
Affordable Portable MIDI Keyboard Synthesizer

By

David Gutzwiller

Richard Engel

Sujay Murali

Final Report for ECE 445, Senior Design, Spring 2023

TA: Akshat Sanghvi

3 May 2023

Project #54

Abstract

This report serves as a complete overview and in-depth description of Group 54’s Affordable

Portable MIDI Keyboard Synthesizer project. It provides an overview of our goals and

accomplishments, a complex technical breakdown of the system and the subsystems within,

verifications and data for each subsystem, a cost analysis of the project, and considers the ethical

issues and societal implications that may arise.

ii

Table of Contents

1. Introduction . 1

2. Design . 3

2.1. Procedure . 3

2.2. Details . 4

2.2.1. Power . 4

2.2.2. Input . 6

2.2.3 Control .8

2.2.4 Output . 9

3. Verification .10

3.1. Input Subsystem . 10

3.2. Output Subsystem .11

3.3. Microcontroller Subsystem .12

3.4. Power Subsystem . 13

4. Costs . 14

5. Conclusion . 17

5.1. Takeaways .17

5.2. Broader Impacts . 18

5.3. Ethical and Safety Considerations . 18

6. References .19

Appendix A Requirement and Verification Tables .20

iii

1 Introduction
Right now, the world of music production is incredibly saturated. It seems harder than ever for

new musicians to break into this space; not only is new software and instrumentation extremely

expensive, but often needlessly complicated, with too many buttons or features. As a result,

beginners in this field might find it difficult to get the hang of making professional music and

bring their own talent and creativity to the field. That is why we decided to make an economical,

small device that is simplistic, but still has enough elements to help someone learn about basic

musical production skills.

After a semester of challenges and pitfalls, our group created an affordable MIDI keyboard

synthesizer, made for less than $100 in parts and designed for new professionals. Our first

requirement was to successfully implement buttons for keys, switching octaves, and knobs to

change volume, pitch, and ADSR (everything a professional synthesizer needs for a fraction of

the price). Our second was to use a single lithium-ion battery to keep it powered for over three

hours while turned on (so it does not need to constantly be cable-powered), and our third

requirement was that our synth can be plugged in to a computer to record MIDI notes onto any

musical software or DAW. Using thorough tests throughout the building process, we verified and

ultimately met all these requirements, and built a user-friendly product.

While browsing on social media circles pertaining to music, we noticed lots of people are

looking to break into making music, but frustrated at the current selection of instrumentation

available, either because these products are hundreds (or even thousands) of dollars, or are

simply not conducive to someone who does not yet have years of experience and knowledge on

music theory. Our synthesizer could be just the solution to help them get their feet wet and make

some incredible tunes.

1

Figure 1: Synthesizer Block Diagram

Above, we have the different components of our design. Our input subsystem is everything that a

user interacts with while playing our synth: the keys, the buttons to switch octaves, and the knobs

that control aspects of the note. After connecting these to an Arduino, we tested to make sure that

each input correctly affects the sound as it is designed to, and that the Arduino successfully

outputs the sound to a speaker so that we can hear the correct notes play at a good volume. We

aimed for C3 (131 Hz) to B6 (1975 Hz) to be audible, and that full volume yielded a 60 db

sound, enough to hear over normal conversation. After verifying this, we used software to help

the Arduino output a MIDI signal through its USB port, so one could plug it into a laptop and

record notes on a musical software (we tested this on Ableton, a popular DAW, and confirmed

that the serial port output of the Arduino was correctly being translated to MIDI). Lastly, the

power subsystem allowed the entire device to be powered by a battery, which, after turned on by

a switch, supplied voltage to a step-up converter that provides a constant 9+ V to the Arduino.

Using a voltmeter, we verified that our power circuit gave our device enough power to last 3+

hours without needing to be plugged in.

