
 Voice Coded Lock

 Aman Thombre and Logan Greuel

 Team 62

 May 2023

 Abstract

 Accessing secure areas often requires some form of physical key, which can be lost or
 cumbersome to operate when a user’s hands are full. To fix this issue, we designed a hands-free,
 automatic door lock that opens when a user gives the correct audio password. This paper details
 the design and verification of our door lock. Our lock was able to consistently (with around 85%
 accuracy) and quickly (with around one second of processing time) classify live audio inputs
 given to the door lock system, and automatically unlock the door when provided with the correct
 password.

 i

 Contents

 1. Introduction .. 1
 2. Design .. 3

 2.1 Design Procedure ... 3
 2.1.1 User Interface .. 3
 2.1.2 Keyphrase Recognition ... 4
 2.1.3 Control Unit .. 4
 2.1.4 Mock Door .. 5
 2.1.5 Power .. 5

 2.2 Design Details .. 5
 2.2.1 User Interface .. 6
 2.2.2 Keyphrase Recognition ... 7
 2.2.3 Control Unit .. 12
 2.2.4 Mock Door .. 13
 2.2.5 Power .. 13

 3. Verification ... 14
 4. Cost .. 16
 5. Conclusions ... 17
 6. References ... 18

 ii

 1. Introduction

 Accessing secure areas currently requires some form of physical token, including access
 cards, a password on a keypad, or keys. These can be lost, forgotten, or misplaced, leading to
 users being locked out of their areas of work. Additionally, operating these locks can be
 cumbersome, especially when the user’s hands are full. As a solution to this problem, we created
 a hands-free, automatic door lock that takes a spoken password as its key. When a user says the
 word “hamster” to our system, the door unlocks, and if the system hears any other noise, word,
 or phrase, the door remains locked. Figure 1.1 below shows an image of our design.

 Figure 1.1. Our door lock design.

 This design was broken up into five major subsystems: user interface, keyphrase
 recognition, control unit, mock door, and power. Each of these blocks has a critical role in our
 design. The user interface module allows the user to speak into our lock and notifies our user of
 the lock’s status. The keyphrase recognition module determines whether audio inputs are the
 password or not. The control unit facilitates communication between modules and controls

 1

 functionality of elements in different modules. The mock door acts as our physical lock, and the
 power system provides power to our entire design. Figure 1.2 below shows these blocks and their
 relations.

 Figure 1.2. High-level block diagram.

 In order for our lock to be successful, the keyphrase recognition had to be both accurate
 and fast. Our lock would also have to operate automatically, without the user needing to do
 anything apart from saying the correct password to unlock the door. We therefore set the
 following high-level requirements:

 1. Keyphrase recognition should be able to correctly classify audio passwords as
 correct/incorrect consistently (at least 80±5% accuracy).

 2. Operation of the door lock, from saying the password to the door unlocking, should be
 performed in reasonable time (less than 8 seconds).

 3. The system should be able to operate the door lock automatically.

 2

 2. Design

 2.1 Design Procedure

 The design procedure was kept fairly simple. All inputs and outputs rely on simple logic
 except the audio input from the microphone and the PWM output for the servo motor. The
 majority of these can be connected directly where they need to go, and the only extra circuitry
 added consisted of an external oscillator for the microcontroller, debouncing for the buttons, and
 current-limiting resistors for the LED outputs. General design is shown below and important
 features will be expanded upon in their respective sections.

 Figure 2.1. Full circuit schematic (excluding Raspberry Pi).

 2.1.1 User Interface

 The user will interact with our locking system through a microphone and LEDs.
 Keyphrases will be listened for using a microphone, which will send the audio signal it records
 in real time to our microcontroller. An RGB LED will be used to signal to the user the state of
 the locking system - we plan to use different colors to indicate locked, unlocked, and listening.
 Additional buttons were provided to close the lock or unlock from the inside.

 Alternative ways we could include the user interface could run a microphone through a
 separate ADC to then feed that signal into the Pi. However, our selected microcontroller is not
 suitable for processing audio signals, and the workload on the Pi is not high enough to justify

 3

 running the signal externally since we can use a USB microphone plugged directly into the board
 and it can very easily process the signal itself.

