

Abstract

The project aims to create a device that displays physical text as physical braille for the visually

impaired. Most, if not all functionality was achieved in all separate subsystems, however system

integration was not. The following report details the goals set at the start of the project,

technical specifications of the project, what was successfully accomplished in the subsystems,

what and how things failed in the system integration, the costs of the project, and finally, our

concluding thoughts with regards to the project as a whole.

2

Contents
1. Introduction.. 4

1.1 Problem...4

1.2 Solution...4

1.3 High-Level Requirement..4

1.4 Block diagram... 4

2 Design.. 5

2.1 Power Management Subsystem... 5

2.2 Sensor Subsystem... 7

2.3 Control Unit Subsystem...7

2.4 User Interface Subsystem..9

3. Design Verification.. 10

3.1 Power Management Subsystem... 10

3.1.1 Voltage regulators.. 10

3.1.2 Battery Charging Circuit... 11

3.2 Sensor Subsystem... 12

3.3 Control Unit Subsystem.. 12

3.4 User Interface Subsystem... 13

4. Costs... 14

4.1 Parts.. 14

4.2 Labor... 17

5. Conclusion.. 18

5.1 Conclusion...18

5.2 Ethical considerations... 18

5.3 Future work...18

References.. 19

Appendix A: Requirement and Verification Table... 20

Appendix B: Camera code...21

Appendix C: OCR code.. 35

3

1. Introduction

1.1 Problem
According to the World Health Organization, there are around 39 million people who are legally

blind around the world. The question we attempted to address is how can we aid the visually impaired

navigate a world that is designed for the abled? Our answer to this question was to make information

available to the visually impaired.

1.2 Solution
We attempted to create a device that converts physical text into physical braille. The device is a

box with a camera sensor on the bottom, pins that stick out the top, and everything else necessary to

power and drive the device inside the box.

The device is operated by holding the box over the text that the user wants displayed. The box takes an

image of the text, and the braille pins start spelling out the text that has been read by the camera sensor.

1.3 High-Level Requirement
1. Text character to braille display accuracy is at least 90%

2. Battery life lasts 8 hours for an all-day battery life

3. All pins extend to 0.35+0.1 cm high in less than 1 second

1.4 Block diagram

Figure 1. Block diagram

4

2 Design

2.1 Power Management Subsystem
The three core aspects of our power management subsystems are the battery charging

circuit, the 5V regulator, and the 3.3V regulator. This was slightly changed from our very first

design which was to use a 3.7 volt battery, with a 5 volt boost converter. We decided that using

a 7.2 Volt battery would be easier as we could power the solenoids directly from the battery,

and use a 5 volt regulator for the power to the microcontroller. Our 5 and 3.3 volt regulators

used appropriate voltage regulator ICs with capacitors connecting the input and output to

ground. Our battery charging circuit used an adjustable voltage regulator which would be set

before charging to safely charge the battery. We also planned to use a USB-C to try and charge

the battery, but we decided to leave it out of the final product as soldering it was nearly

impossible for us to do.

Figure 2. Schematic of the 5V regulator

Figure 3. Schematic of the 3.3V regulator

5

Figure 4. Schematic of the battery charging circuit

Figure 5. USB-C connections

6

2.2 Sensor Subsystem

For the Sensor Subsystem we choose to use the OV7670 camera. The reason we chose

this camera was because of its affordability and we knew that it would be compatible with our

microcontroller. We also looked at some raspberry pi cameras, which were a bit nice but

decided against them due to the reason mentioned above. The code we used to receive images

from the camera, modified for the arduino uno, can be seen in Appendix B.

To connect the camera to the microcontroller to the PCB, we used an 18-pin connector

footprint so that we could make the connection between the pcb and camera using jumper

wires. Each part of the 18-pin connector was connected to either a port on the Atmega32U4, to

3.3 volts, or to ground.

Figure 6. Camera connections

2.3 Control Unit Subsystem

At the heart of the control unit subsystem is the Optical Character Recognition (OCR)

engine. Tesseract was the OCR engine of choice because it was well-documented as an open

source machine learning (ML) based OCR engine, accurate, and easy to interface with. A simple

python script was written to wrap around the OCR engine and deal with the preprocessing of

the images. Given an image file, the script runs preprocessing algorithms on the image, then

runs the processed image through the OCR engine, outputting the ASCII characters as a string.

The python script is running on Ubuntu 22.04 on the Libre AML-S905X-CC microcontroller. Due

to reasons discussed later, the interfacing between the microcontroller and the microprocessor

on the PCB was not accomplished, however, the intended design was to have them

communicate these character strings via the serial data transmission line on the GPIO header.

7

Figure 7. Circuit for the Atmega32U4 microcontroller, oscillator and camera button circuit

8

2.4 User Interface Subsystem

Our first step in designing the user interface system was to figure out what type of

motor we should use to make the pins of our braille character. In our initial talk with the

machine shop,we came to the conclusion that solenoids, with the pin being the braille dot,

would work best. The next design step was designing a circuit to turn the solenoids on and off

with the microcontroller, but where the solenoids would be receiving current directly from the

battery as each solenoid requires around 1 amp of current, requiring a maximum of 5 amps

which our microcontroller would not be able to supply. The idea we came up with was to use a

NMOS transistor, where the output of the microcontroller would be connected to the gate

voltage, the solenoid would be connected between the drain of the transistor and the positive

terminal of the battery, and the source would be connected to ground.

Our final Design for our solenoid drivers can be seen in Figure 8. In addition to our initial

design design we had a voltage divider circuit with a parallel capacitor. The voltage divider

ended up not being necessary, which is why we made the first resistor ten times less than the

second resistor. The capacitors were to reduce the effect of noise. The diodes are in parallel

with the solenoids and facing the opposite direction to eliminate discharge from the solenoid

into the rest of the circuit when the solenoid is turned off.

Figure 8. Driver circuit for our six solenoids

9

3. Design Verification

Unfortunately, we were not able to fully integrate each subsystem with each other to

produce a working final product. This is in large part due to not being able to program the

microcontroller on the pcb. However, we were able to get each of our subsystems working

independently from each other.

3.1 Power Management Subsystem

As mentioned previously, the three core aspects of our power management subsystems

are the battery charging circuit, the 5V regulator, and the 3.3V regulator and each of them has

their own design verification.

