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Abstract	

The	 final	 report	 provides	 insight	 into	 how	 we	 defined	 a	 massive	 environmental	 problem,	 our	
electronics-based	solution	to	this	problem,	and	the	implementation	of	this	system	as	our	project	for	
ECE	445.	In	this	paper,	we	will	provide	various	descriptions	of	elements	of	our	project,	specifically	
system	features,	design,	cost,	and	benefits.		
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1.	Introduction	
We	will	provide	context,	information,	and	a	detailed	analysis	of	the	problem	the	automated	sensor-
based	filtration	system	will	address	and	how	we	contextually	built	a	solution	to	solve	this	problem.		

1.1	Problem	
As	our	environment	 continues	 to	 change	 for	 the	worse	with	 the	presence	of	global	warming	and	
increased	human	 consumption	of	 resources	 like	 fossil	 fuels,	 the	 safety	 associated	with	breathing	
clean	air	is	being	threatened.	In	metropolitan	areas	worldwide,	there	is	an	increase	in	smog	and	toxic	
output,	leading	to	increased	respiratory	problems.	In	areas	such	as	Delhi	and	Beijing,	it	is	impossible	
to	 venture	 outside	 on	 certain	mornings	 due	 to	 air	 quality	 and	 dangerous	 toxins	 [1].	No	 building	
filtration	 systems	 adapt	 according	 to	 compounds	 outside	 the	 building,	 like	 volatile	 organic	
compounds	(VOCs).	As	a	result,	implementing	a	new,	different	filtration	system	becomes	necessary.	
This	ever-present	problem	will	continue	as	the	world's	population	increases,	and	breathing	clean	air	
indoors	is	a	fundamental	right	everyone	should	have.		

1.2	Solution	
The	solution	to	this	vast	and	unending	problem	is	a	dynamic	filtration	system	that	adjusts	according	
to	 the	 concentration	 of	 a	 specific	 outdoor	 particle.	 We	 have	 chosen	 to	 monitor	 CO2	 and	 PM2.5	
particles	commonly	found	in	dust.	The	goal	was	to	keep	the	indoor	particle	concentrations	despite	
any	change	in	the	composition	of	the	outside	air.	This	was	accomplished	using	a	sensor	subsystem,	
an	ESP32	microcontroller,	and	an	air	blower	for	filtration	testing.	The	electrochemical	sensor	system	
constantly	monitors	 these	 factors	and	provides	a	 reading	 that	will	activate	 the	dynamic	 filtration	
subsystem	 to	 filter	 out	 particles	 more	 accurately.	 To	 keep	 the	 indoor	 concentration	 numbers	
constant,	we	constantly	compared	data	from	the	outdoor	particulate	sensor	system	with	one	based	
inside	the	enclosure.	Two	separate	electron	chemical	sensor	systems	monitor	outdoor	and	indoor	
particles,	and	a	microcontroller	takes	the	data	from	these	sensors	and	determines	what	particles	to	
filter	out.	The	adaptation	functionality	of	changing	the	directional	flow	of	an	external	air	source	is	
implemented	according	to	the	results	from	the	data	acquisition	subsystem	and	the	responses	of	the	
microcontroller	subsystem.		

1.3	Visual	Aid	
We	have	provided	a	view	of	the	entire	system	in	Figure	2.	Two	enclosures,	one	with	dirt	particles	and	
one	without	them,	represent	outdoors	and	indoors.	Each	of	these	has	a	pair	of	sensors	that	allow	a	
user	 to	 visualize	 the	 data	 and	 changes	 in	 air	 filtration	 accordingly.	 The	 client	 can	 then	 see	 the	
difference	in	air	quality	in	the	dirty	enclosure	and	the	clean	enclosure	based	on	the	dirt	filtered	from	
the	dynamic	filtration	mechanism.	Found	below	is	a	CAD	design	of	the	expected	mechanical	setup	
(Figure	1)	as	well	as	the	actual	setup	we	were	able	to	demo	(Figure	2).	
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Figure	1:	CAD	design	of	mechanical	setup,	generated	using	AutoFusion	360	

	

	
Figure	2:	Automated	Sensor-Based	Filtration	System	Overview	

	
Above	is	our	design	for	the	integration	of	the	mechanical	and	electrical	components.	This	diagram	
represents	the	high-level	requirements	and	how	a	user	can	visualize	the	benefits	of	having	this	type	
of	system.	By	viewing	the	two	layers	of	filtration,	we	are	able	to	show	how	the	dirty	air	will	not	reach	
the	clean	container	very	easily	and	would	increase	safety	and	efficiency	for	use.		
	

1.4	High-Level	Requirements	
The	following	needed	to	be	met	during	our	demonstration	of	the	system:	

● The	concentration	of	PM2.5	in	the	“indoor”	enclosure	should	be	lower	than	that	of	the	
“outdoor”	by	approximately	75-80%.		

● The	concentration	of	CO2	determines	whether	airflow	will	speed	up	or	slow	down	based	on	
circulation.	

● To	maintain	power	efficiency,	the	dynamic	filtration	mechanism	starts	running	when	the	
PM2.5	or	CO2	particles	reach	a	certain	level.	
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2	Design	

2.1	Block	Diagram	

	
Figure	3:	Block	Diagram	Subsystems	

	
Our	design	consists	of	three	subsystems,	with	the	sensor	and	filtration	subsystems	housed	within	the	
enclosure	of	two	containers	joined	by	an	intermediary	tube.	The	ESP32	microcontroller	is	located	
outside,	hooked	up	to	all	the	sensors	inside	the	enclosure.		