2

2 Design

2.1 Procedure

Overall, we aimed for a simple, streamlined design that allowed for functional user inputs into an

Arduino Mega, and played sound out of a speaker. If the Arduino was plugged into a laptop, one

could play on our device and record music onto a computer software. Lastly, the entire device

must be powered by a battery for at least three hours of on-time. To make our design as compact

as possible, we set the inputs and Arduino up on a breadboard, which was desirable as it allowed

us to make one connection between all inputs to the Arduino, keeping it simple and

close-packed. We initially planned on having all inputs wire through our PCB, but fitting 14 keys

and multiple potentiometers through our 10 cm x 10 cm PCB and then into the Arduino would

have been cumbersome and led to a messier design. Our ultimate idea of moving the power

subsystem onto the PCB and laying that underneath our breadboard, resulting in a neat design

that was easy to debug if necessary.

Figure 2: Generalized Layout of Arduino Mega and I/O Pins

Figure 2 shows a generalized design. Buttons connect via a wire to the digital pins of the

Arduino, and potentiometers to the analog pins. Digital pin 13 sends an output signal to the

3

speaker. From here, we could upload software to the Arduino to implement basic piano

functions. Initially the design included plans for waveform generation knobs. After developing

the software to get ADSR functional, we decided that the waveform inputs are not significantly

different from custom ADSR envelopes.

2.2 Details

2.2.1 Power

The power subsystem block was largely integrated into the PCB design. We planned to use a 3.7

Volt Lithium Ion battery to supply power to the microcontroller. However, the Arduino Mega

2560 has a recommended input voltage of between 7V - 12V. Therefore, we also use a step-up

voltage regulator in order to boost the voltage from 3.7V to 9.25V, which is within the

recommended range for the board. This circuit design also includes a power switch so that the

battery can be disconnected when not in use. The Arduino also reads the battery voltage as an

analog input and maps its operational voltages to a series of LEDs. These LEDs effectively

display the battery life in 10% increments.

Our power subsystem draws power from a 3.7V 2.6Ah Lithium-Ion battery cell. This battery

plugs directly into the PCB, with the negative end going to ground and the positive end going to

the rocker switch. The rocker switch is simply wired up to the PCB, allowing us the freedom to

place the rocker switch wherever we need to in the keyboard’s housing. This is also the case with

the battery given the lengths of its wires. When the rocker switch is switched on, this connects

the battery to our step-up voltage regulator.

4

Figure 3: Adjustable Output Configuration and Equation

The step-up voltage regulator that we chose is the MAX632ACPA, which normally increases the

input voltage by +12V [5], but also has an option for setting a custom output voltage using the

configuration shown in Figure 3, along with the equation being used to find the correct resistor

values. If we pick R4 = 100kΩ and we want an output voltage of ~9V, this results in R3 ~=

587kΩ. We can use a 600kΩ resistor for R3 for simplicity, which ends up with a theoretical

output voltage of 9.17V (although our actual output voltage was closer to 9.25V). This

configuration results in an output voltage that falls comfortably within our required range.

The final piece of our power subsystem is the LED bar graph battery life indicator. This is simply

wired up to the Arduino, with each LED being connected to a digital output pin from the

Arduino and connected to ground with a resistor. The current battery voltage is read and fed into

an analog pin on the Arduino. The Arduino then outputs either on or off values to each LED

5

depending on the voltage value read from the battery. This LED bar graph displays the battery

life of the battery in 10% increments, as shown in Figure 4.

Figure 4: LED Bar Graph Battery Indicator; 60% battery life

2.2.2 Input

Our input subsystem consisted of twelve keys, two octave switches, and six rotary

potentiometers. Our keys and octave switches are Adafruit tactile switches, all connected to the

digital I/O pins on the Arduino. These switches are seated on a breadboard due to limitations of

the PCB size. Twelve of these switches are programmed to cover one octave of the piano

keyboard, or 12 semitones, and the other two are programmed to switch between a total range of

four octaves. The bottom note of this four octave range is C3, and the top note is B6. In order to

get the correct frequencies for these notes, we utilized the standard A-440 Hz tuning [7]. These

are produced either on the speaker using the Arduino’s PWM functionality, or sent as MIDI

messages to a laptop or other device plugged into the Arduino. Both of these functionalities will

be described in detail in the next section.

