
1

ECE 445 Design Review

A Parallelized Algorithm for Hyperspectral

Biometrics

Christopher Baker

 Timothée Bouhour

Akshay Malik

2

Table of Contents Page No

I. Introduction

Overview / Motivation 3

Objectives 3

Functions 3

Benefits 3

Features 4

II. Design

High-Level Block diagram 5

High-Level Block Description 5

Algorithm Flowchart 6

Algorithm Flowchart Implementation 7

Door Locking Mechanism Block Diagram 12

Door Locking Mechanism Description 12

Door Locking Mechanism Wiring Diagram 13

Testing and Calculations 15

III. Schematics

PCB Board H-Bridge Circuitry 17

PCB Layout 18

Arduino Uno R3 19

Arduino Wireless SD Module 20

IV. Requirements and Verification

High-level Requirements, Verifications, and Testing Procedures 21

Hyperspectral Camera / Data 23

Computer / Algorithm 23

Door Locking Mechanism 23

PCB Circuit 25

Tolerance Analysis 26

V. Cost and Schedule

Cost Analysis 27

Schedule 29

VI. Ethical Considerations

IEEE Code of Ethics 31

Academic Honesty 31

VII. Citations

Sources 32

3

I. Introduction

Overview / Motivation

In the modern world unique person identification has become an increasing challenge,

central to strategies in combating terrorism and crime to provide global security. Recent research

has shown that hyperspectral imaging provides new and improved biometric data, which can be

leveraged to meet this challenge by examining features in different spectral bands.

Despite its promise, this method of identification still has some challenges, which must

be addressed before it can be applied in the real world. One of those challenges is dealing with

the massive amount of data that a hyperspectral sensor generates. We will be developing an

algorithm to solve this data processing problem based on GPU parallel processing. Our algorithm

will be scalable to allow it to be expanded and used as the technology develops into real world

application.

Objectives

 Our overarching goal in this project is to provide a high throughput processing back end

for biometric identification based on hyperspectral images of a person’s face. Our product will

be an algorithm coded and running on a GPU using the CUDA C programming language. Our

specific objectives include the following:

1. Determine which facial features work best for hyperspectral biometrics

2. Develop, code, and test an optimized parallel identification algorithm

Functions

We aim to provide a solution such that any hyperspectral camera can be used to collect

data. Once the data is formatted properly, we should then be able to identify the person in the

picture given that we have previous hyperspectral data from that person. The functions of our

final product include the following:

1. Identify a person against a database based on a hyperspectral image of their face

2. Match a hyperspectral image of a face against a database using a GPU

3. Efficiently store and access a database of hyperspectral images

4. Store various access levels for each individual in the database, and spin a certain

amount of motors to emulate the opening of doors based on access level when a

match is identified.

Benefits

Using our product will provide the customer with the following benefits:

1. Provide a better and more reliable way to recognize individuals

2. Provide processing for massive facial data input in near real time

4

3. Identify a face despite changes (mask, aging, plastic surgery, etc.)

4. Automate area security (locking/unlocking doors, alarms, etc.)

5. Provide a key tool for creating a more secure and controlled environment

6. Possible to provide target identification for military applications

Features

Our products features would include the following:

1. Accept hyperspectral image of a face as input

2. Lock/unlock doors wirelessly based on recognition

3. Ability to utilize GPU resources to achieve order of magnitude processing speed

advantages over simple CPU based algorithms

4. Efficiently store a database of subjects

5. Efficiently access database for comparison purposes

6. Efficiently scale to different sizes of system processing resources

7. Output the top five matches upon completion

While our product has many benefits, we feel that it is important to note here that we are

not going to be dealing with the sensor or automated preprocessing for input to our algorithm.

We are simply handling the backend processing, data basing, and notification challenges.

5

II. Design

High-level Block Diagram

Figure 1. High-level Block Diagram

High-level Block Description

Hyperspectral Camera

This module is responsible for collecting the hyperspectral information to be processed. We will

obtain preliminary data from a research group at Carnegie Mellon University
[1]

 and a research

group at Hong Kong Polytechnic University
[2]

. We also have a verbal commitment from

Raytheon to get direct access to a hyperspectral camera in their facilities and obtain data from

there. Although this module is an integral part of our design, we are not addressing its

development in the scope of this project. We are only going to use data that has been collected

with pre-existing systems. Therefore there is no lower-level description of this module.

Computer / Processing Algorithm

This module forms the bulk of our project. It utilizes a CPU, a GPU, and a database of

hyperspectral information from multiple subjects. A description of the functionality of this

module is given in the flow chart (Figure 2). The data contains an image of a person’s face and is

obtained from a hyperspectral sensor. It is in the form of varying intensities for different optical

bands varying from 400-1100nm (visible to near-infrared region). We will be identifying a set of

features whose hyperspectral information can uniquely identify a person. These features will be

automatically extracted from the data. The algorithm will then process this information and

compare it to an existing database. The algorithm will be developed using CUDA-C and

parallelized using a GPU. An ordered list of top 5 matches will be produced for every test image.

The door locking mechanism is engaged with the access level of the closest match. The access

level is a number between 0 and 4 for every entity in the database.

The processing Algorithm is further described in the flowchart and detailed description below.

The flowchart depicts how the algorithm will function. This is split into the feature ID algorithm,

which explains the steps to select the best features and the flow of obtaining hyperspectral data

from the pixels of these features, and the data comparison and processing algorithm that

compares this obtained data to a database.