 2.1.2 Keyphrase Recognition

 The goal of our keyphrase recognition software is to classify input audio sequences as
 either the password (in vocabulary, or INV) or not the password (out of vocabulary, or OOV). At
 a high level, our model consists of three parts: audio processing and transforming input audio
 into feature vectors by computing the Mel-frequency cepstral coefficients (MFCCs); passing
 these MFCCs into a hidden Markov model, giving probabilities for being INV or OOV; and
 passing these probabilities into a support vector machine (SVM) to classify the audio as either
 INV or OOV.

 Figure 2.2. Block diagram of password recognition model.

 The use of MFCCs in speech recognition tasks is standard, as they have been shown to
 give good performance in speech recognition tasks [1]. For classification of the MFCCs, several
 possible models exist, including deep neural networks [2] and HMMs [3]. While deep neural
 networks generally yield better results, they require more training data and training time, of
 which we lacked. Additionally, neural net architecture may be quite complex, which poses a
 problem for implementation on a Raspberry Pi. Since our model has to classify inputs quickly on
 a Raspberry Pi as per our high-level requirements, we determined that a HMM model would be
 best suited for this task. The HMM takes as inputs the MFCCs computed from the previous step,
 and sends probabilities to an SVM to make final classification decisions. Including an SVM at
 the end has been shown to boost performance of HMMs built for wake-up-word recognition, a
 similar problem to ours [4].

 2.1.3 Control Unit

 The control unit consists of an ATmega328P microcontroller. The microcontroller was
 used to send signals to/from our user interface and send a PWM signal to the servo on the mock
 door subsystem. If the audio signal is verified from the keyphrase software, the microcontroller
 will send a signal to the locking system to disengage the lock. The microcontroller will also read
 the buttons and send signals to our RGB LED, displaying whether the door is locked, unlocked,
 or whether a phrase is being processed.

 4

 These tasks could be done by almost any number of microcontrollers available, however
 the ATmega328P was selected because it is a fairly simple controller that is easily programmable
 through an Arduino Uno board which was already owned.

 2.1.4 Mock Door

 For our mock door we used a HS-311 Servo which was attached to a standard deadbolt
 by the machine shop. The key is still accessible by the user in the event of a power failure which
 is a very convenient fail-safe for the design. The servo motor itself is run by a PWM signal sent
 from the microcontroller.

 Other options for a lock were available. A solenoid lock would be a simple alternative,
 since it would only require logic to hold it open instead of a PWM signal. This could be done
 using some sort of switch and the microcontroller using logic to open or close the switch, but
 solenoid locks typically require higher voltage (for anything beyond an extremely small lock)
 and a lot more power, where the servo can be simply set to a position and then it waits for the
 next instructions. A solenoid lock would not require installation through the machine shop, but
 using the servo itself was a very preferable option to add extra robustness to the design.

 2.1.5 Power

 Every component in our design requires power, so we required a consistent supply. Since
 our design was mounted on a door, we used an AC voltage adaptor in a nearby outlet to power
 our design. All the components are able to be run off of 5V DC and current draw is primarily
 dominated by the Raspberry Pi, which recommends a 3A supply, but can be run off of less
 especially since we only have very minimal loading onto the board.

 An alternative option for power is to run the design off of batteries. However, both boards
 constantly require power, and we would most likely need to add a voltage converter to obtain the
 needed voltage. This would also add concern about the lifetime of the batteries and needing to
 swap them out. As mentioned above our design will not move however, so it makes much more
 sense to just use a 5V adapter directly to power the design.

 2.2 Design Details

 All the blocks above were implemented onto a PCB that provided appropriate ports and
 circuitry for each component. Headers were included for each chip and all components were
 through-hole designs.

 5

 Figure 2.3 above shows final PCB version used in design

 2.2.1 User Interface

 Buttons

 Each button included a low-pass filter debouncer
 shown in Figure 2.4. The microcontroller takes active low
 inputs, and hardware debouncing is very simple to
 implement. We don’t want our design to try to shift states
 too rapidly so this is a simple way to help confirm this.

 LED

 The LED also required current-limiting
 resistors since the voltage of the LED itself was not the
 same as the output voltage of the microcontroller. This
 had to be limited to 20 mA for each pin, and the
 voltage on the LED pins consisted of 2.2 V or 3.3 V
 depending on the pin [5], while the microcontroller
 would output approximately 4.5 V at 20 mA output.
 Using Ohm’s law we can determine the resistance
 needed to be 115 Ω and 60 Ω respectively. However to

 6

 be safe in the actual design, higher values were used (220 Ω and 100 Ω) to simplify the
 components needed and assure the actual value doesn’t exceed the rated value.