6

There are also six 10kΩ potentiometers connected to analog pins 0-5. We eventually picked

rotary potentiometers with wires soldered rather than breadboard potentiometers due to the

additional freedom of placement that they brought. These potentiometers all control a different

aspect of the sound output. One potentiometer controls pitch bend, which basically bends the

current note being played by up or down a half step. Another potentiometer controls output

volume. The remaining four potentiometers control the sound’s Attack Sustain Decay Release -

or ADSR - envelope. This basically describes the lifetime of a note being played, with the attack

referring to how quickly the note rises to its peak, the decay being how quickly it tapers off into

the volume determined by sustain, and release being how quickly the note fades into nothing

once the key is let go. This can be visually seen in Figure 5.

Figure 5: Amplitude vs. Time graph of an ADSR envelope

7

2.2.3 Control

Figure 6: Pin Connection Layout on Arduino

The control subsystem consists of an Arduino Mega 2560 microcontroller board, which has a

built-in ATMEGA2560 microcontroller chip, as well as all of the necessary PCB components for

functionality. The control subsystem has three main functions. First, it must take inputs from the

input subsystem and translate these into modified PWM signals to send to the built-in speaker.

Second, it must use these same inputs to generate MIDI messages to send to the built-in USB

port so that an external device can connect and use this keyboard with a DAW. The serial port of

the Arduino should output a binary number, which is translated to a MIDI message using our

software, and a computer should recognize that MIDI message as a musical note [2], recording it

onto Ableton, our testing software. Third, it must take the voltage from the battery and use this to

8

display the current battery life on the LED bar graph. Figure 6 shows how all of these different

inputs and outputs are wired to the Arduino.

2.2.4 Output

Our aim for this project was for the keyboard speaker to be at least 60 dB, since that is a little

above normal conversational volume. We also wanted the speaker to have a frequency range that

covered 150 Hz - 1900 Hz, since that would cover about 4 octaves of range, which is reasonable

for a keyboard instrument. The output consists of two main components: the built-in speaker and

the Arduino’s USB port. The built-in speaker produces the sounds that are generated by the

Arduino’s PWM functionality as described in the previous section. The speaker can produce

these sounds in a range from C3-B6, and it can produce these sounds at over 60dB, which meets

our goal. The USB port is programmed to deliver MIDI messages via SPI to an external device

to allow the control of a DAW. This functionality is also described in detail in the previous

section. Beyond that, that’s pretty much all there is to the output subsystem. In future iterations

of this design, we would probably include a Digital to Analog converter to allow for more

complex sound processing - potentially different instrument sounds and polyphonic functionality

- an amplifier to allow for greater volume control, and a stronger speaker with a higher

impedance that can work with said amplifier.

9

3 Verification

3.1 Input Subsystem

The requirements for the input subsystem were to make sure each key successfully plays its

corresponding note, the octave switch buttons shift up and down an octave, and the input knobs

successfully manipulate the sound as expected. Most of the verifications could be done through

listening alone, but there are provided data and measurements to confirm them.

Figure 7: Voltage measured to speaker when volume knob is maximum, half, and zero

10

Figure 8: Voltage measured to speaker when the release is zero, half, and maximum value

Figure 7 shows that the volume knob successfully changes the voltage that drives the speaker,

which means that it controls the volume of the speaker. Figure 8 displays how the release affects

the volume over time, which showcases how ADSR functionality works properly. The falling

edge of each voltage spike becomes less steep from the left spike to the right spike. This slanted

falling edge shows how the volume level fades out as the release knob is turned.

3.2 Output Subsystem

The two main components responsible for the output subsystem are the speaker, and the arduino

board to send MIDI messages. The speaker was verified by using a decibel measurement as well

as a tuning measurement. These two measurements verify that the speaker is both loud enough to

comfortably hear and also accurate enough to produce the correct notes. Figure 9 shows the

decibel reading of the speaker when a note is playing. 63 decibels is similar to casual

conversation volume. The frequency of a C3 note that our keyboard produces can be seen in

11

Figure 10. The measured value is 131 Hz which is 0.19 Hz away from the ideal value of 130.81

as stated by (MTU).