3.1.1 Voltage regulators

We used a voltmeter to test both voltage regulators in our circuit. After plugging in the

battery and turning on the power switch we measured the voltages between the ground plane

on the PCB board and the output node on each voltage regulator. In figure 9 below we can see

the output voltage of the 5V regulator, while in figure 10 we can see the output voltage of the

3.3V regulator:

Figure 9. Output voltage of the 5V regulator

10

Figure 10. Output voltage of the 3.3V regulator

3.1.2 Battery Charging Circuit

Due to difficulties with the USB-C connector, we decided to use one of the power

supplies in the lab to test our battery charging circuit. We used 12V, and tested the charger by

connecting the positive end of the power supply to a wire soldered to Vbus and the negative

end of the power supply to ground. After using the potentiometer to adjust the output voltage

of the voltage regulator, we connected both the battery and the power supply, with the switch

to the rest of the circuit turned off. We recorded the battery voltage before charging and after

leaving the power supply connected for about a minute. As can be seen in figure 11, the overall

voltage of the battery increased by about 14 mV.

Figure 11. Battery voltages before (left) and after (right) charging for a short period of time

11

3.2 Sensor Subsystem
As we were unable to program the pcb microcontroller, we decided to run the code we

had for the camera on the arduino uno. Using the arduino uno allowed us to connect it to a

laptop and display the images we were taking with the camera, which can be seen below in

figure 12.

Figure 12. Laptop receiving images taken by the camera using the arduino uno

3.3 Control Unit Subsystem

A dataset of images of single characters (A-Z, 0-9), labeled by folders was acquired to

test the accuracy of the OCR. A script crawled through the dataset and fed each image through

the OCR engine without any preprocessing to establish a baseline accuracy of 67%. The accuracy

was calculated by a simple division (# of images accurately labeled / # of images fed through

total). In order to meet the high-level accuracy requirement of 90%, three preprocessing

methods were integrated using the open source OpenCV image/video processing library.

Grayscaling changed each of the pictures to pure black and white and increased the accuracy by

3%. Noise removal got rid of unwanted specs that weren’t in the body of the text character and

increased the accuracy by 5%. Two methods of thresholding, simple binary and Otsu’s

binarization were used to dramatically increase the contrast of the image, making the text

character better visible against the background. Simple binary set a manual value while Otsu’s

binarization calculated an ideal thresholding value based on the information from each image.

Both thresholding methods working in tandem increased the accuracy by 14%.

12

Figure 13. OCR accuracy results calculated on microcontroller

3.4 User Interface Subsystem

To test the user interface system, we soldered wires to the nodes where the outputs of

the pcb microcontroller connected to the RC circuit. These wires were connected to an Arduino

Uno which was programmed to continuously output each letter of the alphabet, one letter at a

time. Both the arduino uno and the solenoids and the Arduino Uno were powered by our

battery and we were able to get each letter to output correctly. An image from the test can be

seen in figure 13 which shows the letter Q with the solenoids.

Figure 14. Letter Q displayed on solenoid

13

4. Costs

In order to carry out this project, some electronic components were ordered through major

electronic components distributors, such as Digi-Key, Mouser Electronics, Texas Instruments,

and others. We also used the machine shop at the University of Illinois at Urbana-Champaign to

design the containment unit for our project.

4.1 Parts

The table below shows most of these electronic components and their prices:

Description Manufacturer Part # Quantity Total actual

cost ($)

Linear Actuator Sparkfun ROB-11015 6 29.70

Atmega32u4

(microcontroller on

the PCB board)

Atmel 32u4 1 5.22

Arduino Uno

(microcontroller for

PCB board)

Arduino Uno A000066 1 27.60

Le Potato

Microcontroller

(microcontroller for

OCR testing)

Libre AML-S905X-CC 1 35.00

USB AVR

Programmer

MDFLY PGM-AV0010FBA 1 11.95

Camera Olimex OV7670 1 5.70

Battery Jauch Quartz LI18650JP2S1P 1 14.95

3V regulator Onsemi NCP565D2T33R4G 1 2.38

5V regulator Texas

Instruments
LM7805CT/NOPB

1 1.41

14

On/Off switch ZF SRB22A2DBBNN 1 1.41

USB-C Molex 1054440011 1 3.01

Oscillator Abracon AWSCR-16.00CV-T 1 0.46

6 pin connector

header

Würth 61200621621 1 0.48

2 pin connector

header

Molex 0022232021 11 1.67

100μF capacitor TDK 445-6007-6-ND 7 7.84

10μF capacitor Murata GRM21BC81E106ME51L 1 0.23

1μF capacitor Kemet C0805C105M4RAC7800 2 0.46

0.22μF capacitor Kyocera 08055C224KAT2A 4 0.76

1000pF capacitor Kyocera 478-1328-6-ND 6 0.72

20pF capacitor Murata GQM2195C2E200JB12D 2 1.22

1MΩ resistor Vishay 749-1721-6-ND 1 0.36

100KΩ resistor TE connectivity CPF0805B100KE1 6 3.72

10KΩ resistor Yageo RC0805JR-1310KL 3 0.27

5.11KΩ resistor Panasonic ERJ-6ENF5111V 1 0.10

2.2KΩ resistor Panasonic ERJ-P06J222V 1 0.12

1KΩ resistor Panasonic ERJ-P06J102V 3 0.30

470Ω resistor Panasonic ERJ-P06J471V 3 0.36

160Ω resistor Vishay 541-160CDKR-ND 6 0.54

47Ω resistor TE Connectivity CRGCQ0603F47R 1 0.15

15

1Ω resistor Panasonic ERJ-6GEYJ1R0V 1 0.09

50V diode Diotec 1N4001 1 0.40

30V diode Nexperia 632723300011 6 1.32

20V diode Micro

commercial

MBR0520L-TP 1 0.45

1KΩ potentiometer Bourns PTV09A-4225F-B102 1 0.89

Heat sink Ohmite RA-T2X-25E 1 2.09

BJTs Toshiba 2SC4213BTE85LF 2 0.80

NMOS Transistor Texas

Instruments

CSD16301Q2 6 3.84

Total $167.97

Table 1. Parts cost

16

4.2 Labor

To carry out this project we would expect a salary of around 30 $/hour.