Hyperspectral Camera Door locking mechanism Computer/Processing Algorithms

6

Door locking mechanism

This module will contain a wireless receiver and a microcontroller. These will interface with 4

motors through H-bridges. The microcontroller will control the H-bridges through its digital

output pins. Each individual in the database will have a generic clearance rating associated

between 0 and 4. When the algorithm is run, the best match and his or her clearance rating will

be output to the microcontroller through the wireless receiver. The microcontroller will then

output to the H-bridge circuits to spin 0, 1, 2, 3 or 4 motors, depending on the clearance rating.

(For example, a clearance 0 match opens 0 doors, but a clearance 3 match opens doors 1, 2 and

3). The motors will only spin for a determined amount of time to open the doors and then stop.

After 15 seconds, they will spin back in the opposite direction the same amount to close the

doors. The door locking mechanism is further described in a block diagram (Figure 6) and

description below.

Algorithm Flowchart

Figure 2. Algorithm Flowchart

Identify locations of main

features on image

(Feature ID algorithm)

Process comparison of

data against existing

database using recognition

algorithm

Engage door locking

mechanism according to

clearance of top match

Output a list of 5 top

matches in order.

7

Algorithm Flowchart Implementation

Feature ID Algorithm (Frist Block of Algorithm Flowchart)

The first part to development of the feature ID algorithm is to identify features, which can

be used for unique identification. Typical computer vision technologies use a set of

features from the eyes, forehead, nose, cheekbones, etc. This helps reduce the amount of

data that needs to be stored for each subject and for our purposes, helps create a more

parallelizable algorithm. The process behind selection of features would be to determine

the ease with which the comparison features can be selected and if a combination of these

features can uniquely identify a face. Past research papers
[13]

 have shown that skin tissues

like forehead, left cheek, right cheek, lips and hair are good choices for features to obtain

unique hyperspectral data. However features like eyes and lips might be easier to extract

and we can use them as geographic handles to extract these other features.

Once we determine which features are required, the next step is to figure out how to

extract these features from the data. The algorithm will map the position of these features

in the image. This will be done by geographically mapping the handler features like the

eyes and then creating distance vectors based on the relative positions of the other

features. We will select a square of N*N pixels around every comparison feature. This N

will scale by the pixel distance between the handler features. The N*N square will be

divided into M fixed number of blocks to use with the Mahalanobis algorithm as

described in the data comparison and processing algorithm. For each of these M blocks,

the spectral information from different bands of each pixel in the block, would be

averaged, normalized and stored. This is the data that needs to be written to a database for

each feature of every image: a set of M vectors, each vector containing average,

normalized spectral information across a certain number of pixels, for the various bands.

Before performing the data processing and comparison algorithm, we will use this

algorithm to populate our database with the required information to be stored for each

subject. We will then take an image to be recognized, run this algorithm on it to extract

the features, and then run the processing and comparison algorithm to look for matches in

the database.

8

Feature ID Flowchart

Figure 3. Feature ID Algorithm Break Down

Data Comparison and Processing Algorithm (Second Block of Algorithm Flowchart)

After taking the input data and processing it to extract sets of vectors describing relevant

features, the data is passed to the Data Comparison and Processing algorithm, which is

responsible for comparing the input image to the database and finding the closest match.

The flowchart below (figure 4) describes the process of comparison used here.

Essentially, we will be running a comparison of every database entry (a set of unique

identifying features for a person) against our target data set in a feature-by-feature

manner.

Identify features for

unique recognition

Identify features which

can be extracted easily

and the distance between

these can be used to map

the locations of the

required features on the

face

Pick an area of N*N pixels

around each feature

Store a set of M vectors

derived from the N*N

square to the database; or

use for comparison against

the database

9

Looking at figure 4, we begin to notice already that this process lends itself nicely to

parallelization since it contains nested loops, which do not have any conflicting

read/write operations. Additionally, each operation preformed by these loops uses a

constant and overlapping data set, which means that we can optimize device memory

bandwidth to let us make the most use GPU processing power. It should be noted,

however that we will likely opt to parallelize only the inner of these two loops and focus

instead on the core comparison operation (a series of Mahalanobis distance

calculations
[12]

) which lends itself even more optimally to parallelization (see figure 5 and

preceding text).

 Data Comparison and Processing Flowchart

Figure 4. Data Comparison and Processing Breakdown

10

The Mahalanobis distance calculation
[12]

 rests at the core of our data comparison and

processing algorithm. This calculation assigns a distance between a set of vectors where a

greater distance leads to a lower probability that the vectors are a reading of the same

point. For each feature in our database entries and target, there is some number of

normalized vectors M comprised of the average of groups of pixels read in by the feature

ID algorithm (see previous section for description). We will use a Mahalanobis distance

calculation to compare each vector from an individual feature on the target and its

corresponding database entry feature (leading to M
2

calculations). From these

calculations, we will find the two vectors with the shortest distance between the target

and the entry and use this distance as our feature distance. This practice is to account for

slight variations in selection of the feature area in the feature ID algorithm. We attempt to

get somewhat consistent distance results between sampling a single subject by using this

approach. Please see figure 5 for the calculation breakdown.

In examining figure 5, one will notice that once again, the algorithm presented here lends

itself very nicely to parallel processing. The nested loop structure here will be fully

parallelized, and since the calculations use each vector many times, loading them to the

GPU device shared memory should allow us to optimize memory bandwidth usage in

data transfer between the GPU and the host RAM. One challenge that will arise here will

be storing the minimum of the computed distances. It is likely that we will simply create

an array and export the task of selecting the lowest value from the array to the host

processor, which runs quickly in single thread operation.