Figure 9: Decibel reading of the speaker at maximum volume

Figure 10: Frequency of a C3 note produced by the speaker

3.3 Microcontroller Subsystem

Our basic requirements for this subsystem was that it can successfully transmit sound to the

speaker and MIDI messages through the USB port according to the input keys and knobs, and it

does this without issue. After setting up an IAC driver to allow the keyboard to send a MIDI

signal to our computer, we used Ableton to test, and successfully recorded musical notes onto a

MIDI channel. We could change instruments and loop different tracks onto one another, which

was verification that our synth successfully sends MIDI output through its USB port.

12

3.4 Power Subsystem

We wanted to make sure that the power subsystem both provides a consistent voltage between

7V and 12V to the Arduino board, and that it has a battery life that lasts at least three hours. With

the usage of our step-up regulator, we were able to achieve a consistent 9.25 volts being

delivered to the Arduino as shown in Figure 11, which is well within our requirement.

Figure 11: Input voltage measuring at ~9.25V
The power subsystem successfully provided enough voltage to the arduino to power the board

for at least 3 hours. The board used 25 different pins in our final implementation. The battery we

used was rated at 2700 mAH. If each used pin drew 20 mA, then the battery can last over 5

hours.

13

4 Costs

So, how did we do in terms of cost? We had three people working on this for about 50 hours

total, so if we assume a $40/hr wage, which is about the average computer engineering wage, we

can calculate initial labor costs during the design phase.

$40/hr x 50 hrs x 3 engineers x 2.5 = $15,000

So we have an initial design labor cost of about $15,000. The total cost of the components that

we used for our project was $87.97, as can be seen in Table 1. Table 2 shows some additional

components that we would potentially add in with further development, bringing the total

component cost to $102.15. Considering a $20 shipping cost, the total would be $122.15. This

results in a total initial design and development cost of ~$15,122.15.

Table 1: Components Cost Table

Description Manufacturer Quantity Extended
Price

ARDUINO MEGA2560 ATMEGA2560 Arduino 1 $38.72

SWITCH ROCKER SPST 6A 250V NKK Switches 1 $3.27

2.6Ah, 3.7V, Li-Ion, 18650, JST Adafruit 1 $9.49

MAX632ACPA Step-up Voltage Regulator Maxim Integrated 1 $7.14

10 SEGMENT LED BAR GRAPH - BLUE SparkFun Electronics 1 $2.25

Rotary Potentiometer - 10kΩ, Linear SparkFun Electronics 6 $6.30

Micro Round 8Ω Mylar Speaker 93 dB 1.5 Watt
1.5" Wires

Jameco ValuePro 1 $2.35

PCB PCBWay 1 $0.50

Acrylic Housing (Acrylic Sheet 12’’ x 48’’) EStreet Plastics $12

Adafruit Colorful Buttons Adafruit 15 $5.95

Total Cost $87.97

14

Table 2: Additional Components Cost Table

BQ25180 programmable linear charger Texas Instruments 1 $2.78

PCM5252 32-Bit Stereo Differential-Output
DAC

Texas Instruments 1 $8.24

TPA2014D1RGPT Amplifier 1.5 Watt Texas Instruments 1 $2.39

PJ-102A Barrel Jack CUI Devices 1 $0.77

Total Cost $14.18

If this product were to move beyond development into mass production, the cost per keyboard

would change. Once the code and design is all developed, it would take maybe 10 minutes to

apply solder paste onto each PCB and upload the code onto the Arduino. Using the labor cost

calculation ($40/hr x 1/6 hrs * 2.5), this would result in a labor cost of about $16.67 per

keyboard. Money can be saved by ordering parts in bulk. If we consider the same cost for the

Arduino, PCB, and acrylic housing - $38.72, $0.50, and $12 respectively - and add together the

cost of the other components per keyboard unit when ordering them in bulk as in Table 3, this

results in a cost of $90.13 for each unit. Considering the labor and $20 shipping, this results in

$126.80 for each unit developed.