Each team member will work an estimate of 100 hours on their own to complete their work.

That means that we would expect a total salary of around 30 $/hour * 2.5 * 100 hours = $7,500

per team member.

If we multiply this salary times the number of people in the team we get a total amount of

$7,500 * 3 people = $22,500 in labor cost.

Work Type Samuel’s Hours Abraham’s Hours Alejandro’s Hours

PCB design 25 0 25

Soldering 20 0 20

OCR Programming 0 35 0

Debugging 30 40 30

Writing reports and
documentation

25 25 25

Table 2. Hours spent by each team member on each work type

The machine shop in UIUC will be used while carrying out this project. According to their

webpage [3], their cost is $38.17/hour. After talking with the machine shop and giving them our

parts, we estimate they took about 6 hrs from those couple of days to complete our project.

Therefore, the total cost for the UIUC machine shop should be $38.17 * 6 hours = $229.02.

The total parts cost, as seen on table 1 is $167.97

Therefore, the total cost of the project is equal to:

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑙𝑎𝑏𝑜𝑟 + 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑠ℎ𝑜𝑝 + 𝑝𝑎𝑟𝑡𝑠 = $22, 500 + $229. 02 + $167. 97 = $22, 896. 99

17

5. Conclusion

5.1 Conclusion
In the process of developing our project our largest obstacles were in implementing full

system integration. We fell short on this aspect of the project and therefore were unable to

produce a device that accomplished our initial goal of displaying physical text in physical braille.

However, each subsystem met most, if not all, subsystem requirements. We were able to

demonstrate functionality from each of the individual subsystems.

5.2 Ethical considerations
We followed the IEEE Code of Ethics [2] in the development and design of our project.

We firstly focused on having good teamwork. We treated everyone in an equal manner and with

respect. Everyone had access to all the information that was used in the development of our

project, and everyone was kept up to date with the progress of the project. We placed a large

importance on the safety of each team member and the user by minimizing the safety risk of

the battery we used for our device. The safety concerns were addressed through the design of

the charging system, slowing the rate of charging, and the way that the battery was housed to

avoid any damage or puncture to the battery. In the pursuit of aiding the visually impaired, we

recognize the ethical concerns of providing accurate information to the users of our device. We

recognize that a user may depend on the accuracy of the data that is read in order to inform

their decisions in their life, potentially life threatening decisions. To address this we wholly

maximized the accuracy of our device as best as we could.

5.3 Future work
The first step in any future work for this project would be to achieve integration of all of

our subsystems to provide a working product. This would start with a redesign of the PCB

layout, as we made errors with connecting grounding planes, which we believe caused us to be

able to program the microcontroller.

After achieving a working prototype we would want to work on improving the camera

sensor subsystem. Our current camera has a max resolution of 640x480 which makes getting

images that we can get characters difficult. Our camera speed as well is also unimpressive as it

takes around 20 seconds to get an image, which is a lot slower than we want it to be.

18

References

[1]. WHO. “Blindness and vision impairment” (2022), [Online]. Available:
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment (visited on
02/09/2023).

[2]. IEEE. “”IEEE Code of Ethics”.” (2020), [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html (visited on 02/09/2023).

[3]. Machine Shop, School of Chemical Sciences at UIUC. [Online]. Available:
https://scs.illinois.edu/resources/cores-scs-service-facilities/machine-shop (visited on
02/23/2023).

[4]. Salary averages. The Grainger college of engineering. [Online]. Available:
https://ece.illinois.edu/admissions/why-ece/salary-averages (visited on 02/23/2023).

[5]“Solenoid Driver Circuit,” circuitdigest.com.
https://circuitdigest.com/electronic-circuits/solenoid-driver-circuit-diagram (accessed May 03,
2023).

[6].“How to add USB-C to your projects - PCB Design Tutorial - PCBway,” www.pcbway.com.
https://www.pcbway.com/blog/PCB_Design_Tutorial/How_to_add_USB_C_to_your_projects.ht
ml (accessed May 03, 2023).

[7].Punkisnail, “Li-ion Battery Charger,” Instructables.
https://www.instructables.com/Li-ion-Battery-Charger/ (accessed May 03, 2023).

[8].“How to Use OV7670 Camera Module with Arduino Uno,” Circuitdigest.com, 2019.
https://circuitdigest.com/microcontroller-projects/how-to-use-ov7670-camera-module-with-arduin
o

19

Appendix A: Requirement and Verification Table

Requirement Verification Verificatio
n status
(Y or N)

The Voltage regulator will limit the
Voltage to the correct value for each
system component.

Use an oscilloscope to measure voltage
through voltage regulators under normal
operation. Expected measurement
should be 3.3+0.1V and 5.0+0.2 V

Y

The Power Management Subsystem
will be able to safely charge the battery

The voltage regulator increases the
voltage to 7.2 V and can be used to
charge the LiPo battery. The voltage can
be measured during testing using a
voltmeter to ensure there is the expected
voltage.

Y

The camera must be able to take at
least a 480p resolution photo and send
the data to the Control Unit system
whenever the take photo button is
pressed.

The OCR testing software receives 480p
resolution photos on photo button press.

Y
Used
laptop
with serial
connection
rather than
button

The ML algorithm on the
microprocessor must be able to
analyze image data and convert to
character texts with 90% accuracy rate.

The OCR testing suite will use a test
dataset of 480p resolution images of
characters, the ML algorithm will be run
against this dataset to determine its
accuracy.

Y

The character text data is converted
into signals that are sent to the motors
to form Braille characters for all 63
Braille characters

Test software will be written in order to
replicate converted signals from the ML
algorithm. All 63 Braille character signals
will be sent to the motors one by one and
the correct formation will be verified by
eye.

Y

The Motors must be able to lift the pins
0.35+0.1 cm high and to lower them in
less than 1 second when forming the
braille characters.

Measure rise height when all solenoids
are powered on, and use a ruler to check
height.

