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Introduction 

•  Hyperspectral imaging provides useful 
biometric information that can be used to 
uniquely identify a person 

•  This is useful in applications such as facial 
recognition for security systems or any 
other application where a person needs to 
be identified  



Objectives 

•  Demonstrate the validity of hyperspectral 
biometrics as part of an improved security 
system 
– Motivated by prevention of global terrorism 

and crime 

•  Show the benefits of GPU processing in 
dealing with hyperspectral data 



Project Features 

Feature 
Extraction 

Target 
Identification 

Door 
Locking 



Feature Extraction Algorithm 

Feature 
Extraction 

Target 
Identification 

Door 
Locking 



Requirements 

•  Data must be hyperspectral   
•  Features are extracted correctly 

– Within a 10% image dimension range 

•  Databases are sufficiently and correctly 
populated 

 



Design decisions 
Choice of bands for features 



Algorithm Flowchart 
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•  Within 2% of  
actual position in  
34/36 subjects 
 

•  Databases populated with 9*9 pixel regions around the 
cheeks, lips, forehead, and hair 

Verification 
Left cheek x 285 

y 248 
Right 
Cheek 

x 382 
y 249 

Lips x 331 
y 300 

Forehead x 332 
y 248 
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Requirements 

•  Algorithm is capable of identifying a 
person in the database 

•  Algorithm should output top 5 matches in 
order 

•  Target should be in 5 top matches 50% of 
the time  



ID Algorithm Development 
Initially designed & implemented serial 
algorithm for benchmarking 



ID Algorithm Development 

•  Complete algorithm redesign from serial to 
interface with GPU hardware 
– Not originally planned 
– Exploit thread parallelism 
– Optimization for hardware memory constraints 
– Exploit hardware operation concurrency 



Final Algorithm Design 

•  Flip the constant features loop to the 
outside 
– Achieve better data granularity 
– Serialization is now of constant magnitude 

•  Processing now done in multiple launches 
of CUDA kernels 
– Each kernel processes a single feature for a 

group of database entries of optimized size 



Final Algorithm Design 



Final Algorithm Design 



Final Algorithm Design - 
Concurrency 



Final Algorithm Design – 
Memory Optimizations 

•  5 buffers from host manually mapped into 
device memory space for input speed 

•  5 buffers from host manually mapped into 
device memory space for outputs 

•  Device constant memory sharing for target 



Final Algorithm Design –  
Fully Parallelized 



Verifications 
Sample of Program output 



Verifications 
Performance on database of 234 subjects 

– 26 entries were searched for 
– Other entries were randomly generated 

Number	
  of	
  searches:	
   26	
  
Number	
  in	
  top	
  10	
   22	
  
Number	
  in	
  top	
  5	
   17	
  
Accuracy	
  (top	
  10)	
   84.62%	
  
Accuracy	
  (top	
  5)	
   65.38%	
  

Accuracy	
  (top	
  1)	
   19.23%	
  



Performance Benchmarking 

•  Took timing data to find our speed-up 
– Using “time” command from command line 
– Generated “junk” databases of larger size 



Performance Benchmarking 

Results of our speed tests: 

Database	
  
Size	
  

Avg.	
  Serial	
  
RunIme	
  (ms)	
  

Avg.	
  CUDA	
  
RunIme	
  (ms)	
  

Avg.	
  
Speedup	
  

26	
   325.2	
   124.34	
   2.62	
  

234	
   1066.2	
   321.80	
   3.31	
  

1000	
   5588	
   1197.46	
   4.67	
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Requirements 

•  Receive and act on signals from the 
computer 

•  Engage motors when signals are received 
•  Rotate the motors the correct amount  



Design decisions 

•  Arduino hosts a web server to receive data 
•  Interface wirelessly from a computer 
•  Output pins of the Arduino provide digital 

highs and lows 
•  Use 4 H-bridges to control the motors 



  Wireless 

Digital 
Outputs 
(5V, 30mA) 

Motor  
Outputs 
(5V, 200mA) 

Design 



H-bridge Design 

AI 1 AI 2 Motor control 
Low Low None 
Low High Reverse 
High Low Forward 
High High None 



PCB Design 



Verifications 

Correct packet sent without 
corruption 

70-80% of the time 

Correct packet interpretation 100% of the time 

Arduino pin outputs 4.8V-5.1V at 30mA 

H-bridge operation All motors run with 5V input 

Motor rotation 3 second forward, 1 second 
pause, 3 second reverse 100% of 
the time 



Summary 

•  Feature Extraction Algorithm 
– Fully meets functionality requirements 
– Could move to more real world data 
– Could improve feature region selection 



Summary 

•  Identification Algorithm 
– Fully met accuracy requirements 
– Would like to improve accuracy still 
– Achieved good speed up 



Summary 

•  Wireless Door Locking Mechanism 
– Meets most requirements 
– Data packet corruption  
– Would like to add automatic packet correction 



Recommendations for Further 
Work 

•  Improve feature extraction algorithm 
•  Complimentary sensor development 
•  Do more in depth analysis on feature 

choice 
•  Develop more robust and secure locking 

system communications 



Questions 