2.2	Data	Acquisition	Subsystem	

2.2.1	Overview	
The	goal	of	the	data	acquisition	subsystem	is	to	feed	real-time	data	accurately	to	the	overall	system	
to	provide	essential	information	for	the	correct	implementation	of	the	entire	project.	It	consists	of	an	
array	 of	 electrochemical	 sensors	 that	 receive	 data	 from	 the	 enclosures’	 concentrations	 of	 PM2.5	
particles	 and	 carbon	 compounds	 and	 transmit	 that	 data	 to	 the	 microcontroller	 subsystem.	
Specifically,	we	utilized	the	PMSA003I	PM2.5	sensor	and	the	SCD30	VOC	and	CO2	sensors,	where	each	
enclosure	section	contains	one.	These	are	essential	for	our	high-level	requirements	since	they	allow	
us	to	detect	dust	particles	as	well	as	CO2	concentrations,	therefore	enabling	our	dynamic	filtration	
system	 to	 filter	 air	more	 efficiently.	We	 also	used	 the	 sensors	 to	 compare	dust/CO2	 levels	 in	 the	
contaminated	environment	with	those	 in	the	“clean”	environment	to	provide	us	with	 information	
concerning	 the	 success	 of	 our	 filtration	 techniques.	 All	 four	 sensors	 (2	 of	 each)	 pass	 on	data	 for	
analysis	 to	 the	microcontroller	subsystem	as	 they	are	all	hooked	up	 to	 the	same	breadboard	and	
communicate	via	I2C	protocol.	Finally,	it	was	vital	for	us	to	actually	display	the	data	from	the	sensors	
so	that	the	user	can	confirm	the	success	of	the	filtration	technique	without	having	to	slow	down	data	
collection	to	check	the	output	on	the	computer.	Therefore,	our	results	were	displayed	on	two	LCD	
displays,	one	for	the	clean	environment	and	one	for	the	dirty.		
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Figures	4	and	5:	SCD30	VOC	and	CO2	Sensor	(left).	PMSA003I	PM2.5	Sensor	(right).	

2.2.2	Requirements	

The	requirements	for	this	subsystem	are	as	follows:		
● There	is	a	constant	supply	of	3.3	V	to	power	both	the	CO2	and	PM2.5	sensors.	
● The	PM2.5	and	CO2	sensors	provide	accurate	data	and	are	not	reading	incorrectly.	
● There	is	a	communication	protocol	between	the	PM2.5	and	CO2	sensors	using	the	

microcontroller.	
● If	sensors	stop	reading	data,	the	user	must	be	informed.	If	the	display	fails,	then	the	

Arduino	IDE	can	print	a	data	stream	onto	the	terminal	window.		

These	requirements	and	their	corresponding	verifications	are	detailed	in	Table	1.	

2.2.3	Design	Decisions	
I2C	Communication:	

To	allow	for	communication	between	the	microcontroller	and	the	sensors,	we	needed	to	utilize	I2C	
protocol	and	write	the	necessary	code.	I2C	protocol	is	a	two-wire	communication	protocol	with	two	
ports:	SDA	and	SCL.	The	SCL	port	is	used	to	feed	a	clock	signal,	which	allows	for	synchronous	transfer	
and	 retrieval	of	data	between	 the	 slave	device	and	 the	master	 [2].	 	The	SDA	port	 is	used	 for	 the	
transfer	of	actual	data	[2].	It	is	first	utilized	by	the	master	to	transfer	a	device	address	and	a	registered	
address	to	write	to,	typically	for	initial	configuration.	Then,	the	slave	device	utilizes	SDA	to	send	the	
master	 device	 sensor	 data.	 This	 information	 can	 then	 be	 reformatted	 and	 printed	 to	 give	 us	 a	
numerical	output	coming	from	the	sensor.	To	achieve	all	of	the	above,	there	is	an	I2C	structure	that	
we	must	abide	by	so	that	we	are	providing	the	sensor	with	the	correct	clock	signal	and	the	correct	
data	at	the	right	time.	Any	slight	delay	or	error	in	our	code	could	result	in	junk	data	being	read	from	
the	wrong	register	due	to	improper	configuration	or	reading.	A	figure	of	the	I2C	protocol	has	been	
provided	below:	
	

	
Figure	6:	I2C	Protocol	Structure	
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As	we	can	see,	 there	are	 important	 sequences	 that	we	must	 incorporate	 to	make	communication	
work,	such	as	the	start	condition,	the	end	condition,	and	the	acknowledgment	[3].	We	accomplished	
all	these	sequences	using	a	state	machine	where	each	state	performed	a	certain	act	on	SCL	and	SDA.	
We	developed	Verilog	code	to	achieve	this	and	have	included	snippets	below:	

	

Figures	7	and	8:	Snippets	of	code	that	represents	writing	data	onto	the	slave	device	using	the	SDA	
port	and	how	we	retrieve	data	from	SDA.	SingleByteData	here	is	the	register	address	we	are	passing	

onto	the	slave	device.	
	
Physical	Setup:	
Some	of	the	design	decisions	we	had	to	make	included	how	we	were	going	to	hook	up	the	sensors	to	
our	breadboard	when	there	was	a	big	distance	between	the	breadboard	and	our	boxes.	When	we	
attempted	 to	 wire	 everything	 together,	 we	 found	 the	 sensors	 could	 not	 reach	 the	 breadboard.	
Therefore,	we	used	cable	extenders	for	our	PM2.5	sensors.	We	were	not	able	to	do	the	same	for	the	
CO2	sensors	as	the	sensor	is	on	top	of	the	pins	that	are	meant	to	connect	to	the	board	and	eventually	
to	the	GPIO	pin	of	the	microcontroller.	This	led	us	to	purchase	mini	breadboards	for	us	to	attach	the	
CO2	sensors,	which	we	would	then	connect	to	the	main	breadboard	using	ordinary	wires.		
	