It should be noted here that our comparison algorithm is based on parallelizing the

algorithm presented in the paper “Face Recognition in Hyperspectral Images”
[13]

 and

adding in functionality to select features by automation and machine vision rather than by

hand. We will be optimizing implementation for speed and accuracy.

Once we have completed all of our distance calculations and found the minimum sum of

Mahalanobis distances for the closest database entry to the target, we will make a list of

the top 5 matches for every image. The correct image should be in the top 5 at least 50%

of the time.

Testing and Training Databases

We will have at least 2 images of each person depending on the databases we are able to

get access to. Depending on the size of our database we will use at least 5(total database

size<30) to half (total database size>50) of total images for just testing and training

purposes. The remaining images will not be tested or trained on until demo day. On demo

day, we will load one set of the unused pictures into the database and perform the

comparison with the other set.

Engaging The Door Lock (Algorithm Flowchart Following Second Block)

All entities in the database will be assigned a number from 0-4 depicting access levels.

Depending on the access level of the closest match the doors will be opened by rotating

11

the required motors. Access level 0 will not open any doors, access level 1 will open door

1, access level 2 will open doors 1 and 2 and so on.

Feature Distance Calculation Flowchart

Figure 5. Feature Distance Calculation Breakdown

12

Door Locking Mechanism Block Diagram

Figure 6. Door Locking Mechanism Block Diagram

Door Locking Mechanism Description

The door locking mechanism operates with these major components: A 9V power supply, an

Arduino Uno R3, a wireless interface (Arduino Wireless SD Shield), the computer wireless

module, a 12V power supply, a PCB containing 4 H-bridges, and four motors, each linked to one

H-bridge on the PCB.

The 9V power supply powers the transistor circuit and Arduino. The Wireless SD module is

powered through the Arduino (the Arduino plugs right into it). The motors and PCB are both

powered by a 12V power supply, with the motors powered through the PCB’s H-bridges.

The motors are controlled through the Arduino, which will output digital signals to the relevant

H-bridges based on which motors need to be powered. For each motor, the Arduino can enable a

forward and backward output. The H-bridges translate these two outputs into an operation on the

motors to drive it forwards or backwards. Please refer to the H-bridge schematic (figure 9) in the

13

Schematics section for a description of the H-bridge functionality. The calculations needed for

the selection of parts are listed in the Testing and Calculation section.

The Arduino we are using is an Arduino Uno R3. It is integrated with an Arduino Wireless SD

Shield that connects to the computer through an Ad-Hoc wireless network to allow user and

program input. The Arduino is programmed to do the following:

1) By default, keep the digital outputs 0-7 to low so the motors do not spin.

2) If the Wireless SD Shield receives an unlock signal for any motor, the Arduino should read

the access level. Based on this access level, enable the forward operation digital output for

required motors (0 access: no motors, 1 access: motor 1, 2 access: motors 1 and 2, etc.) Enable

digital output 0 for motor 1, 2 for motor 2, 4 for motor 3, and 6 for motor 4.

3) After 3 seconds, the Arduino will disable any running motor. The locks will then be

considered “unlocked”.

4) The Arduino will then wait for 15 seconds, and then spin the same motors backwards for

precisely 3 seconds to lock the doors.

Door Locking Mechanism Wiring Diagram

The door locking mechanism has previously been explained. This is a wiring diagram with pin

numbers for each chip and connections. The Arduino board does not have pin numbers; it has pin

names as shown on the photo below (Figure 7).

Figure 7. Photo of the front of Arduino Uno R3
[3]

14

Figure 8. Wiring Diagram of the Door Locking Mechanism

The Digital outputs pins 0-7 of the Arduino Uno R3 go into the pins demonstrated by Figure 8 in the

PCB. The PAD1 and PAD2 outputs from the PCB go into + and – of Motor1, PAD3, PAD4 outputs go

into Motor 2, PAD5, PAD6 outputs into Motor 3 and PAD7,PAD8 outputs into Motor 4. The Arduino

Uno R3 plugs straight into the wireless SD shield. The 12V power supply plugs into the PCB board to

power the H bridge, through ports JP6 and JP7.

Testing and Calculations

Power Supply Calculations

The Arduino is powered by 6-20V DC (recommended 7-12V). This means that a 9V power

supply is adequate to power our circuit.

PCB H-bridges Calculations

Calculations

For the Individual NMOS and PMOS FETs:

N Channel MOSFET – Si2300DS

Vt ~ 1.16volts at 25 degrees Celsius

Vg = 0 or 12volts (amplified signal from Arduino

board)

JP1 PAD1
JP4 PCB Inputs PAD2
JP5 PAD3
JP8 PAD4
JP9 PAD5
JP12 PAD6
JP13 PAD7
JP16 PAD8

JP6
JP7

 Output Pin
Arduino UNO R3 0
Digital Outputs 1
 2
 3
 4
 5
 6
 7

12V Power Supply 12V
 Outputs GND

 + Motor1
 -
 + Motor2
 -
 + Motor3
 -
 + Motor4
 -

Arduino Wireless SD Shield.

15

Vs = Ground = 0volts

When Vgs > Vt NMOS is active

When Vgs < Vt the NMOS is in cutoff

When Vg is high:

Vgs = Vg – Vs = 12volts

Vds ~ 0

When Vg is low:

Vgs = Vg – Vs = 0volts

Therefore the NMOS is in the cut off state when Vg is low and active when Vg is

high.

