Motivated by prevention of global terrorism

and crime

•  Show the benefits of GPU processing in
dealing with hyperspectral data

Project Features

Feature
Extraction

Target
Identification

Door
Locking

Feature Extraction Algorithm

Feature
Extraction

Target
Identification

Door
Locking

Requirements

•  Data must be hyperspectral
•  Features are extracted correctly

– Within a 10% image dimension range

•  Databases are sufficiently and correctly
populated

Design decisions
Choice of bands for features

Algorithm Flowchart
Identify
features

Extract
positions

Pick N*N pixel
area

Store M
vectors per

pixel

•  Within 2% of
actual position in
34/36 subjects

•  Databases populated with 9*9 pixel regions around the
cheeks, lips, forehead, and hair

Verification
Left cheek x 285

y 248
Right
Cheek

x 382
y 249

Lips x 331
y 300

Forehead x 332
y 248

Identification Algorithm

Feature
Extraction

Target
Identification

Door
Locking

Requirements

•  Algorithm is capable of identifying a
person in the database

•  Algorithm should output top 5 matches in
order

•  Target should be in 5 top matches 50% of
the time

ID Algorithm Development
Initially designed & implemented serial
algorithm for benchmarking

ID Algorithm Development

•  Complete algorithm redesign from serial to
interface with GPU hardware
– Not originally planned
– Exploit thread parallelism
– Optimization for hardware memory constraints
– Exploit hardware operation concurrency

Final Algorithm Design

•  Flip the constant features loop to the
outside
– Achieve better data granularity
– Serialization is now of constant magnitude

•  Processing now done in multiple launches
of CUDA kernels
– Each kernel processes a single feature for a

group of database entries of optimized size

Final Algorithm Design

Final Algorithm Design

Final Algorithm Design -
Concurrency

Final Algorithm Design –
Memory Optimizations

•  5 buffers from host manually mapped into
device memory space for input speed

•  5 buffers from host manually mapped into
device memory space for outputs

•  Device constant memory sharing for target

Final Algorithm Design –
Fully Parallelized

Verifications
Sample of Program output

Verifications
Performance on database of 234 subjects

– 26 entries were searched for
– Other entries were randomly generated

Number	
 of	
 searches:	
 26	

Number	
 in	
 top	
 10	
 22	

Number	
 in	
 top	
 5	
 17	

Accuracy	
 (top	
 10)	
 84.62%	

Accuracy	
 (top	
 5)	
 65.38%	

Accuracy	
 (top	
 1)	
 19.23%	

Performance Benchmarking

•  Took timing data to find our speed-up
– Using “time” command from command line
– Generated “junk” databases of larger size

Performance Benchmarking

Results of our speed tests:

Database	

Size	

Avg.	
 Serial	

RunIme	
 (ms)	

Avg.	
 CUDA	

RunIme	
 (ms)	

Avg.	

Speedup	

26	
 325.2	
 124.34	
 2.62	

234	
 1066.2	
 321.80	
 3.31	

1000	
 5588	
 1197.46	
 4.67	

Feature
Extraction

Target
Identification

Door
Locking

Wireless Door Locking
Mechanism

Requirements

•  Receive and act on signals from the
computer

•  Engage motors when signals are received
•  Rotate the motors the correct amount

Design decisions

•  Arduino hosts a web server to receive data
•  Interface wirelessly from a computer
•  Output pins of the Arduino provide digital

highs and lows
•  Use 4 H-bridges to control the motors

 Wireless

Digital
Outputs
(5V, 30mA)

Motor
Outputs
(5V, 200mA)

Design

H-bridge Design

AI 1 AI 2 Motor control
Low Low None
Low High Reverse
High Low Forward
High High None

PCB Design

Verifications

Correct packet sent without
corruption

70-80% of the time

Correct packet interpretation 100% of the time

Arduino pin outputs 4.8V-5.1V at 30mA

H-bridge operation All motors run with 5V input

Motor rotation 3 second forward, 1 second
pause, 3 second reverse 100% of
the time

Summary

•  Feature Extraction Algorithm
– Fully meets functionality requirements
– Could move to more real world data
– Could improve feature region selection

Summary

•  Identification Algorithm
– Fully met accuracy requirements
– Would like to improve accuracy still
– Achieved good speed up

Summary

•  Wireless Door Locking Mechanism
– Meets most requirements
– Data packet corruption
– Would like to add automatic packet correction

Recommendations for Further
Work

•  Improve feature extraction algorithm
•  Complimentary sensor development
•  Do more in depth analysis on feature

choice
•  Develop more robust and secure locking

system communications

Questions