In	terms	of	the	placement	of	the	sensors,	we	attached	the	CO2	sensors	to	the	side	of	the	boxes	so	that	
they	were	hidden	and	looked	neat.	These	are	then	connected	to	mini	breadboards,	which	are	wired	
to	the	main	breadboard.	We	taped	the	PM2.5	sensors	on	the	bottom	of	the	boxes	and	in	front	of	the	
large	fan/connecting	tube	since	they	were	not	that	sensitive	and	we	wanted	to	make	sure	the	increase	
in	readings	was	instantaneous	and	significant	for	our	demo.	Below	are	pictures	of	how	both	sensors	
were	attached	to	our	system.	
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Figure	9:	Mechanical	Design	of	the	Automated	Sensor-Based	Filtration	System	

	
LCD	Displays:	
	
We	included	LCD	displays	as	part	of	our	data	acquisition	system	so	that	it	is	easier	for	the	user	to	
assess	 the	 effectiveness	 of	 our	 filtration	 system.	 These	 LCDs	 are	 attached	 to	 the	microcontroller	
through	GPIO	pins.	They	were	then	configured	according	to	the	following	code:	
	

	
														Figure	10:	Front	LCD	display	code																														Figure	11:	Back	LCD	display	code		
	
Data	 from	 the	 sensors	 is	 stored	 in	 variables	 and	 we	 distinguished	 between	 the	 clean	 and	 dirty	
environments	by	naming	them	front	and	back.	We	simply	used	the	commands	sprintf,	then	print	to	
print	onto	the	back	LCD	and	the	front	LCD.	Below	is	a	picture	of	the	output	on	the	LCDs.	

	
Figure	12:	LCDs	in	use	during	demonstration	
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2.2.4	Data	Acquisition	Subsystem	RV	Table	

Requirements	 Verification	

● The	necessary	3.3V	to	power	both	CO2	
and	PM2.5	sensors	are	constantly	
received	regardless	of	sensor	status.	

● Power	supply	must	not	be	touched	and	
should	be	capable	of	powering	up	
sensors	for	long	periods	of	time.	

● PM2.5	and	CO2	sensors	give	accurate	
data	and	are	not	reading	junk	

● I2C	protocol	will	be	tested	on	all	sensors	
first	through	an	Arduino	file	to	ensure	
the	data	being	read	is	accurate	
consistently	and	constantly	changes.		

● Different	modes	and	accuracies	will	be	
written	onto	the	sensor	via	I2C	to	test	
the	sensor	and	pick	the	most	efficient	
environment.	

● Sensors	will	be	placed	in	an	area	of	high	
dust	and	CO2	concentrations	and	
significant	changes	in	readings	must	be	
achieved.	

● Communication	between	PM2.5	and	
CO2	sensors	with	microcontroller	

	
	
	

● Ensure	microcontroller	and	sensors	are	
connected	to	the	PCB	board	or	
breadboard.	Further	verification	will	be	
handled	in	the	microcontroller	
subsystem	section.	

● If	sensors	stop	reading	data,	the	user	
must	be	informed.	If	the	display	fails,	
the	Arduino	IDE	can	print	a	sensor	data	
stream	on	the	terminal	window.		

● Interface	will	be	implemented	to	
display	the	data	from	the	sensors.	This	
will	allow	us	to	spot	if	data	is	inaccurate	
or	if	no	data	is	being	read	at	all	due	to	
glitches.	

2.2.5	Data	Acquisition	Testing	
PM2.5	Sensor:	

To	test	the	PM2.5	sensor,	we	hooked	it	up	directly	to	the	GPIO	pins	of	the	microcontroller.	This	
allowed	us	to	analyze	the	results	on	the	Arduino	IDE	terminal.	We	added	a	check	to	ensure	the	data	
being	read	was	not	junk,	which	would	be	called	checksum	failure.	Unfortunately,	data	was	being	
accurately	detected	and	displayed,	but	almost	a	minute	later,	we	would	find	a	checksum	failure	and	
read	extraordinarily	high	values.	This	would	sometimes	be	displayed	as	junk	letters	when	
connected	to	the	LCD.	After	debugging	our	code,	we	found	that	the	addition	of	delays	when	
outputting	the	results	was	causing	the	checksum	failure.	This	is	because	it	was	affecting	the	timing	
sequence	necessary	for	UART	communication.	We	had	initially	inserted	delays	since	data	was	being	
collected	too	quickly	for	us	to	be	able	to	see	on	the	terminal.	After	fixing	this	small	issue,	we	found	
no	further	problems	with	our	PM2.5	sensors.	
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CO2	Sensor:	

The	CO2	sensor	was	much	easier	to	test	than	the	PM2.5	since	we	found	no	errors	or	junk	data	being	
read.	However,	we	faced	many	problems	once	we	had	to	connect	both	CO2	sensors.	We	found	the	
sensors’	I2C	communication	troublesome	because	our	microcontroller	only	allowed	one	of	the	
sensors	to	be	hooked	up	to	the	I2C	port	(address	0x61).	Additionally,	the	code	we	were	using	to	
allow	for	I2C	communication	stopped	working	when	two	SCD30	sensors	were	introduced,	it	only	
worked	with	one.	For	our	code,	the	modification	was	quite	simple	as	we	duplicated	it	and	allowed	
for	more	SDA	and	SCL	ports.	We	needed	to	be	more	creative	to	make	our	microcontroller	support	
both	sensors	simultaneously.	We	devised	the	idea	to	modify	two	GPIO	pins	to	turn	them	into	an	
SDA	and	an	SCL.	We	accomplished	this	through	the	Arduino	IDE	using	an	external	library.	