P Channel MOSFET – Si2307CDS

Vt ~ -.1volts at 25 degrees Celsius

Vs = Vcc = 12volts (amplified signal from Arduino

board)

Vg =0 or 12volts

When Vgs > Vt the PMOS is active.

When Vsg < Vt the PMOS is off.

When Vg is high:

Vsg = 12-12 = 0 volts

When Vg is low:

Vgs = 12 – 0 = 12 volts

Therefore the PMOS is in the cutoff region when Vg is high and in the active

region when Vg is low.

Since our PCB contains four repetitions of the same circuit, we can analyze one H-bridge motor

control unit and extrapolate the functionality of our entire circuit given that our power source is

capable of outputting enough current.

For the single upper left H-bridge (from Figure 9):

When both Arudino inputs are low (JP1 low, JP4 low):

NMOS IC17 and NMOS IC23 will be in cutoff state causing a high voltage to be

applied to PMOS IC1, PMOS IC3, NMOS IC2, and NMOS IC4. Both PMOS will

now act as opens since their gate and source voltages are equal. The two NMOS

not being directly driven by the Arduino will become active with the 12V gate

16

voltages and connect ground to both PAD 1 and PAD 2 (across the motor would

be connected). This results in the motor not moving.

When the first Arduino input is high and the second is low (JP1 high, JP4 low):

NMOS IC17 will be in the active state resulting in a gate voltage of 0 for PMOS

IC1 and NMOS IC2. NMOS IC23 will be in the cutoff state which will result in a

12v gate voltage for PMOS IC3 and NMOS IC4. This combination of gate

voltages will result in PMOS IC1 and NMOS IC4 being active with NMOS IC2

and PMOS IC3 in cutoff. This will cause voltage to be applied across the motor

and current flowing through the motor will cause it to spin. We have chosen to

use a motor with a generous range of operating voltages (5 to 16) so falling inside

this range is not a problem.

When the first Arduino input is low and the second is high (JP1 low, JP4 high):

This will be the same as for the last case, except the current will be applied in

reverse and cause the motor to spin in the opposite direction. NMOS IC17, PMOS

IC1, and NMOS IC4 will all be in cutoff. NMOS IC23, PMOS IC3, and NMOS

IC2 will all be active.

When both Arduino inputs are high (JP1 high, JP4 high):

NMOS IC17 and NMOS IC23 will be active resulting in low input voltages for

both PMOS and the two NMOS IC2 and NMOS IC4 being. The two PMOS will

both be active while IC2 and IC4 will be in cutoff. This results in an even voltage

on either side of the motor and no movement.

17

III. Schematics

PCB Board H-bridge circuitry

Figure 9. PCB Board Schematic

The PCB H-bridge circuit is set up to run the motors based on the inputs from the Arduino.

- JP6 is the VCC connection that comes from the 12V power supply. JP7 is the ground,

also coming from the ground of the 12V power supply.

- JP1, JP5, JP9, and JP13 are connected to the forward-enable outputs from the Arduino

pins 0, 2, 4 and 6 for motors 1, 2, 3, and 4 respectively.

- JP4, JP8, JP12, and JP16 are connected to the reverse-enable outputs from the Arduino

digital output pins 1, 3, 5 and 7 for motors 1, 2, 3, and 4 respectively.

- PAD1 and PAD2 are the voltage + and – for motor 1 respectively, PAD 3 and PAD4 for

motor 2, PAD5 and PAD6 for motor 3, PAD7 and PAD8 for motor 4.

- IC1, IC3, IC5, IC7, IC9, IC11, IC13 and IC15 are PMOSs with IN as source and GND as

drain and IC2, IC4, IC6, IC8, IC10, IC12, IC14, IC16, IC17, IC18, IC19, IC20, IC21,

IC22, IC23 and IC24 with IN as drain and GND as source.

The H-bridge consists of 2 PMOS and 2 NMOS transistors. The circuit also contains an NMOS

transistor per input. This is because the inputs to the PMOS and NMOS on one side are pulled up

to 12V when the input from the Arduino is 0V and they’re ~0V when the input coming from the

Arduino is 5V due to the high drop of voltage across the 10kohms resistors. Thus, when for

example JP1 is high, the inputs to the PMOS and NMOS on the left side of the first H-bridge

would be low, and vice versa.

18

In the H- bridge, the ones on the upper left(IC1-PMOS1) and the lower left(IC2-NMOS1) have

the same input (input 1) while the ones on the lower right(IC4-NMOS2) and upper right (IC3-

PMOS2) share a common input (input 2). When input 1 is high(12V) and input 2 is low(~0V),

PMOS2 and NMOS1 are conducting and PAD1 output turns to low and PAD2 output turns to

high. This makes the motor rotate in reverse. When input 2 is high(12V) and input 1 is

low(~0V), NMOS2 and PMOS1 are conducting and PAD1 output turns to high and PAD2 output

turns to low. This translates to the following truth table:

JP1 JP4 PAD1 PAD2 Motor

operation

0 0 0 0 Stop

0 1 0 1 Reverse

rotate

1 0 1 0 Forwards

rotate

1 1 1 1 Stop

PCB layout

Figure 10. PCB Layout

This is the layout used to create the PCB board.