Y

Table 3. System requirements and verifications

20

Appendix B: Camera Code

#include <stdint.h>

#include <avr/io.h>

#include <util/twi.h>

#include <util/delay.h>

#include <avr/pgmspace.h>

#define F_CPU 16000000UL

#define vga 0

#define qvga 1

#define qqvga 2

#define yuv422 0

#define rgb565 1

#define bayerRGB 2

#define camAddr_WR 0x42

#define camAddr_RD 0x43

/* Registers */

#define REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */

#define REG_BLUE 0x01 /* blue gain */

#define REG_RED 0x02 /* red gain */

#define REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */

#define REG_COM1 0x04 /* Control 1 */

#define COM1_CCIR656 0x40 /* CCIR656 enable */

#define REG_BAVE 0x05 /* U/B Average level */

#define REG_GbAVE 0x06 /* Y/Gb Average level */

#define REG_AECHH 0x07 /* AEC MS 5 bits */

#define REG_RAVE 0x08 /* V/R Average level */

#define REG_COM2 0x09 /* Control 2 */

#define COM2_SSLEEP 0x10 /* Soft sleep mode */

#define REG_PID 0x0a /* Product ID MSB */

#define REG_VER 0x0b /* Product ID LSB */

#define REG_COM3 0x0c /* Control 3 */

#define COM3_SWAP 0x40 /* Byte swap */

#define COM3_SCALEEN 0x08 /* Enable scaling */

#define COM3_DCWEN 0x04 /* Enable downsamp/crop/window */

#define REG_COM4 0x0d /* Control 4 */

#define REG_COM5 0x0e /* All "reserved" */

#define REG_COM6 0x0f /* Control 6 */

#define REG_AECH 0x10 /* More bits of AEC value */

#define REG_CLKRC 0x11 /* Clocl control */

21

#define CLK_EXT 0x40 /* Use external clock directly */

#define CLK_SCALE 0x3f /* Mask for internal clock scale */

#define REG_COM7 0x12 /* Control 7 */ //REG mean address.

#define COM7_RESET 0x80 /* Register reset */

#define COM7_FMT_MASK 0x38

#define COM7_FMT_VGA 0x00

#define COM7_FMT_CIF 0x20 /* CIF format */

#define COM7_FMT_QVGA 0x10 /* QVGA format */

#define COM7_FMT_QCIF 0x08 /* QCIF format */

#define COM7_RGB 0x04 /* bits 0 and 2 - RGB format */

#define COM7_YUV 0x00 /* YUV */

#define COM7_BAYER 0x01 /* Bayer format */

#define COM7_PBAYER 0x05 /* "Processed bayer" */

#define REG_COM8 0x13 /* Control 8 */

#define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */

#define COM8_AECSTEP 0x40 /* Unlimited AEC step size */

#define COM8_BFILT 0x20 /* Band filter enable */

#define COM8_AGC 0x04 /* Auto gain enable */

#define COM8_AWB 0x02 /* White balance enable */

#define COM8_AEC 0x01 /* Auto exposure enable */

#define REG_COM9 0x14 /* Control 9- gain ceiling */

#define REG_COM10 0x15 /* Control 10 */

#define COM10_HSYNC 0x40 /* HSYNC instead of HREF */

#define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */

#define COM10_HREF_REV 0x08 /* Reverse HREF */

#define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */

#define COM10_VS_NEG 0x02 /* VSYNC negative */

#define COM10_HS_NEG 0x01 /* HSYNC negative */

#define REG_HSTART 0x17 /* Horiz start high bits */

#define REG_HSTOP 0x18 /* Horiz stop high bits */

#define REG_VSTART 0x19 /* Vert start high bits */

#define REG_VSTOP 0x1a /* Vert stop high bits */

#define REG_PSHFT 0x1b /* Pixel delay after HREF */

#define REG_MIDH 0x1c /* Manuf. ID high */

#define REG_MIDL 0x1d /* Manuf. ID low */

#define REG_MVFP 0x1e /* Mirror / vflip */

#define MVFP_MIRROR 0x20 /* Mirror image */

#define MVFP_FLIP 0x10 /* Vertical flip */

#define REG_AEW 0x24 /* AGC upper limit */

#define REG_AEB 0x25 /* AGC lower limit */

#define REG_VPT 0x26 /* AGC/AEC fast mode op region */

#define REG_HSYST 0x30 /* HSYNC rising edge delay */

#define REG_HSYEN 0x31 /* HSYNC falling edge delay */

22

#define REG_HREF 0x32 /* HREF pieces */

#define REG_TSLB 0x3a /* lots of stuff */

#define TSLB_YLAST 0x04 /* UYVY or VYUY - see com13 */

#define REG_COM11 0x3b /* Control 11 */

#define COM11_NIGHT 0x80 /* NIght mode enable */

#define COM11_NMFR 0x60 /* Two bit NM frame rate */

#define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */

#define COM11_50HZ 0x08 /* Manual 50Hz select */

#define COM11_EXP 0x02

#define REG_COM12 0x3c /* Control 12 */

#define COM12_HREF 0x80 /* HREF always */

#define REG_COM13 0x3d /* Control 13 */

#define COM13_GAMMA 0x80 /* Gamma enable */

#define COM13_UVSAT 0x40 /* UV saturation auto adjustment */

#define COM13_UVSWAP 0x01 /* V before U - w/TSLB */

#define REG_COM14 0x3e /* Control 14 */

#define COM14_DCWEN 0x10 /* DCW/PCLK-scale enable */

#define REG_EDGE 0x3f /* Edge enhancement factor */

#define REG_COM15 0x40 /* Control 15 */

#define COM15_R10F0 0x00 /* Data range 10 to F0 */

#define COM15_R01FE 0x80 /* 01 to FE */

#define COM15_R00FF 0xc0 /* 00 to FF */

#define COM15_RGB565 0x10 /* RGB565 output */

#define COM15_RGB555 0x30 /* RGB555 output */

#define REG_COM16 0x41 /* Control 16 */

#define COM16_AWBGAIN 0x08 /* AWB gain enable */

#define REG_COM17 0x42 /* Control 17 */

#define COM17_AECWIN 0xc0 /* AEC window - must match COM4 */

#define COM17_CBAR 0x08 /* DSP Color bar */

/*

* This matrix defines how the colors are generated, must be

* tweaked to adjust hue and saturation.

*

* Order: v-red, v-green, v-blue, u-red, u-green, u-blue

* They are nine-bit signed quantities, with the sign bit

* stored in0x58.Sign for v-red is bit 0, and up from there.