Displays:	

We	faced	a	similar	issue	with	the	displays	as	we	did	with	the	CO2	sensors	in	the	sense	that	each	LCD	
worked	alone	but	combining	them	resulted	in	issues.	The	LCDs	come	with	a	default	I2C	address	of	
0x27.	However,	we	needed	to	use	two	of	them,	and	they	could	not	share	the	same	address.	
Fortunately,	the	LCDs	come	with	address	solder	pads,	which	we	shorted	to	change	one	of	the	LCD's	
addresses	from	0x27	to	0x28.	

2.3	Microcontroller	Subsystem	

2.3.1	Overview	
The	microcontroller	subsystem	consists	of	a	single	microcontroller	that	will	communicate	with	both	
the	data	acquisition	subsystem	and	the	dynamic	filtration	subsystem	to	provide	accurate	instructions	
to	the	directional	airflow	about	when	to	activate.	Using	an	external	power	source	with	a	measured	
voltage,	this	subsystem	will	be	the	core	impetus	for	the	functionality	of	this	entire	project.	In	the	final	
implementation	of	the	microcontroller	subsystem,	we	implemented	the	ESP32-WROOM-D,	as	that	
was	the	most	accessible	of	the	microcontrollers	available	with	the	functionalities	that	we	required.			

	
Figure	13:	Schematic	for	the	ESP-32	Microcontroller	
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2.3.2	Requirements	

The	requirements	for	this	subsystem	are	as	follows:		
● The	necessary	3.3V	to	power	the	ESP32	has	constantly	received	whether	the	system	is	on	or	

off.	
● The	ESP32	microcontroller	will	receive	data	from	the	CO2	and	PM2.5	sensors	and	

communicate	with	the	sensor	controlling	the	amount	of	air	received	from	the	external	
blower.		

● The	system	should	adjust	based	on	the	numerical	readings	processed	and	returned	by	the	
ESP32.		

	

2.3.3	Design	Decisions	
This	is	the	ESP-32	microcontroller,	the	crux	of	our	microcontroller	subsystem.	The	microcontroller	
allowed	us	to	link	the	real-time	sensor	data	from	the	data	acquisition	subsystem	to	the	dynamic	
filtration	mechanism.	By	assigning	various	footprint	elements	to	the	respective	sensors’	data	
transmission,	we	wrote	Arduino	code	that	allowed	for	seamless	communication	between	the	
various	elements	of	the	overall	system.	Each	sensor	was	provided	a	specific	GPIO	pin	for	the	
respective	UART,	I2C,	TX,	and	RX	connections.		

	
Figure	14:	GPIO	Pins	Assigned	to	Sensors	and	Fan	through	Microcontroller	

There	are	also	various	thresholds	for	dangerous	PM2.5	and	CO2	concentrations	defined	for	increased	
or	decreased	airflow.	PM2.5	concentrations	are	considered	unsafe	above	35	μg/m3	and	extremely	
dangerous	 indoors	 when	 above	 250	 μg/m3	 [4].	 According	 to	 the	 Department	 of	 Health,	
concentrations	of	CO2		above	1400	ppm	are	considered	unhealthy	[5].	Therefore,	we	created	a	scaling	
system	that	allows	for	increased	airflow	as	additional	stimuli	are	introduced	to	the	environment	that	
causes	either	of	these	sensors	to	detect	an	increase	in	concentration.		
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Figure	15:	Thresholds	for	each	degree	of	air	in	the	code	

Each	threshold	is	then	used	to	determine	the	fan	speed	needed	to	ensure	air	circulation	throughout	
the	system.		

2.3.4	Microcontroller	Subsystem	RV	Table	

Requirements	 Verification	

● The	necessary	3.3V	to	power	the	ESP32	
is	constantly	received	whether	the	
system	is	on	or	off	

● The	ESP32	should	be	continuously	
checking	for	particulate	readings	to	
ensure	that	the	system	is	performing	as	
instructed	

● We	will	measure	the	voltage	of	the	
subsystem	by	linking	the	device	to	a	
multimeter,	which	will	produce	the	
output.		

● The	voltage	source	should	be	a	constant	
provider	to	the	ESP32	without	any	fail	

● The	ESP32	microcontroller	will	receive	
data	from	the	CO2	and	PM2.5	sensors	
and	communicate	with	the	sensor	that	
is	controlling	the	amount	of	air	received	
from	the	external	blower	

● Perform	the	experiment	by	starting	the	
initial	air	flow	that	transfers	the	
dust/CO2	mixture	from	one	container	to	
the	other.		

● The	CO2	and	PM2.5	readings	should	be	
displayed	when	requested		

● Check	whether	the	readings	reflect	the	
purpose	of	the	project	

● The	system	should	adjust	based	on	the	
numerical	readings	processed	and	
returned	by	the	ESP32.		

	
	

● Create	a	program	where	the	ESP32	
receives	and	responds	to	the	
particulate	readings	

● Provide	contingencies	on	when	the	
ESP32	should	send	signals	to	the	
system	to	turn	on	or	off	with	thresholds	
of	1400	ppm	of	CO2	or	35	µm/m3.	
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2.4	Dynamic	Filtration	Subsystem	

2.4.1	Overview	
The	Dynamic	Filtration	subsystem	uses	a	programmable	DC	fan	to	filter	out	the	PM2.5	particles.	The	
ESP32	output	signal	containing	CO2	and	PM2.5	data	controls	the	fan's	RPM.	Based	on	the	readings	of	
the	two	concentration	levels,	the	fan	will	use	the	concept	of	inertial	impaction	to	filter	out	the	PM2.5	
dust	 into	 a	 separate	pocket	 in	 the	 tube.	The	particles	will	 be	 collected	using	 a	 lint	 filter,	 and	 the	
filtered	air	with	carbon	dioxide	will	continue	to	flow	along	the	pipe.		