19

Arduino Uno R3 Schematic

Figure 11. Arduino Uno R3 Schematic
[5]

The Arduino schematic is used for reference purposes only to obtain pinning options. The

Arduino Uno
[6]

 is a microcontroller with “14 digital input/output pins (of which 6 can be used as

PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a USB connection, a power jack, an

ICSP header, and a reset button”. It operates at a voltage of 5V, and has an input Voltage range

of 6-20V with a recommended input of 7-12V. The digital I/O pins output a current of 40mA and

the 3.3V pins output a current of 50mA. There is 32KB of flash memory available, 2KB of

SRAM, 1KB of EEPROM and the clock speed is 16 MHz. This available memory is more than

sufficient for the purposes of our program which we estimate will require under 150 lines of

code, thus using only a fraction of the approximate 300,000 that the memory on the Arduino

provides.

20

Arduino Wireless SD Shield Schematic

Figure 12. Arduino Wireless SD Shield Schematic
[7]

The Arduino Wireless SD shield
[8]

 allows an Arduino board to plug right into it and interact

wirelessly with any wireless device. The range on the wireless is up to 100 feet indoors and up to

300 feet outdoors (with line of sight). We plan on limiting our device to a functional 25-30 feet,

so this range is more than adequate for that purpose. The Wireless Shield is used as a

replacement for the serial/USB input of the Arduino board in our design.

21

IV. Requirements and Verification

High-Level Requirements, Verifications, and Testing Procedures

For the sake of academic integrity, all verifications must be run and passed with the demo

database and not the training database used for our own tests.

Block Requirement Verification

Hyperspectral camera

data

Data must be hyperspectral

- Wavelength of data

between 400 and 1200

nanometers.

- Intensity information is

present in different

bands.

- Testing Procedure: Plot a sample

of the data with reflectance as a

function of wavelength. Ensure

that the data has intensity

information present across a

range of at least 300nm of

wavelengths between 400 and

1200nm.

Hyperspectral camera

data

Data can be recognized by the

computer

- Data is in a file format

readable by the Linux

operating system

- Data can be read and

used by a CUDA

program

- Testing procedure: Write a

simple CUDA program that

opens a file from the data’s

format, reads the content of that

file and prints these contents in

any form to the screen.

Computer / Algorithm Databases are sufficiently and

correctly populated.

- Each database (testing

and demo) has at least

20 unique entries.

- Each entry has

hyperspectral intensity

information for each

feature.

- Each Database includes

at least 50 total entries

including automated

generated data.

- Testing Procedure: Open each

database on the computer. For

each database:

- Use the computer’s database

software to output the total

number of elements and ensure it

is greater than 50.

- Also output the number of

unique elements and ensure it is

greater than 20.

- Finally, run a database query to

output the number of elements

with incomplete fields. Ensure

that this returns 0.

Computer / Algorithm Features are extracted correctly - Testing procedure: run the

following test 5 times: (need 4

positive results)

- Input a hyperpectral image to

the algorithm. Pre-identify

locations of comparison and

handler features to be extracted

by the algorithm. Use print

22

statements in the code to output

the algorithm’s identified

location of these features. Verify

that handler and comparison

features identified by the

algorithm are within a 10% of

image dimension range from the

pre-identified locations.

Computer / Algorithm Comparison of a new picture of

an individual with an old,

existing picture in the database

of the same individual under

similar lighting/orientation

conditions should ideally yield

that individual as best match

- Testing Procedure: Run the

following test 10 times:

- Obtain two hyperspectral images

of an individual with the same

facial orientation and lighting.

Place one in the database, with at

least 19 other unique photos also

in the database. Run the second

test image with the program.

Make sure the right photo is

selected in the top 5 at least 50%

of the times.

Computer / Algorithm The door locking mechanism

gets the required information

from the wireless packet for the

access level of the top detected

match.

- Testing Procedure: Pass through

20 photos to test.

- Run the algorithm with an image

that exists in the database. Use a

print statement in the code to

output the user’s access level to

the screen. Make sure the correct

motors have rotated based on the

access level.

Computer / Algorithm The algorithm should output its

top 5 matches in order and the

subject numbers of the people

associated with them. The target

should be in those top 5 matches

50% of the time.

- Testing Procedure: Output the

subject number of the target.

Output the subject numbers of

the people associated with the top

5. Use an indicator on the screen

to indicate if the target is in the

top 5 or not.

Door Locking

Mechanism

The door locking mechanism

must properly receive positive

signals from the computer

block.

- Testing Procedure: Write the

Arduino with a simple program

that outputs a 5V voltage to pin 1

when a signal is received. Send

the signal through the computer,

use a voltmeter at pin 1 to verify

the voltage switches to 5V.

23

Door Locking

Mechanism

If a positive signal is properly

received from the Computer

Block, the door locking

mechanism must engage the

motors

- Testing procedure: Pass a signal

corresponding to each access

level to the door locking

mechanism; ensure that the

proper motors rotates any

amount.

Door Locking

Mechanism

The motors must rotate the

correct amount
- Testing Procedure: Pass an

image that exists in the database

with security level 4. Ensure that

all four motors rotate for 3

seconds in one direction, stop,

wait for 15 seconds, and rotate

for 3 seconds in the other

direction.

Hyperspectral Camera / Data

Due to the nature of this block, no further breakdown in verification is required. If all high-level

requirements are met by the data we use, it will ensure proper functioning of this block in the

overall design. No lower-level requirements can be identified.

Computer / Algorithm

The algorithm must perform as declared by the high-level requirements. An additional

breakdown of requirements is possible using the flowchart to step through the algorithm by

functional component. To avoid redundancy, refer back to the blocks in figures 2 through 5. The

test procedure will simply be passing in a test input with a known output and verifying proper

output for each code block.