15

Table 3: Bulk Components Cost Table

Item Manufacturer Max Quantity Extended Price Price/Keyboard

Rocker Switch NKK Switches 1,000 $2,099.79 $2.10

2.6Ah, 3.7V, Li-Ion
Battery

US Electronics
Inc.

100 $875.00 $8.75

MAX632ACPA Step-up
Regulator

Maxim
Integrated

1,000 $4,500.00 $4.50

10 Segment LED Bar
Graph

SparkFun
Electronics

100 $203.00 $2.03

10kΩ Rotary
Potentiometers

SparkFun
Electronics

100 $95.00 $5.70

8Ω Micro Speaker Jameco
ValuePro

2000 $3300.00 $1.65

Colorful Buttons Adafruit 1500 $476 $4.76

Linear Charger Texas
Instruments

6000 $7,440.00 $1.24

DAC Texas
Instruments

1000 $6,750.00 $6.75

Amplifier Texas
Instruments

5000 $5,350.00 $1.07

Barrel Jack CUI Devices 2400 $861.72 $0.36

Total Cost/Keyboard $38.91

16

5 Conclusions

5.1 Takeaways

All in all, we were successful in making a device that costs less than $100 in parts and still

has working features that a beginner can use to increase their knowledge and experience with

music production. We satisfied all of our high level requirements; our keyboard has correctly

working inputs, it plays the desired sounds through a speaker and sends MIDI to a computer

when plugged in, and our PCB correctly uses a battery to power it for over 3 hours, allowing

it to be portable. Using our own equations and creative designs, we configured our synth to

be user-friendly and easy for a beginner to learn how simple note manipulation and

configuration with DAWs work, all at a very reasonable price point. With our functioning

software and a simple, optimized design, the product could easily be mass-produced.

Due to space constraints, limitations with our Arduino, and lack of knowledge on our part,

we faced challenges in our design, some of which we could not fix. We could not implement

chords or different tones other than a digital PWM sound. A future design could include a

programmable linear charger, soldered onto the PCB and attached to a USB port, that would

allow the user to plug the synth in to recharge the battery (rather than having to replace the

battery entirely). We could use a Digital to Audio converter as an intermediary between the

Arduino and the speaker, to allow us to create chords and an analog piano sound. Instead of

plugging our device into a computer through the Arduino USB to record MIDI notes, we

could connect the Arduino to a MIDI pin and use a MIDI-to-USB cable, reducing the latency

between our keys and the software. Lastly, we could also connect the speaker to an

operational amplifier to greatly increase our max volume.

17

5.2 Broader Impacts

In our completion of this project, we have shown that it is possible to create an effective musical

device at a cheaper price than what is usually available on the market. Many options out in the

market can cost hundreds or even thousands of dollars, with most of that money simply coming

from branding. We have shown that it can be possible to create an extremely powerful instrument

at an entry-level price point. With further development and refinement, our keyboard could end

up creating some serious competition in the music production market for the better. According to

6AM group, a reputable music news source, one of the biggest barriers to entry in the musical

industry is financial [6], and we can help turn the tides in the favor of new, talented musicians.

5.3 Ethical and Safety Considerations

We utilized the Harvard Lithium-Ion Battery Safety Guidelines Document [3] to ensure that we

were careful to avoid thermal runaway or injury while using our battery. We also used

Makerspace: “How to Solder Properly” [4] to ensure we were soldering wires together carefully,

and cleaning the soldering tip as necessary. Throughout the process of designing and building

our device, we took care to follow the ACM code of ethics, whether that be to build and design

robust and usable systems [1], ensuring that our synth had functioning inputs and a user-friendly

design, and accepting professional review at all stages, taking constructive criticism [1]. Only

with the help of our professors and mentors would we have been able to correctly power the

system and achieve our requirements. The experience taught us about the careful considerations

of engineering, and steadily working towards our goal.