2.4.2	Requirements	

The	requirements	for	this	subsystem	are	as	follows:		
● The	DC	fan	must	have	enough	RPM	to	redirect	dust	particles	from	the	horizontal	airflow	to	

the	collection	pocket	of	the	tube.	
● The	RPM/speed	must	adjust	according	to	the	PM2.5	and	CO2	concentrations	detected	by	the	

sensors	in	the	initial	container,	which	are	then	transmitted	to	the	Data	Acquisition	
subsystem.	The	ESP32	must	send	the	readings	to	the	circuit	controlling	the	DC	fan	speed.	

● Fan	should	significantly	reduce	particulate	matter	and	dangerous	compounds	between	the	
initial	and	final	enclosures.		

2.4.3	Design	Decisions	

	
Figure	16:	DC	Fan	Controller	Circuit	

	
As	shown	in	the	figure	above,	the	circuit	that	controls	the	speed	of	the	blower	(DC	fan)	consists	of	a	
relay,	the	ESP32	microcontroller,	a	pushbutton,	and	the	fan	itself.	The	push	button	is	mainly	used	to	
test	if	the	speed	control	works	and	is	correctly	connected	to	the	microcontroller.	Once	this	is	verified,	
the	 pushbutton	will	 be	 removed	 from	 the	 breadboard.	 The	 fan	 requires	 a	 5V	 DC	 voltage	 and	 is	
controlled	 using	 a	 PWM(pulse-width	modulation)	 signal	 [6].	 The	 relay	 is	 connected	 between	 an	
ESP32	pin	and	the	fan.	It	acts	as	a	switch	that	turns	on/off	depending	on	the	signal	sent	from	the	
ESP32.	In	our	case,	it	must	turn	on	once	a	particular	PM2.5/CO2	concentration	is	reached.	This	is	done	
by	flashing	the	C++	program	to	the	microcontroller.		
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2.4.4	Dynamic	Filtration	Subsystem	RV	Table	

Requirements	 Verification	

● The	DC	fan	must	have	enough	RPM	to	
redirect	dust	particles	from	the	
horizontal	airflow	to	the	collection	
pocket	of	the	tube.	

● Experiment	by	starting	the	initial	air	
flow	that	transfers	the	dust/CO2	
mixture	from	one	container	to	another.		

● During	the	transfer	process,	switch	the	
filtering	DC	fan	in	the	tube	on,	and	test	
different	RPM	speeds.	Observe	which	
one	successfully	redirects	the	dust	
particles.		

● Calculate	the	RPM	by	connecting	the	fan	
output	to	the	oscilloscope.	Observe	any	
repetitive	waveforms/spikes	on	the	
display	to	determine	the	period,	then	
use	it	to	calculate	the	frequency	of	
rotation.	

● Note	down	the	minimum	successful	
RPM	and	check	if	the	dust	
concentration	in	the	second	container	is	
reduced.		

● The	RPM/speed	must	adjust	according	
to	the	PM2.5	and	CO2	concentrations	
detected	by	the	sensors	in	the	initial	
container,	which	are	then	transmitted	
to	the	Data	Acquisition	subsystem.	The	
ESP32	must	send	the	readings	to	the	
circuit	controlling	the	DC	fan	speed.	

● Create	the	fan	speed	controller	circuit	
separately	on	a	breadboard,	using	the	
ESP32,	relay,	and	pushbutton.		

● Program	the	ESP32	to	switch	the	relay	
on	once	the	pollutants	reach	a	certain	
level.	Then	it	must	alternate	between	
on/off	as	real-time	sensor	data	is	
collected.		

● Supply	6V	to	the	microcontroller	and	
relay.	If	the	fan	turns	when	the	button	
is	pressed,	then	the	ESP32	has	proper	
control	over	the	fan.		

● Fan	should	significantly	reduce	
particulate	matter	and	dangerous	
compounds	between	the	initial	and	
final	enclosures.		

● Take	the	output	of	both	sensor	
subsystems	in	the	two	containers	sent	
through	the	I2C/UART.	Hook	the	
readings	to	2	separate	LCDs,	one	for	
each	container.		

● Compare	the	concentrations	between	
the	initial	and	final	container	and	verify	
if	the	final	is	lower.		

	

2.4.5	Dynamic	Filtration	Subsystem	Testing	
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Figure	17:	Dynamic	Filtration	Subsystem	Testing	with	Relay,	Microcontroller,	and	Fan	

	
The	figure	above	correlates	to	how	we	initially	set	up	and	tested	the	fan.	The	12V	battery	can	be	seen	
on	the	bottom	left	side	of	the	picture,	which	is	hooked	up	to	the	relay	at	the	top.	Wires	then	exit	the	
relay	to	go	into	the	ESP32	and	the	fan.	We	did	this	to	test	the	fan	and	if	the	relay	adequately	protected	
the	ESP32	from	the	12V	high-voltage	supply	for	the	fan.	We	used	a	probe	to	ensure	the	relay	was	
working	and	that	only	5V	was	transferred	to	the	microcontroller.	
	