Door Locking Mechanism

The door-locking mechanism is composed of two Power Supplies, A PCB board with 4 H-

bridges, the Arduino Uno R3 microcontroller, the Arduino Wireless SD Shield, and four electric

motors. Below are detailed the requirements for all of these Components. All voltage checks

must be true with a 20% lenience each way.

Block Requirement Verification

Arduino Uno R3 The Arduino Uno R3

microcontroller must turn on,

turn off, and be reprogrammable

- Testing procedure: Turn on the

Arduino, make sure the power

LED turns on, turn off the

Arduino.

- Program the Arduino to output

5V in pin 5, and output 2V in pin

24

6. Check voltages with

multimeter.

Arduino Uno R3 The Arduino Uno R3 must

consistently output a high signal

and low signal through the I/O

pin when desired.

- Testing procedure: program the

Arduino to output 5V for 10

seconds at pin 5, and 0V for 10

seconds alternatively (square

wave). Ensure with a oscilloscope

at pin 5 that the correct wave is

produced.

Arduino Wireless SD

Shield

The wireless SD shield must

connect to the computer and be

able to receive signals from it

and pass these signals through

to the Arduino.

- Testing procedure: write a

simple program that sends a

signal to the board. Program the

Arduino to output 5V at pin5

when that signal is received, 0V if

it is not. Probe pin5 and run the

program, make the reading

switches between 0V and 5V.

Motors The motor should rotate in the

correct direction when the

inputs are applied to it.

- Testing Procedure: Apply a high

voltage (9V) at Pad1 and 0V at

Pad2 using multimeter. The

motor connected should rotate in

the ‘forward’ direction. On

switching the inputs to Pad1and

Pad2, it should rotate in the

reverse direction

PCB H-bridges The H bridge must output the

correct voltages to the motor it

is connected to according to the

2 input signals

- Testing Procedure: Apply a high

voltage (5V) at JP1 and 0V at

JP4. The output at Pad1 should

be high and at Pad2 should be

low. On switching the inputs to

JP1 and JP4, the outputs should

now reverse.

9V Power Supply

The power supply must provide

adequate power of 9V to the

Arduino.

- Testing Procedure: Set the power

supply to output 9V. Ensure that

over a period of 2 minutes the

power supply does output 9V

with up to 10% fluctuation using

a voltmeter.

25

12V Power Supply

The power supply must provide

adequate power of 12V to the

PCB.

- Testing Procedure: Set the power

supply to output 12V. Ensure

that over a period of 2 minutes

the power supply does output

12V with up to 10% fluctuation

using a voltmeter.

PCB circuit

Block Requirement Verification

PMOS

The transistor should operate

correctly when the right biases

are applied.

- Testing Procedure: Apply

JP1=0V. Hook up an LED from

PAD1 to ground via a 500ohm

resistor. If the LED lights up

when JP1=0V, and turns off

when JP1=5V, the PMOS

transistor is working fine.

PMOS and NMOS

circuit

The transistors should operate

correctly when the right biases

are applied.

- Testing Procedure: Apply

JP1=5V and JP4=0V. Hook up a

bidirectional LED between PAD1

and PAD2 with a 500ohm

resistor. If the LED lights up red,

and green when JP1=0V and

JP4=5V, the network is working

fine. Apply JP1=5V and JP4=5V,

and JP1=0V and JP4=5V. The

LED should not light up in both

cases.

Resistor The resistor must be within the

required range from its desired

resistance

- Testing Procedure: Use an

Ammeter to test the resistance of

the resistor. Ensure that it is

within 10kohm+-10%.

Connectivity Testing All wires on the PCB should be

connected properly.
- Testing Procedure: Do a

resistance probe with an ohm

meter. Make sure the resistance

is less than 20 Ohms between

things that are supposed to be

connected, and above 1 MOhm

between things not supposed to

be connected according to Figure

9.

26

Tolerance Analysis

Computer / Algorithm

We will run our algorithm with the data we have from actual hyperspectral images as well as

automatically generated data for speed testing purposes (it is not possible for us to get a very

large data set on the order of hundreds or thousands of subjects). Two major components affect

the performance of our system the most, both related to the algorithm.

The first component is accuracy. The testing procedure for this would be to run hyperspectral

images against the database. The requirement is a minimum of 20 subjects, each with an existing

image in the database and a different image for testing, and a minimum of 180 other database

entries (automatically generated). In these conditions, the algorithm should correctly have the

subject in the top 5 matches at least 50% of the time.

The second component is speed. Because we are developing a basic parallel algorithm, the speed

of the algorithm using a GPU should be greater than when using the CPU. Thus, we will run the

algorithm on the computer without the utilization of the GPU and compare it to the speed with a

GPU. To obtain a good benchmark, we will use automatically generated data in addition to our

obtained data to produce a large enough data set.

Door Locking Mechanism

The voltages and currents must be fairly constant throughout in the door locking mechanism. We

can assign a 20% tolerance to the 5V output of the Arduino, a 20% tolerance to the power supply

voltage since a wide range of voltages can power the Arduino, a 20% tolerance in the voltage

output from the power supply to the H-bridge and a 10% tolerance in the resistance of the

resistors. Our selected motor can operate from 5-16V. The 12V power supply should be capable

of sinking at least 1A of current to provide ample power to turn on and power our motors. Each

motor has a starting current of 198mA of current according to the specification sheet and draws a

minimum of 15mA.