*/

#define REG_CMATRIX_BASE 0x4f

#define CMATRIX_LEN 6

#define REG_CMATRIX_SIGN 0x58

#define REG_BRIGHT 0x55 /* Brightness */

#define REG_CONTRAS 0x56 /* Contrast control */

#define REG_GFIX 0x69 /* Fix gain control */

23

#define REG_REG76 0x76 /* OV's name */

#define R76_BLKPCOR 0x80 /* Black pixel correction enable */

#define R76_WHTPCOR 0x40 /* White pixel correction enable */

#define REG_RGB444 0x8c /* RGB 444 control */

#define R444_ENABLE 0x02 /* Turn on RGB444, overrides 5x5 */

#define R444_RGBX 0x01 /* Empty nibble at end */

#define REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */

#define REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */

#define REG_BD50MAX 0xa5 /* 50hz banding step limit */

#define REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */

#define REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */

#define REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */

#define REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */

#define REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */

#define REG_BD60MAX 0xab /* 60hz banding step limit */

#define REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */

#define REG_BLUE 0x01 /* blue gain */

#define REG_RED 0x02 /* red gain */

#define REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */

#define REG_COM1 0x04 /* Control 1 */

#define COM1_CCIR656 0x40 /* CCIR656 enable */

#define REG_BAVE 0x05 /* U/B Average level */

#define REG_GbAVE 0x06 /* Y/Gb Average level */

#define REG_AECHH 0x07 /* AEC MS 5 bits */

#define REG_RAVE 0x08 /* V/R Average level */

#define REG_COM2 0x09 /* Control 2 */

#define COM2_SSLEEP 0x10 /* Soft sleep mode */

#define REG_PID 0x0a /* Product ID MSB */

#define REG_VER 0x0b /* Product ID LSB */

#define REG_COM3 0x0c /* Control 3 */

#define COM3_SWAP 0x40 /* Byte swap */

#define COM3_SCALEEN 0x08 /* Enable scaling */

#define COM3_DCWEN 0x04 /* Enable downsamp/crop/window */

#define REG_COM4 0x0d /* Control 4 */

#define REG_COM5 0x0e /* All "reserved" */

#define REG_COM6 0x0f /* Control 6 */

#define REG_AECH 0x10 /* More bits of AEC value */

#define REG_CLKRC 0x11 /* Clocl control */

#define CLK_EXT 0x40 /* Use external clock directly */

#define CLK_SCALE 0x3f /* Mask for internal clock scale */

#define REG_COM7 0x12 /* Control 7 */

#define COM7_RESET 0x80 /* Register reset */

#define COM7_FMT_MASK 0x38

24

#define COM7_FMT_VGA 0x00

#define COM7_FMT_CIF 0x20 /* CIF format */

#define COM7_FMT_QVGA 0x10 /* QVGA format */

#define COM7_FMT_QCIF 0x08 /* QCIF format */

#define COM7_RGB 0x04 /* bits 0 and 2 - RGB format */

#define COM7_YUV 0x00 /* YUV */

#define COM7_BAYER 0x01 /* Bayer format */

#define COM7_PBAYER 0x05 /* "Processed bayer" */

#define REG_COM8 0x13 /* Control 8 */

#define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */

#define COM8_AECSTEP 0x40 /* Unlimited AEC step size */

#define COM8_BFILT 0x20 /* Band filter enable */

#define COM8_AGC 0x04 /* Auto gain enable */

#define COM8_AWB 0x02 /* White balance enable */

#define COM8_AEC 0x01 /* Auto exposure enable */

#define REG_COM9 0x14 /* Control 9- gain ceiling */

#define REG_COM10 0x15 /* Control 10 */

#define COM10_HSYNC 0x40 /* HSYNC instead of HREF */

#define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */

#define COM10_HREF_REV 0x08 /* Reverse HREF */

#define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */

#define COM10_VS_NEG 0x02 /* VSYNC negative */

#define COM10_HS_NEG 0x01 /* HSYNC negative */

#define REG_HSTART 0x17 /* Horiz start high bits */

#define REG_HSTOP 0x18 /* Horiz stop high bits */

#define REG_VSTART 0x19 /* Vert start high bits */

#define REG_VSTOP 0x1a /* Vert stop high bits */

#define REG_PSHFT 0x1b /* Pixel delay after HREF */

#define REG_MIDH 0x1c /* Manuf. ID high */

#define REG_MIDL 0x1d /* Manuf. ID low */

#define REG_MVFP 0x1e /* Mirror / vflip */

#define MVFP_MIRROR 0x20 /* Mirror image */

#define MVFP_FLIP 0x10 /* Vertical flip */

#define REG_AEW 0x24 /* AGC upper limit */

#define REG_AEB 0x25 /* AGC lower limit */

#define REG_VPT 0x26 /* AGC/AEC fast mode op region */

#define REG_HSYST 0x30 /* HSYNC rising edge delay */

#define REG_HSYEN 0x31 /* HSYNC falling edge delay */

#define REG_HREF 0x32 /* HREF pieces */

#define REG_TSLB 0x3a /* lots of stuff */