2.5	 Tolerance	Analysis	
The	most	critical	part	of	this	project	is	the	DC	fan	that	functions	as	the	programmable	blower	filtering	
the	 PM2.5	 particles.	 The	 rated	 voltage	 is	 12V,	with	 the	 operation	 range	 being	 4.5-13.8	VDC.	 The	
speed/airflow	of	the	fan	is	proportional	to	the	supplied	voltage;	if	the	fan	VDC	decreases,	so	does	the	
RPM	[5].		

	
Figure	18:	DC	Fan	Datasheet	

	
According	to	the	datasheet,	the	nominal	speed	at	12V	is	8000	RPM.	The	tolerance	level	associated	
with	 this	 value	 is	 typically	 +-10%.	 The	 average	 peak	 current	 draw	 is	 0.17	 A,	 which	 can	 also	 be	
displayed	as	a	periodic	waveform	of	a	specific	frequency	rather	than	a	single	value	[5].		
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Figure	19:	DC	Fan	Current	Ripple	

	
We	can	measure	the	running	current	using	the	true	root	mean	square	formula:	

	
For	measuring	 the	 current	 RPM	 of	 the	 fan,	we	 need	 to	monitor	 the	 DC	 ripple	 current.	 Using	 an	
oscilloscope,	we	can	display	the	current	waveform	and	determine	the	current	graph's	period.	This	
will	have	some	slight	uncertainty,	since	the	measurement	will	not	be	exact.		

	
Then	we	determine	RPM	with:	𝑓	 = 	 1

!
		

The	applied	voltage	can	never	exceed	the	operation	range	4.5-13.8	V,	which	means	the	RPM	should	
be	8000	maximum.	

2.6	PCB	Design	
Although	we	did	not	use	the	PCB,	we	put	extensive	effort	into	designing	and	attempting	to	implement	
the	PCB.	Our	designs	involved	multiple	elements	that	in	the	end	did	not	work	as	intended.		

	

Figure	20:	USB-to-TTL	schematic	in	PCB	Design	

In	the	USB-to-TTL	schematic,	we	can	see	that	there	are	three	components	to	the	design,	the	USB	plug	
that	accepts	the	USB	programmer,	the	USB	chip,	and	the	headers	that	connect	to	the	rest	of	the	circuit.	
When	the	user	plugs	in	the	USB	programmer	from	the	computer	to	the	PCB,	it	should	send	the	VBUS	
signal	and	the	D+/D-	signals	to	the	USB	chip,	which	then	processes	the	TXD	and	RXD	signals	that	



 

 
 

15 

communicate	with	the	sensors.	The	VBUS	will	then	connect	to	the	header	pins	that	will	communicate	
with	the	rest	of	the	circuit.		

			 	

Figures	21	and	22:	ESP32	Microcontroller	and	PCB	Design,	respectively	

The	 ESP32	 microcontroller,	 specifically	 the	 ESP32-Wroom-UE,	 was	 the	 microcontroller	 that	 we	
decided	to	use	because	of	the	dedicated	spots	for	UART,	TX,	and	RX	signals	[7].	We	also	wanted	to	
incorporate	a	pulse	width	modulation	(PWM)	reader,	which	is	possible	through	this	specific	model.	
As	a	result,	 there	was	a	 linkage	between	the	relay,	acting	as	a	regulator,	and	the	microcontroller,	
allowing	for	the	sensor	data	to	provide	input	to	the	fan	speed.		

Figure	 22	 demonstrates	 our	 attempted	 PCB	 design	 to	 build	 the	 entire	 system.	 We	 had	 various	
components	to	our	PCB	design,	but	the	key	elements	include	the	USBtoTTL	scheme	and	the	ESP32	
module.	These	components	are	linked	to	the	sensors	that	relay	real-time	data	and	the	dynamically	
programmed	fan.		
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3.	Conclusion	

3.1	Results	and	Accomplishments	
Overall,	we	proved	that	our	filtration	system	worked	as	PM2.5	levels	did	not	increase	significantly	
when	dust	was	blown	into	the	clean	environment.	We	also	detected	dust	sticking	to	our	lint	
remover.	Data	was	constantly	collected	and	displayed	on	the	LCDs	with	no	failure	or	stoppages.	Our	
microcontroller	successfully	utilized	the	I2C	protocol	to	communicate	with	the	sensors	and	pass	on	
that	information	to	the	filtration	fan.	Our	filtration	fan	varied	in	speed	according	to	data	from	both	
CO2	and	PM2.5	sensors	and	functioned	correctly.		

On	demo	day,	we	were	challenged	with	many	obstacles	as	everything	seemed	to	go	wrong.	The	
relay	we	had	implemented	to	stop	the	ESP32	from	being	exposed	to	high	voltages	stopped	working.	
This	resulted	in	our	ESP32	microcontroller	heating	up	and	malfunctioning.	When	we	attempted	to	
reboot,	the	computer	was	not	recognizing	the	ESP32,	and	we	found	no	voltage	at	any	of	the	pins	
when	we	probed	it.	Thankfully,	we	were	given	an	ESP32	chip	by	another	group	who	wasn't	using	it	
anymore	and	quickly	remapped	all	the	wires	and	GPIO	pins	with	the	new	model.	We	consider	this	
to	be	a	major	accomplishment.		

To	discuss	our	results	in	more	detail,	we	generated	a	graph	of	how	our	filtration	system	responded	
to	the	data	from	the	sensors.	As	shown	below	in	Figure	23,	the	first	parameter	we	tested	was	an	
increase	in	CO2	readings	(red	plot).	When	this	occurred,	there	was	a	massive	jump	in	the	fan's	
speed	(blue	plot).	We	then	returned	CO2	to	a	normal	state	and	increased	PM2.5	as	well	as	PM10	
concentrations	at	the	same	time.	This,	yet	again,	increased	fan	speed.	Our	results	prove	that	our	
dynamic	filtration	system	changed	according	to	different	stimuli	and	could	also	consider	multiple	
stimuli	simultaneously.	