27

V. Cost and Schedule

Cost Estimates:

We expect our main costs aside from labor to come from additional data collection in this project

and building a computer dedicated for testing our algorithm. We expect our total project cost not

including labor to be significant, but we will be receiving sponsorship from Raytheon Space and

Airborne Systems. Our current plan is to travel to California and use one of Raytheon’s labs and

sensor setups to collect our data.

Labor:

Name Rate/Hour Overhead(x2.5) Hours* Total

Chris $45 $112.5 240 $27,000

Timothee $45 $112.5 240 $27,000

Akshay $45 $112.5 240 $27,000

 Total Labor Cost: $81,000

*Assuming a 12 hr. work week for 12 weeks

Parts:

* = Financial support expected from Raytheon SAS via the university

** = Support expected in kind directly from Raytheon SAS

Door Locking Mechanism

Part/Service Quantity Cost Estimate Potential Supplier Total

Arduino Uno R3

Microcontroller*

(1)

1 $23.76 Amazon $23.76

Arduino Wireless

SD Shield (2) *

1 $25.95 Amazon $25.95

NMOS Transistors

(3)

20 $0.5 Digikey $10

PMOS Transistors

(4)

10 $.6 Digikey $6

500ohm resistors 10 $.5 ECE Parts shop $5

Bidirectional LEDs 5 $.50 ECE Parts Shop $2.50

10kohm resistors(5) 25 $.334 Digikey $8.35

Motors (5) 5 $6.44 Digikey $32.20

 TOTAL: $113.76

28

(1) http://www.amazon.com/Arduino-Rev-3-Uno-

R3/dp/B006H06TVG/ref=pd_bxgy_pc_text_y

(2) http://www.amazon.com/Arduino-Wireless-SD-

Shield/dp/B006RATC2E/ref=sr_1_1?ie=UTF8&qid=1349059529&sr=8-

1&keywords=arduino+wifi+shield

(3) http://www.vishay.com/docs/65701/si2300ds.pdf

(4) http://www.vishay.com/docs/68768/si2307cd.pdf

(5) http://www.digikey.com/product-detail/en/1622796-6/A105970CT-ND/3477555

(6) http://www.nmbtc.com/pdf/motors/MXN12.pdf

Computer Platform for Running Algorithm

Part/Service Quantity Cost Estimate Potential Supplier Total

Mother Board* 1 $110 Newegg.com $110

8G Ram* 1 $50 Newegg.com $50

i5 CPU* 1 $250 Newegg.com $250

Nvidia GPU* 1 $1100 Newegg.com $1000

Case* 1 $100 Newegg.com $100

Hard Drive* 1 $200 Newegg.com $200

 TOTAL: $1710

Additional Data Collection (The current plan is for the team to travel to California where

Raytheon has sensors in place that we can use cheaply rather than deal with shipping

costs and risks etc. We will attempt to estimate the value of contributions here.)

Part/Service Quantity Cost Estimate Potential Supplier Total

Lab Usage** 1 $2000 Raytheon SAS $2000

Technician labor

time**

1 $1000 Raytheon SAS $1000

Plane travel to and

from site *

3 $500 Raytheon SAS $1500

Hotel* 3 $150 Raytheon SAS $450

Food during

travel*

1 $600 Raytheon SAS $600

 TOTAL: $5550

TOTAL PARTS COST = $5550+$113.76+$1710 = $7373.76

TOTAL COST = $81000 + $7373.76 = $88373.76

http://www.vishay.com/docs/65701/si2300ds.pdf
http://www.vishay.com/docs/68768/si2307cd.pdf
http://www.digikey.com/product-detail/en/1622796-6/A105970CT-ND/3477555
http://www.nmbtc.com/pdf/motors/MXN12.pdf

29

Raytheon will directly fund the computer hardware, door locking mechanism hardware

and costs of trip for data collection. This amounts to a total direct funding of $4646.

Raytheon will indirectly fund the costs of lab and technician during the data collection

trip.

In case of unforeseen circumstances, our total necessary parts cost is only for the door

locking mechanism. The processing requirements can be met by utilizing personal and

university computing resources. We can use data from the Hong Kong Polytechnic

University and Carnegie Mellon University to compensate for collection of data, and we

will still be able to have a functional product.

Schedule

Week Chris Baker Tim Bouhour Akshay Malik

9/16 Work on proposal.

9/23 Design Review:

Recognition algorithm

design lead. Aid with

lock mechanism, feature

ID algorithm, and

system level

development. Obtain

data sets.

Design Review: Lock

mechanism design lead.

Aid with recognition

algorithm, feature

algorithm, and system

level development.

Design Review:

Feature ID algorithm

design lead. Aid with

recognition algorithm,

system level design,

and lock mechanism

development.

9/30 Edit Design Review.

Follow up on obtaining

data sets.

Edit Design Review. Edit Design Review

10/7 Begin Purchasing Parts.

By Friday make

decision based on status

of Raytheon funding and

purchasing.

Research best features

for recognition. Begin

work on parallel

recognition algorithm

implementation focusing

on feature reference

points. Finish acquiring

data type.

Begin Purchasing Parts.

By Friday make

decision based on status

of Raytheon funding and

purchasing.

Research into

processing data into a

uniform format.

Research best features

for recognition. Begin

Research into feature ID

algorithm.

Begin Purchasing Parts.

By Friday make

decision based on

status of Raytheon

funding and

purchasing.