#define TSLB_YLAST 0x04 /* UYVY or VYUY - see com13 */

#define REG_COM11 0x3b /* Control 11 */

#define COM11_NIGHT 0x80 /* NIght mode enable */

25

#define COM11_NMFR 0x60 /* Two bit NM frame rate */

#define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */

#define COM11_50HZ 0x08 /* Manual 50Hz select */

#define COM11_EXP 0x02

#define REG_COM12 0x3c /* Control 12 */

#define COM12_HREF 0x80 /* HREF always */

#define REG_COM13 0x3d /* Control 13 */

#define COM13_GAMMA 0x80 /* Gamma enable */

#define COM13_UVSAT 0x40 /* UV saturation auto adjustment */

#define COM13_UVSWAP 0x01 /* V before U - w/TSLB */

#define REG_COM14 0x3e /* Control 14 */

#define COM14_DCWEN 0x10 /* DCW/PCLK-scale enable */

#define REG_EDGE 0x3f /* Edge enhancement factor */

#define REG_COM15 0x40 /* Control 15 */

#define COM15_R10F0 0x00 /* Data range 10 to F0 */

#define COM15_R01FE 0x80 /* 01 to FE */

#define COM15_R00FF 0xc0 /* 00 to FF */

#define COM15_RGB565 0x10 /* RGB565 output */

#define COM15_RGB555 0x30 /* RGB555 output */

#define REG_COM16 0x41 /* Control 16 */

#define COM16_AWBGAIN 0x08 /* AWB gain enable */

#define REG_COM17 0x42 /* Control 17 */

#define COM17_AECWIN 0xc0 /* AEC window - must match COM4 */

#define COM17_CBAR 0x08 /* DSP Color bar */

#define CMATRIX_LEN 6

#define REG_BRIGHT 0x55 /* Brightness */

#define REG_REG76 0x76 /* OV's name */

#define R76_BLKPCOR 0x80 /* Black pixel correction enable */

#define R76_WHTPCOR 0x40 /* White pixel correction enable */

#define REG_RGB444 0x8c /* RGB 444 control */

#define R444_ENABLE 0x02 /* Turn on RGB444, overrides 5x5 */

#define R444_RGBX 0x01 /* Empty nibble at end */

#define REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */

#define REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */

#define REG_BD50MAX 0xa5 /* 50hz banding step limit */

#define REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */

#define REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */

#define REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */

#define REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */

#define REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */

#define REG_BD60MAX 0xab /* 60hz banding step limit */

#define MTX1 0x4f /* Matrix Coefficient 1 */

#define MTX2 0x50 /* Matrix Coefficient 2 */

26

#define MTX3 0x51 /* Matrix Coefficient 3 */

#define MTX4 0x52 /* Matrix Coefficient 4 */

#define MTX5 0x53 /* Matrix Coefficient 5 */

#define MTX6 0x54 /* Matrix Coefficient 6 */

#define REG_CONTRAS 0x56 /* Contrast control */

#define MTXS 0x58 /* Matrix Coefficient Sign */

#define AWBC7 0x59 /* AWB Control 7 */

#define AWBC8 0x5a /* AWB Control 8 */

#define AWBC9 0x5b /* AWB Control 9 */

#define AWBC10 0x5c /* AWB Control 10 */

#define AWBC11 0x5d /* AWB Control 11 */

#define AWBC12 0x5e /* AWB Control 12 */

#define REG_GFI 0x69 /* Fix gain control */

#define GGAIN 0x6a /* G Channel AWB Gain */

#define DBLV 0x6b

#define AWBCTR3 0x6c /* AWB Control 3 */

#define AWBCTR2 0x6d /* AWB Control 2 */

#define AWBCTR1 0x6e /* AWB Control 1 */

#define AWBCTR0 0x6f /* AWB Control 0 */

struct regval_list{

uint8_t reg_num;

uint16_t value;

};

const struct regval_list qvga_ov7670[] PROGMEM = {

{ REG_COM14, 0x19 },

{ 0x72, 0x11 },

{ 0x73, 0xf1 },

{ REG_HSTART, 0x16 },

{ REG_HSTOP, 0x04 },

{ REG_HREF, 0xa4 },

{ REG_VSTART, 0x02 },

{ REG_VSTOP, 0x7a },

{ REG_VREF, 0x0a },

{ 0xff, 0xff }, /* END MARKER */

};

const struct regval_list yuv422_ov7670[] PROGMEM = {

{ REG_COM7, 0x0 }, /* Selects YUV mode */

{ REG_RGB444, 0 }, /* No RGB444 please */

{ REG_COM1, 0 },

27

{ REG_COM15, COM15_R00FF },

{ REG_COM9, 0x6A }, /* 128x gain ceiling; 0x8 is reserved bit */

{ 0x4f, 0x80 }, /* "matrix coefficient 1" */

{ 0x50, 0x80 }, /* "matrix coefficient 2" */

{ 0x51, 0 }, /* vb */

{ 0x52, 0x22 }, /* "matrix coefficient 4" */

{ 0x53, 0x5e }, /* "matrix coefficient 5" */

{ 0x54, 0x80 }, /* "matrix coefficient 6" */

{ REG_COM13, COM13_UVSAT },

{ 0xff, 0xff }, /* END MARKER */

};

const struct regval_list ov7670_default_regs[] PROGMEM = {//from the linux

driver

{ REG_COM7, COM7_RESET },

{ REG_TSLB, 0x04 }, /* OV */

{ REG_COM7, 0 }, /* VGA */

/*

* Set the hardware window. These values from OV don't entirely

* make sense - hstop is less than hstart. But they work...