	

Figure	23:	Results	from	testing	the	system	

The	second	key	experiment	for	analyzing	the	success	of	our	system	was	observing	what	occurred	to	
the	clean	environment	when	a	massive	amount	of	dust	was	introduced	to	the	dirty	environment.	This	
experiment	was	conducted	using	a	video	of	 the	LCD	displays,	which	was	about	 five	minutes	 long.	
Below	are	screenshots	of	the	first	few	seconds	of	the	video,	10	seconds	after	the	dust	was	introduced,	
and	5	minutes	later.	At	the	beginning	of	the	experiment,	as	denoted	by	Figure	24,	the	PM2.5	of	both	
the	clean	(bottom	LCD)	and	dirty	(top	LCD)	environments	are	2	μg/m3.	When	dust	is	blown	into	the	
system,	 we	 can	 see	 the	 PM2.5	 of	 the	 dirty	 environment	 increase	 to	 149	 μg/m3,	 while	 the	 clean	
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environment	is	still	at	a	low	4	μg/m3.	After	we	allow	the	dusty	air	to	travel	through	the	mailing	tube	
and	into	the	clean	box,	we	can	see	the	dirty	environment’s	PM2.5	decreases	due	to	the	decrease	in	
the	dust	(20	μg/m3).	Still,	the	clean	environment	stays	at	a	very	low	6	μg/m3,	considered	very	safe.	
The	 increase	 from	2	μg/m3	to	 only	6	μg/m3	despite	 the	magnitude	of	 dust	 introduced	 shows	 the	
success	of	our	project.	

	

Figures	24,	25,	26:	LCDs	as	the	demonstration	continues,	values	climb	and	decline	real-time 

3.2	Uncertainties	
● Scalability:	While	the	proposed	solution	may	work	for	a	single	building,	it	may	not	be	

scalable	to	larger	areas.	This	is	because	monitoring	outdoor	particle	concentrations	in	a	
broader	area	may	require	many	sensors,	which	can	be	costly	and	difficult	to	manage.		

● User	acceptance:	The	dynamic	filtration	system	proposed	in	the	solution	may	be	difficult	for	
users	to	understand	and	operate,	leading	to	user	error	or	misuse.	Additionally,	users	may	
not	be	willing	to	adapt	to	changes	in	the	system,	such	as	changes	in	airflow	direction,	which	
may	limit	its	effectiveness.	

3.3	Future	Considerations	
There	are	many	different	avenues	that	can	be	explored	in	building	this	project	because	our	system	is	
very	adaptable.	The	 first	step	 is	 implementing	dynamic	 filtration	capabilities	with	 the	CO2	 sensor	
inside	 the	 indoor	 enclosure.	 Given	 the	 increased	 stale	 air	 in	 the	 environment,	 we	would	 like	 to	
simulate	 the	environment	 and	how	 the	 filtration	 system	would	 respond	 to	 that.	The	 second	 step	
would	 be	 to	 include	PM1.0	particles	 in	 the	 functionality,	 as	 the	 current	 sensors	 can	detect	 these	
particles	but	give	rather	inaccurate	results.	By	including	a	PM1.0	sensor,	we	could	detect	even	the	
most	minuscule	and	dangerous	particles.	We	also	would	like	to	create	an	air	current	in	the	indoor	
enclosure	to	simulate	additional	air	circulation	to	view	the	effects	of	increased	CO2	even	with	forced	
convection.	This	would	allow	us	to	look	at	the	stale	air	and	understand	how	to	maximize	filtration	
and	airflow	through	the	system.		
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Appendix	A	Ethics	and	Safety		

A.1	Ethics	
These	experiments	have	been	done	following	the	IEEE	Code	of	Ethics.	This	experiment	involves	many	
elements,	especially	experimental	numbers,	that	may	impact	the	system's	success.		

1. We	seek	to	provide	the	most	truthful	information	based	on	the	results	of	our	work.	
[8]	

We	had	multiple	reviews	with	teaching	assistants	and	amongst	ourselves	to	ensure	
the	system	was	performing	as	we	intended.	We	understood	that	the	data	from	the	
fans	may	be	unpredictable	and	may	not	show	what	we	are	 looking	 for	concerning	
accuracy,	so	we	ensured	reporting	real-time	results	from	the	sensors,	and	the	fan	was	
a	possibility.		

2. We	treated	all	members	with	respect	and	fairness.	

To	ensure	 constant	 and	 seamless	 communication	between	 the	 team,	we	 created	a	
group	chat	dedicated	to	completing	our	project.	By	sharing	code	files	and	details	of	
the	hardware	implementation,	we	consistently	portrayed	a	well-oiled	machine	that	
worked	properly,	even	with	the	pitfalls	we	faced	across	the	way.		

A.2	Safety	

A.2.1	PCB	Design	
There	were	general	risks	to	PCB	assembly	and	the	use	of	electronic	components.	Solder	was	used	to	
stick	our	sensors	and	microcontroller	onto	one	PCB,	therefore,	we	had	to	beware	of	burn	hazards	as	
well	as	chemical	hazards.	We	aimed	to	proceed	cautiously	with	the	use	of	gloves	as	well	as	safety	
goggles.		