Research wireless

communication

between the lock and

computer. Begin

research into feature ID

algorithm.

10/14 Finish acquiring all

parts. Work on parallel

recognition algorithm

development. Research

into accounting for data

source variation based

Finish acquiring all

parts. If needed,

assemble computer.

Install Linux operating

system and programs

needed for development

Finish acquiring all

parts. Construct lock

assembly. Set the lock

successfully from

computer. Work on

feature ID algorithm

30

on light and other

factors.

in C++, CUDA C, and

MATLAB.

Help Construct lock

assembly.

implementation.

10/21 Individual Project

Report. Continue coding

of parallel recognition

algorithm. Support

debugging of feature ID

algorithm.

Individual Project

Report. Set up database

with hyperspectral data.

Work on feature ID

algorithm

implementation.

Research into

accounting for data

source variation based

on light and other

factors.

Individual Project

Report. Help set up

database.Work on

feature ID algorithm

implementation.

Research into

accounting for data

source variation based

on light and other

factors.

10/28 Finish Debugging feature ID recognition algorithm. Work on parallel

recognition algorithm implementation.

11/4 Finish parallel

recognition algorithm

implementation.

Finish parallel

recognition algorithm

implementation. Focus

on integration of

database.

Finish parallel

recognition algorithm

implementation. Focus

on integration of

feature ID algorithm.

11/11 Write serial version on parallel recognition algorithm and run speed

comparison test against parallel algorithm.

11/18 Work on presentation/ compare performance further between serial and

parallel/ make optimization tweaks.

11/25 Tentative on site data collection in Raytheon SAS labs/ format data to be

accepted by feature ID algorithm /testing and debugging of algorithms

12/2 Further systems integration and test including lock hardware; debugging.

Final Systems tweaks/ demo/ presentation/ final report.

12/9 Schedule Buffer/ finish report.

31

VI. Ethical Considerations

IEEE Code of Ethics

The first pledge of the IEEE code of ethics is to “to accept responsibility in making decisions

consistent with the safety, health, and welfare of the public, and to disclose promptly factors that

might endanger the public or the environment;” Our project follows this pledge by creating a

technological solution that can increase public safety in a variety of applications (crime fighting,

security checkpoints, counter-terrorism).

The third pledge of the IEEE code of ethics is to “to be honest and realistic in stating claims or

estimates based on available data;” Our project embodies this by clearly stating the limits and

range of our end result, as well as clearly defining the scope of available data and making our

claims accordingly.

The ninth pledge of the IEEE code of ethics states “to avoid injuring others, their property,

reputation, or employment by false or malicious action;” In this project, we recognize the

potential for harm due to false alarms. Therefore, we have set up a clear percentage of accuracy

to nuance the credibility of our efforts and clearly identify the limits and imperfection of our

tool. This will help avoid any incorrect matches leading to endangering others or their

reputations.

Academic Honesty

We pledge to uphold the strictest standards of academic honesty; to not take credit for the work

of any others, clearly state sources, and give credit where credit is due.

To maintain integrity of results, we will have at least 2 images of each person depending on the

databases we are able to get access to. We will have separate databases for training and demoing.

The demo images will not be tested or trained on until demo day. On demo day, we will load one

set of the unused pictures into the database and perform the comparison with the other set. No

training images will be used for verification or demoing.

32

VII. Citations

Sources

[1] Louis J. Denes, Peter Metes, and Yanxi Liu, "Hyperspectral Face Database," tech. report

CMU-RI-TR-02-25, Robotics Institute, Carnegie Mellon University, October, 2002

[2] Wei Di, Lei Zhang, David Zhang, and Quan Pan “Studies on Hyperspectral Face Recognition

in Visible Spectrum with Feature Band Selection” IEEE Trans. on System, Man and Cybernetics,

Part A, vol. 40, issue 6, pp. 1354 – 1361, Nov. 2010

[3] Photo of the front of the Arduino Uno R3

http://arduino.cc/en/uploads/Main/ArduinoUno_R3_Front.jpg

[4] Bashford, Anthony J. Patent: Electric Strike Assembly. 04/05/2005.

http://www.freepatentsonline.com/6874830.html

[5] Image: Arduino Uno R3 schematic. http://arduino.cc/en/uploads/Main/Arduino_Uno_Rev3-

schematic.pdf

[6] Arduino Uno R3 official reference page. http://arduino.cc/en/Main/ArduinoBoardUno

[7] Arduino Wireless SD Shield schematic.

http://arduino.cc/en/uploads/Main/arduino_WirelessShield_SD_v3-schematic.pdf

[8] Arduino Wireless SD Shield official reference page.

http://arduino.cc/en/Main/ArduinoWirelessShield

[9] Open CV for image processing: http://opencv.willowgarage.com/wiki/

[10] H bridge: http://en.wikipedia.org/wiki/H_bridge

[11] Sedra, Adel S., and Kenneth Carless. Smith. Microelectronic Circuits. New York: Oxford

UP, 1998. Print.

[12] Description of the Mahalanobis Distance Calculation:

http://en.wikipedia.org/wiki/Mahalanobis_distance

[13] Zhihong Pan; Healey, G.; Prasad, M.; Tromberg, B.; , "Face recognition in hyperspectral

images," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.25, no.12, pp.

1552- 1560, Dec. 2003

http://opencv.willowgarage.com/wiki/
http://en.wikipedia.org/wiki/H_bridge
http://en.wikipedia.org/wiki/Mahalanobis_distance