*/

{ REG_HSTART, 0x13 }, { REG_HSTOP, 0x01 },

{ REG_HREF, 0xb6 }, { REG_VSTART, 0x02 },

{ REG_VSTOP, 0x7a }, { REG_VREF, 0x0a },

{ REG_COM3, 0 }, { REG_COM14, 0 },

/* Mystery scaling numbers */

{ 0x70, 0x3a }, { 0x71, 0x35 },

{ 0x72, 0x11 }, { 0x73, 0xf0 },

{ 0xa2,/* 0x02 changed to 1*/1 }, { REG_COM10, 0x0 },

/* Gamma curve values */

{ 0x7a, 0x20 }, { 0x7b, 0x10 },

{ 0x7c, 0x1e }, { 0x7d, 0x35 },

{ 0x7e, 0x5a }, { 0x7f, 0x69 },

{ 0x80, 0x76 }, { 0x81, 0x80 },

{ 0x82, 0x88 }, { 0x83, 0x8f },

{ 0x84, 0x96 }, { 0x85, 0xa3 },

{ 0x86, 0xaf }, { 0x87, 0xc4 },

{ 0x88, 0xd7 }, { 0x89, 0xe8 },

28

/* AGC and AEC parameters. Note we start by disabling those features,

then turn them only after tweaking the values. */

{ REG_COM8, COM8_FASTAEC | COM8_AECSTEP },

{ REG_GAIN, 0 }, { REG_AECH, 0 },

{ REG_COM4, 0x40 }, /* magic reserved bit */

{ REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */

{ REG_BD50MAX, 0x05 }, { REG_BD60MAX, 0x07 },

{ REG_AEW, 0x95 }, { REG_AEB, 0x33 },

{ REG_VPT, 0xe3 }, { REG_HAECC1, 0x78 },

{ REG_HAECC2, 0x68 }, { 0xa1, 0x03 }, /* magic */

{ REG_HAECC3, 0xd8 }, { REG_HAECC4, 0xd8 },

{ REG_HAECC5, 0xf0 }, { REG_HAECC6, 0x90 },

{ REG_HAECC7, 0x94 },

{ REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_AGC | COM8_AEC },

{ 0x30, 0 }, { 0x31, 0 },//disable some delays

/* Almost all of these are magic "reserved" values. */

{ REG_COM5, 0x61 }, { REG_COM6, 0x4b },

{ 0x16, 0x02 }, { REG_MVFP, 0x07 },

{ 0x21, 0x02 }, { 0x22, 0x91 },

{ 0x29, 0x07 }, { 0x33, 0x0b },

{ 0x35, 0x0b }, { 0x37, 0x1d },

{ 0x38, 0x71 }, { 0x39, 0x2a },

{ REG_COM12, 0x78 }, { 0x4d, 0x40 },

{ 0x4e, 0x20 }, { REG_GFIX, 0 },

/*{0x6b, 0x4a},*/{ 0x74, 0x10 },

{ 0x8d, 0x4f }, { 0x8e, 0 },

{ 0x8f, 0 }, { 0x90, 0 },

{ 0x91, 0 }, { 0x96, 0 },

{ 0x9a, 0 }, { 0xb0, 0x84 },

{ 0xb1, 0x0c }, { 0xb2, 0x0e },

{ 0xb3, 0x82 }, { 0xb8, 0x0a },

/* More reserved magic, some of which tweaks white balance */

{ 0x43, 0x0a }, { 0x44, 0xf0 },

{ 0x45, 0x34 }, { 0x46, 0x58 },

{ 0x47, 0x28 }, { 0x48, 0x3a },

{ 0x59, 0x88 }, { 0x5a, 0x88 },

{ 0x5b, 0x44 }, { 0x5c, 0x67 },

{ 0x5d, 0x49 }, { 0x5e, 0x0e },

{ 0x6c, 0x0a }, { 0x6d, 0x55 }

{ 0x6e, 0x11 }, { 0x6f, 0x9e }, /* it was 0x9F "9e for advance AWB" */

{ 0x6a, 0x40 }, { REG_BLUE, 0x40 },

{ REG_RED, 0x60 },

29

{ REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_AGC | COM8_AEC | COM8_AWB

},

/* Matrix coefficients */

{ 0x4f, 0x80 }, { 0x50, 0x80 },

{ 0x51, 0 }, { 0x52, 0x22 },

{ 0x53, 0x5e }, { 0x54, 0x80 },

{ 0x58, 0x9e },

{ REG_COM16, COM16_AWBGAIN }, { REG_EDGE, 0 },

{ 0x75, 0x05 }, { REG_REG76, 0xe1 },

{ 0x4c, 0 }, { 0x77, 0x01 },

{ REG_COM13, /*0xc3*/0x48 }, { 0x4b, 0x09 },

{ 0xc9, 0x60 }, /*{REG_COM16, 0x38},*/

{ 0x56, 0x40 },

{ 0x34, 0x11 }, { REG_COM11, COM11_EXP | COM11_HZAUTO },

{ 0xa4, 0x82/*Was 0x88*/ }, { 0x96, 0 },

{ 0x97, 0x30 }, { 0x98, 0x20 },

{ 0x99, 0x30 }, { 0x9a, 0x84 },

{ 0x9b, 0x29 }, { 0x9c, 0x03 },

{ 0x9d, 0x4c }, { 0x9e, 0x3f },

{ 0x78, 0x04 },

/* Extra-weird stuff. Some sort of multiplexor register */

{ 0x79, 0x01 }, { 0xc8, 0xf0 },

{ 0x79, 0x0f }, { 0xc8, 0x00 },

{ 0x79, 0x10 }, { 0xc8, 0x7e },

{ 0x79, 0x0a }, { 0xc8, 0x80 },

{ 0x79, 0x0b }, { 0xc8, 0x01 },

{ 0x79, 0x0c }, { 0xc8, 0x0f },

{ 0x79, 0x0d }, { 0xc8, 0x20 },

{ 0x79, 0x09 }, { 0xc8, 0x80 },

{ 0x79, 0x02 }, { 0xc8, 0xc0 },

{ 0x79, 0x03 }, { 0xc8, 0x40 },

{ 0x79, 0x05 }, { 0xc8, 0x30 },

{ 0x79, 0x26 },

{ 0xff, 0xff }, /* END MARKER */

};

void error_led(void){

DDRB |= 32;//make sure led is output

30

while (1){//wait for reset

PORTB ^= 32;// toggle led

_delay_ms(100);

}

}

void twiStart(void){

TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN);//send start

while (!(TWCR & (1 << TWINT)));//wait for start to be transmitted

if ((TWSR & 0xF8) != TW_START)

error_led();

}

void twiWriteByte(uint8_t DATA, uint8_t type){

TWDR = DATA;

TWCR = _BV(TWINT) | _BV(TWEN);

while (!(TWCR & (1 << TWINT))) {}

if ((TWSR & 0xF8) != type)

error_led();

}

void twiAddr(uint8_t addr, uint8_t typeTWI){

TWDR = addr;//send address

TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start

transmission */

while ((TWCR & _BV(TWINT)) == 0); /* wait for transmission */

if ((TWSR & 0xF8) != typeTWI)

error_led();

}

void writeReg(uint8_t reg, uint8_t dat){

//send start condition

twiStart();

twiAddr(camAddr_WR, TW_MT_SLA_ACK);

twiWriteByte(reg, TW_MT_DATA_ACK);

twiWriteByte(dat, TW_MT_DATA_ACK);

TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO);//send stop

_delay_ms(1);

}

static uint8_t twiRd(uint8_t nack){

31

if (nack){

TWCR = _BV(TWINT) | _BV(TWEN);

while ((TWCR & _BV(TWINT)) == 0); /* wait for transmission */

if ((TWSR & 0xF8) != TW_MR_DATA_NACK)

error_led();

return TWDR;

}

else{

TWCR = _BV(TWINT) | _BV(TWEN) | _BV(TWEA);

while ((TWCR & _BV(TWINT)) == 0); /* wait for transmission */

if ((TWSR & 0xF8) != TW_MR_DATA_ACK)

error_led();

return TWDR;