A.2.2	Usage	of	Dust	
One	main	safety	hazard	related	to	our	project	would	have	been	excessive	inhalation	of	dust.	Our	goal	
was	 to	demo	our	project	by	creating	an	environment	 filled	with	dust	particles	 to	see	 if	our	clean	
environment	was	capable	of	filtering	all	of	it	out.	When	creating	this	dust-infested	environment,	we	
had	to	wear	masks	and	control	the	dispersion	of	dust	particles	as	the	buildup	of	it	in	our	body	could	
have	been	very	dangerous,	the	consequences	of	which	included	lung	infection	and	even	more	serious	
complications	for	those	with	asthma.		

A.2.3	Usage	of	Blowers	
There	 were	 various	 IEEE	 safety	 regulations	 associated	 with	 the	 usage	 of	 blowers	 and	 their	
application	 in	 this	 project.	 Blowers	 were	 high-demanding,	 high-quality	 machines	 that	 required	
precise	 measurements	 and	 accurate	 usage	 to	 ensure	 the	 best	 possible	 performance.	 However,	
common	issues	that	happened	to	these	blowers	were	symmetry	irregularities,	rotor	malfunctions,	
and	speed.	These	could	occur	given	specific	 instances	of	a	manufacturing	issue,	a	power	surge,	or	
even	 a	 power	 failure.	 Symmetrical	 variations	 in	 the	 blower	 may	 have	 caused	 either	 incorrect	
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directional	airflow	or	even	an	internal	issue	in	the	functionality	of	the	device.	[9]	Voltage	dips	may	
have	caused	the	blower	to	function	improperly,	either	at	low	capacity	or	turn	off,	depending	on	the	
power	 input.	 	Power	 surges	 could	have	 caused	 the	 capacitors	within	 the	blower	 to	overheat	 and	
malfunction,	 making	 the	 entire	 device	 worthless.	 We	 purchased	 a	 blower	 from	 a	 well-known	
manufacturer	and	ran	basic	tests	on	it	to	test	its	performance	and	symmetrical	properties.	
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Appendix	B	Costs	and	Schedule 

Costs	of	all	Parts	
Part	 Manufacturer	 Quantity	 Retail	Cost	

($)	
Bulk	

Purchase	
Cost	($)	

Actual	Cost	
($)	

3’’	Mailing	
Tubes	

Walmart	 3	 20.97	 20.97	 20.97	

Utility	Duct	
Tape	

Walmart	 1	 4.99	 4.99	 4.99	

3’’	Dia	PVC	Pipe	 Amazon	 1	 34.93	 34.93	 34.93	

LCDs	 Amazon	 2	 19.98	 19.98	 19.98	
Tubberware	

Boxes	
Amazon	 2	 19.98	 19.98	 19.98	

Relay	Module	 Amazon	 1	 5.50	 5.50	 5.50	
DC	Fan	 Amazon	 1	 9.99	 9.99	 9.99	

PMSA003I	
PM2.5	Sensors	

Adafruit	
Industries	

2	 39.95	 39.95	 39.95	

SCD30	CO2	
Sensors	

Sensirion	 2	 128.80	 128.80	 128.80	

Big	Fan	 Mouser	 1	 28.88	 28.88	 28.88	
ESP32	

Microcontroller	
Amazon	 1	 10.99	 10.99	 10.99	

Total	 	 	 	 	 324.96	
 

Schedule	

Week	 Task	 Group	Member	

2/20	-	2/27	 ● Order	remaining	parts	
● Complete	design	document	
● Start	PCB	design	
● Prepare	for	design	review	on	02/27	
● Finish	team	contract	(due	02/24)	

● All	

2/27	-	3/06		 ● Complete	PCB	design	and	pass	audit	(03/07	due	
date)	

● Meet	with	machine	shop	to	manufacture	
enclosure	

● Test	sensors	with	Verilog	code	via	I2C	protocol	
● Test	the	blower	control	circuit	
● Test	microcontroller	

● All	
	
	
	

● Omar	
	

● Karthik	
● Prithvi	

3/06	-	3/13	 ● Assemble	blower		
● Test	efficiency	of	dust	filter	by	utilizing	blower	

and	PM2.5	sensors	

● Karthik	
● Omar	
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● Complete	teamwork	evaluation	(due	03/08)	
● Make	sure	nothing	else	is	needed	of	machine	shop	

(revisions	due	03/10)	

● All	

3/13	-	3/20	 ● Spring	break	 	

3/20	-	3/27	 ● Integrate	sensors	with	PCB	board	
● Make	sure	microcontroller	is	capable	of	receiving	

data	from	sensors	

● Prithvi	
and	Omar	

3/27	-	4/03	 ● Complete	individual	progress	reports	(due	
03/29)	

● Make	sure	microcontroller	is	able	to	
communicate	with	blower	

● All	
● Karthik	

and	
Prithvi	

4/03	-	4/10	 ● Program	microcontroller	to	change	blower	speed	
depending	on	readings	from	sensors	(PM2.5	and	
CO2)	

● Start	assembling	enclosure	with	PCB,	blower,	and	
filter	

● All	

4/10	-	4/17	 ● Complete	team	contract	fulfillment	(due	04/14)	
● Continue	maximizing	efficiency	for	data	

collection,	blower	control,	dust	filtration,	and	air	
circulation	

● Start	on	presentation	powerpoint	

● All	

4/17	-	4/24	 ● Mock	demo	
● Make	changes	based	on	feedback	from	mock	

demo	
● Complete	presentation	preparations	

● All	

4/24	-	05/01	 ● Final	demo	and	mock	presentation	 ● All	

05/01	-	05/08	 ● Final	presentation	
● Finish	final	paper	(due	05/03)	

● All	
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