Hand-Cranked Charger

Team 14: Shreyasi Ray, Achyut Agarwal, Rubhav Nayak

Meet the Team

Achyut Agarwal Computer Engineering, Senior Shreyasi Ray Computer Engineering, Senior Rubhav Nayak Electrical Engineering, Senior

Problem

- Reliance on technology and devices at all-time high, individuals dependent on devices for various aspects of their lifestyle
- Dependence on devices for emergencies and basic services is increasing
- Need for charging points not always available

Solution - Hand Cranked Charger

- Portable hand-cranked charger that generates electricity with the help of user's kinetic energy
- Enables charging during times of emergency, when traditional charging options are not available
- Stores energy in an internal battery like a power bank

PCB Design

Electromechanical Subsystem

- Handles conversion of Kinetic to Electric Energy
- Key Components:
 - Motor
 - Linear Regulator
 - Relay
 - Power MUX
 - USB Output

Key Components

Motor

Linear Regulator

Relay

Power MUX

- Brushed 12VDC Motor → Pittman Motor
 Output at 60RPM: 12V ± 2V
- Linear Regulator \rightarrow LM7805
- Stabilizes Voltage to 5V
- Relay \rightarrow Panasonic HY1-5V
- One Input to Two Output Mechanical Relay
- Controlled by Microcontroller
- Power Multiplexer TI TPS2115
- Two Input to One Output Power Mux
- Controlled by Microcontroller

Development of Electromechanical Subsystem

- Successes
 - Relay
 - Motor
 - USB Output

- Hurdles
 - Power MUX
 - Linear Regulator

Tests performed for Verification of the Electromechanical Subsystem

The Linear Regulator regulates all Voltage in the range 6V to 20V down to 5V

The Relay changes the output under 50ms

Hand Crank successfully powers the USB Output

Microcontroller Subsystem

- Handles Switching Logic
- Handles Battery and Display functionality
- Key Components:
 - Microcontroller
 - Battery and Battery Module
 - Display
 - Boost Converter

Key Components

- $Microcontroller \rightarrow AtMega328P$
 - 23 GPIO Pins
- $Display \rightarrow AdaFruit 1002$
 - I2C Backpack
- $Battery \rightarrow 1000$ mAh Li-ion
- Battery Module \rightarrow TP4056
- Boost Converter \rightarrow 2.5V-4.0V to 5V Boost

Development of Microcontroller Subsystem

- Successes
 - Battery
 - Boost Converter
 - Battery Module

- Hurdles
 - Display
 - Microcontroller

Tests performed for Verification of the Microcontroller Subsystem

The Battery Voltage is correctly measured and displayed

The display correctly outputs the recommended crank speed modification

The boost converter boosts the batteries 3.7 ± 0.6 VDC to 5 ± 0.2 VDC

Assembly of the Product

- Outer Casing ABS Plastic
- Metal reinforcement for Motor Mount
- Safety Considerations for Battery
- Length of Hand Crank
- Display Orientation

Hurdles along the way, overcoming them

- Parts Reliability and Delivery
- Footprints
- PCB Issues

Video of our Working Product

Conclusion

Learnings

- Experienced product development cycle

- Cheap and compact

Future Considerations

- More robust PCB design

Thank You!