}

}

uint8_t rdReg(uint8_t reg){

uint8_t dat;

twiStart();

twiAddr(camAddr_WR, TW_MT_SLA_ACK);

twiWriteByte(reg, TW_MT_DATA_ACK);

TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO);//send stop

_delay_ms(1);

twiStart();

twiAddr(camAddr_RD, TW_MR_SLA_ACK);

dat = twiRd(1);

TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO);//send stop

_delay_ms(1);

return dat;

}

void wrSensorRegs8_8(const struct regval_list reglist[]){

uint8_t reg_addr, reg_val;

const struct regval_list *next = reglist;

while ((reg_addr != 0xff) | (reg_val != 0xff)){

reg_addr = pgm_read_byte(&next->reg_num);

reg_val = pgm_read_byte(&next->value);

32

writeReg(reg_addr, reg_val);

next++;

}

}

void setColor(void){

wrSensorRegs8_8(yuv422_ov7670);

// wrSensorRegs8_8(qvga_ov7670);

}

void setResolution(void){

writeReg(REG_COM3, 4); // REG_COM3 enable scaling

wrSensorRegs8_8(qvga_ov7670);

}

void camInit(void){

writeReg(0x12, 0x80);

_delay_ms(100);

wrSensorRegs8_8(ov7670_default_regs);

writeReg(REG_COM10, 32);//PCLK does not toggle on HBLANK.

}

void arduinoUnoInut(void) {

cli();//disable interrupts

/* Setup the 8mhz PWM clock

* This will be on pin 11*/

DDRB |= (1 << 3);//pin 11

ASSR &= ~(_BV(EXCLK) | _BV(AS2));

TCCR2A = (1 << COM2A0) | (1 << WGM21) | (1 << WGM20);

TCCR2B = (1 << WGM22) | (1 << CS20);

OCR2A = 2;//(F_CPU)/(2*(X+1))

DDRC &= ~15;//low d0-d3 camera

DDRD &= ~252;//d7-d4 and interrupt pins

_delay_ms(3000);

//set up twi for 100khz

TWSR &= ~3;//disable prescaler for TWI

TWBR = 72;//set to 100khz

//enable serial

UBRR0H = 0;

33

UBRR0L = 1;//0 = 2M baud rate. 1 = 1M baud. 3 = 0.5M. 7 = 250k 207 is

9600 baud rate.

UCSR0A |= 2;//double speed aysnc

UCSR0B = (1 << RXEN0) | (1 << TXEN0);//Enable receiver and transmitter

UCSR0C = 6;//async 1 stop bit 8bit char no parity bits

}

void StringPgm(const char * str){

do{

while (!(UCSR0A & (1 << UDRE0)));//wait for byte to transmit

UDR0 = pgm_read_byte_near(str);

while (!(UCSR0A & (1 << UDRE0)));//wait for byte to transmit

} while (pgm_read_byte_near(++str));

}

static void captureImg(uint16_t wg, uint16_t hg){

uint16_t y, x;

StringPgm(PSTR("*RDY*"));

while (!(PIND & 8));//wait for high

while ((PIND & 8));//wait for low

y = hg;

while (y--){

x = wg;

//while (!(PIND & 256));//wait for high

while (x--){

while ((PIND & 4));//wait for low

UDR0 = (PINC & 15) | (PIND & 240);

while (!(UCSR0A & (1 << UDRE0)));//wait for byte to transmit

while (!(PIND & 4));//wait for high

while ((PIND & 4));//wait for low

while (!(PIND & 4));//wait for high

}

// while ((PIND & 256));//wait for low

}

_delay_ms(100);

}

void setup(){

arduinoUnoInut();

camInit();

setResolution();

setColor();

writeReg(0x11, 31); //Earlier it had the value:writeReg(0x11, 12); New

34

version works better for me :) !!!!

}

void loop(){

captureImg(320, 240);

}

Appendix C: OCR code

import cv2

import numpy as np

import os

import pytesseract

####### PREPROCESSING FUNCTIONS #######

get grayscale image

def get_grayscale(image):

return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

noise removal

def remove_noise(image):

return cv2.medianBlur(image,5)

#thresholding

def thresholding(image):

return cv2.threshold(image, 0, 255, cv2.THRESH_BINARY +

cv2.THRESH_OTSU)[1]

#dilation

def dilate(image):

kernel = np.ones((5,5),np.uint8)

return cv2.dilate(image, kernel, iterations = 1)

#erosion

def erode(image):

kernel = np.ones((5,5),np.uint8)

return cv2.erode(image, kernel, iterations = 1)

#opening - erosion followed by dilation

def opening(image):

35

kernel = np.ones((5,5),np.uint8)

return cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)

#canny edge detection

def canny(image):

return cv2.Canny(image, 100, 200)

#skew correction

def deskew(image):

coords = np.column_stack(np.where(image > 0))

angle = cv2.minAreaRect(coords)[-1]

if angle < -45:

angle = -(90 + angle)

else:

angle = -angle

(h, w) = image.shape[:2]

center = (w // 2, h // 2)

M = cv2.getRotationMatrix2D(center, angle, 1.0)

rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC,

borderMode=cv2.BORDER_REPLICATE)

return rotated

#template matching

def match_template(image, template):

return cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED)

####### END PREPROCESSING FUNCTIONS #######

testedCount = 0

correctCount = 0

flip = 1

Walk through all files in test_dataset

for root, dirs, files in os.walk(r'testing_data'):

dirs.sort()

Extract the correct char value from test data's directory name

currChar = root[len(root)-1].upper()

print("Testing: " + currChar)

Walk through each file in test data's directory

for file in files:

testedCount += 1

36

if file.endswith('.png'):

filePath = os.path.join(root, file)

open file as img object

img = cv2.imread(filePath)

img = get_grayscale(img)

img = remove_noise(img)

img = thresholding(img)

Adding custom options

custom_config = r'--oem 3 --psm 6'

testChar = pytesseract.image_to_string(img,

config=custom_config).upper().strip()

if (testChar == currChar):

correctCount += 1

print("\nTotal images tested: ")

print(testedCount)

print("\nTotal characters correct: ")

print(correctCount)

print("\nOCR accuracy: ")

print(str((correctCount/testedCount) * 100) + "%")

37

