Electric Bicycle
With Fully Electric Architecture
Electrical & Computer Engineering

Team 15
Ellie Urish, Jason Zou, and Willard Sullivan
Objectives and Intentions

Project Objective, Block Diagram, High Level Requirements,
Motivation

- Most e-Bike designs still incorporate a pedal chain system.
- Exposed components can lead to durability issues in different environments.
- e-Bikes with ‘pedal-assist’ can still be difficult to pedal uphill and have fixed electric range.
- Large bike sharing companies like VeoRide need bikes that are durable and low maintenance.
Objectives for our e-Bike Design

1. Capable of propelling the user forward with only battery power
2. Suitable range with battery power alone
3. Option to pedal/generator system as a range extender
4. Minimize exposed mechanical components to increase reliability and durability
High Level Requirements

1. Charge the 36V battery with the pedal-generator. Route ~36V from the battery to the hub motor.

2. Rear wheel motor can propel the vehicle to 5 mph with ~180 pounds of load.

3. Motor speed can be controlled through a throttle system by the user.

4. 40% efficiency of power conversion from pedaling to electricity.
Results
Demonstrating a Functional e-Bike
Demonstrating a Functional e-Bike
Demonstrating a Functional e-Bike

- Maximum measured speed of roughly 20 mph
- Demonstrated by calculation and with Strava
- Safety vs Unlimited Power Modes
- Easily controllable
 - Throttle control
 - Cabled front brake

![Image of e-Bike](image_url)
Testing the Boost Converter

- **Purpose of Boost Converter:**
 - Regulate unstable 5-15V input from generator to a steady 40V output

- **Results**
 - Expected output voltage under no load
 - Output voltage ‘sags’ under higher loads as the output current increases
 - Oscilloscope traces on next slide

- **Bugs**
 - Initially were getting barely any boosting, from 8V to about 11V at most. We had an issue in our PCB, shown to the right, that we had to quickly fix
Boost converter output under steady state pedaling
Power System Testing

Turn on behavior when generator begins pedaling

![Graph showing turn on behavior when generator begins pedaling](image)

Voltage Sag under load

![Graph showing voltage sag under load](image)
Efficiency of the Power System

• We developed two resistor networks to measure the output power of, then compared to the input power from the generator.
 • 330 Ohms - 70% Efficient
 • 10,000 Ohms – 20% Efficient

• With larger power loads, the output voltage dropped to account for the current jump.

\[
W_{\text{with } R_{\text{load}}} = 9.73 \text{k Ohms} \\
V_{\text{in}} = 8 \text{ V} \\
I_{\text{in}} = 0.1 \text{ A} \\
P_{\text{in}} = .8 \text{ W} \\
V_{\text{out}} = 40.2 \text{ V} \\
P_{\text{out}} = 0.166 \text{ W} \\
\text{Efficiency} = 20.75\% \\
\]

\[
W_{\text{with } R_{\text{load}}} = 333 \text{ Ohms} \\
V_{\text{in}} = 7.7 \text{ V} \\
I_{\text{in}} = 0.35 \text{ A} \\
P_{\text{in}} = 2.695 \text{ W} \\
V_{\text{out}} = 25.7 \text{ V} \\
P_{\text{out}} = 1.98 \text{ W} \\
\text{Efficiency} = 73.5\% \\
\]
Project Development

Building and Designing Processes, Implementation
Mechanical Design

- Mechanical design mostly entails the Generator/Power System.
 - We have had several design iterations.

- Our system uses a chain drive system to the generator, despite going against our original intentions.

- A metal mounting plate houses our battery and electronics.
Mechanical Design Implementation
Electrical Design - PCB

• Boost converter increases the pedaling voltage of between 5-15V into a useable 40V output for charging the battery.

• The Controls Subsystem regulates the maximum speed of the bike and limits the throttle to a safe range.
 • An Atmega328 microcontroller is used.
Boost Converter
PCB Design
Electrical Design – Powered Wheel

- Four main components for the Powered Wheel System, which are common on other e-Bikes:
 - Battery: 36V/8A
 - Hub Motor: 36V/350W
 - Motor Controller
 - Throttle
- The Motor Controller serves as the “nucleus” of this system as it manages input/output data and power.
Review

Our Successes and Challenges, Final Thoughts
Successes:

• e-Bike has enough power to propel user to high speeds – up to 20 mph
• Throttle limiter through microcontroller works as expected
• Mechanical implementation works well, generates 40V

Challenges:

• Boost converter voltage currently sags under larger current draw, causing issues with battery charging
• Issues with lack of documentation for powered wheel subsystem, prevented implementation of encoder speed control
Future Endeavors

- Design needs additional versions to get closer to the original envisioned goal
- Integration of the power generation subsystem with the rest of the bike
- Refining design to be more polished, user friendly, and weather ready
Thank You

Are there any questions?