18

References

[1] “ACM Code of Ethics and Professional Conduct.” Code of Ethics, Association of Computing

Machinery, 2018, https://www.acm.org/code-of-ethics.

[2] Amandaghassaei and Instructables, “Send and receive Midi with Arduino,” Instructables,

28-Oct-2017. [Online]. Available:

https://www.instructables.com/Send-and-Receive-MIDI-with-Arduino/. [Accessed:

03-May-2023].

[3] Laboratory safety guideline - ehs.harvard.edu. (n.d.). Retrieved February 23, 2023, from

https://www.ehs.harvard.edu/sites/default/files/lab_safety_guideline_lithium_ion_batteries.pdf.

[4] Makerspaces.com, “How to solder: A complete beginners guide,” Makerspaces.com,

31-Oct-2021. [Online]. Available: https://www.makerspaces.com/how-to-solder/. [Accessed:

03-May-2023].

[5] Maxim, “CMOS Fixed/Adjustable Output Step-Up Switching Regulators,”

MAX631/632/633 Datasheet.

[6] S. Schossberger, “Barriers to entry: Electronic music's hidden gatekeepers,” 6AM,

24-Nov-2021. [Online]. Available:

https://www.6amgroup.com/barriers-to-entry-electronic-musics-hidden-gatekeepers/. [Accessed:

03-May-2023].

[7] Tuning. Frequencies of Musical Notes, A4 = 440 Hz. (n.d.). Retrieved March 24, 2023, from

https://pages.mtu.edu/~suits/notefreqs.html

19

https://www.acm.org/code-of-ethics
https://www.ehs.harvard.edu/sites/default/files/lab_safety_guideline_lithium_ion_batteries.pdf

Appendix A Requirement and Verification Tables

Table 4: Power Subsystem Requirements and Verification

Requirements Verifications

● The power system successfully
supplies between 7V-9V of power to
the microcontroller

● Ensure that when the battery is not
powered on that the Vin to the
microcontroller is 0 Volts

● Ensure that when the battery is turned
on the microcontroller Vin is greater
than or equal to 9 Volts

● The battery life can last at least 3
hours from a full charge

● Measure a 9 Volts or greater as input
to the microcontroller at any moment
within 3 hours of turning the battery
on

● LED bar graph can display battery life
in 10% increments

● Monitor the LED bar graph as the
battery drains

Table 5: Input Subsystem Requirements and Verification

Requirements Verifications

● Each piano key should send a distinct
signal (12 total signals) to the
Microcontroller Subsystem

● Check using the Arduino that each
signal is received and distinct

● Octave changers and pitch bend wheel
should change both the synthesized
audio and the MIDI output by one
octave or one whole tone either up or
down respectively.

● Verify functionality on the synthesized
notes through examination of the
speaker audio

● Verify proper MIDI functionality
through examination of the MIDI
messages output from the
microcontroller

20

Table 6: Microcontroller Subsystem Requirements and Verification

Requirements Verifications

● The microcontroller successfully
performs digital audio synthesis and
outputs the data in SPI form

● Sensor data is processed and
converted to SPI by using an
oscilloscope with a high-impedance
multimeter. We check the SPI bus
signals on the oscilloscope for
different input signals to ensure that
the differences are accurately
reflected.

● The microcontroller successfully
generates MIDI messages based on the
input

● Connect the microcontroller to a
Windows computer via USB. Using
Ableton, see if MIDI messages are
being translated through the
microcontroller onto the computer

Table 7: Output Subsystem Requirements and Verification

Requirements Verifications

● Speaker can produce sounds between
150Hz and 1900 Hz

● In a largely volume-free room, point
the speaker towards microphone
plugged into the laptop. Use this to
measure frequency response of
speaker at lowest and highest setting.

● Speaker can produce sounds up to at
least 60 dB at full volume.

● Computer software like TrueRTA or
REW can test volume readings of our
speaker very accurately, so we will do
the same microphone testing with our
driver to check the volume

21