 Microphone

 The microphone required no design on our part; we used a USB plug and play
 microphone, which was inserted directly into the Raspberry Pi.

 2.2.2 Keyphrase Recognition

 Audio Preprocessing and MFCCs

 As described in section 2.1.2 , the first block of our keyphrase recognition module was
 audio preprocessing and computing feature vectors via MFCCs. Audio processing was
 performed prior to computing the MFCCs in order to only record when inputs are being given to
 the microphone, reduce noise, and remove dead space in audio inputs. The entire process is as
 follows:

 1. Start recording for three seconds when the audio input at the microphone reaches a
 volume threshold.

 2. Apply a Savitzky-Golay filter to boost signal to noise ratio.
 3. Remove dead space from the end of the signal.
 4. Compute MFCCs.

 Removing dead space from the end of the signal was done to reduce the number of
 MFCC vectors sent to the HMM, and was done by only keeping parts of the signal with high
 variance. As is standard, 15 MFCCs were computed, and the first two were discarded - this is
 standard practice as the first two MFCCs generally do not contain differentiating information [1].
 The Savitzky-Golay filter was implemented using the SciPy library [6], and the MFCCs were
 computed using the librosa library [7]. In figure 2.6 below, each column of the MFCC plot is one
 “frame” (the number of frames depends on the length of the signal), with each frame being a
 length-13 vector of MFCCs.

 7

 Figure 2.6. Extracted and filtered audio signal of the word “hamster” (left) and MFCCs (right).

 Hidden Markov Model

 HMMs allow us to calculate the probability that a given model generates a certain
 observation sequence. We can leverage this by developing a model for INV words and a model
 for OOV words, and comparing probabilities that a sequence of MFCCs (the observation
 sequence) is generated by each model. Developing this model includes finding the transition
 probabilities , emission probabilities (), and initial state probabilities () for both the INV (𝐴) 𝐵 π
 and OOV models. These probabilities can be written as:

 We then use the forward algorithm [8] to calculate the probability of an observation
 sequence () given a model (): . The forward algorithm is shown below: 𝑋 Λ 𝑃 (𝑋 | Λ)

 1. Define probability in state at time as the probability of our observation α 𝑖 𝑡
 sequence so far () and that we are in state given . 𝑥

 1
, . . . , 𝑥

 𝑡
 𝑖 (𝑞

 𝑡
= 𝑖) Λ

 2. Initialize at each state at time : α 𝑡 = 1
 .

 3. Iterate calculating at each time step and each state: α

 4. Calculate through marginalization of eq 2.1: 𝑃 (𝑋 | Λ)

 8

https://www.codecogs.com/eqnedit.php?latex=A_%7Bij%7D%20%3D%20P(q_%7Bt%7D%20%3D%20j%20%7C%20q_%7Bt-1%7D%20%3D%20i).#0
https://www.codecogs.com/eqnedit.php?latex=B_i(x_t)%20%3D%20P(x_t%20%7C%20q_t%20%3D%20i).#0
https://www.codecogs.com/eqnedit.php?latex=%5Cpi_i%20%3D%20P(q_1%20%3D%20i).#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_i(1)%20%3D%20P(x_1%2C%20q_1%20%3D%20i%20%7C%20%5CLambda)%20%3D%20%5Cpi_i%20*%20B_i(x_1)#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_j(t)%20%3D%20%5Csum_i%20%5Calpha_i%20(t-1)%20*%20A_%7Bij%7D%20*%20B_j(x_t).#0

 Our problem then becomes finding , , and for each model given examples of INV 𝐴 𝐵 π
 and OOV words. One key aspect of this is modeling as a multivariate Gaussian, as finding 𝐵
 example emissions from the training data will not represent all possible emissions, and will not
 represent the overall distribution well. then is modeled by mean vector and covariance 𝐵 µ
 matrix . Initial state probabilities are trivial, as we define our states in time; the initial state is Σ
 then always state 1, so is a one-hot vector, with 1 as its first element. With this in mind, we can π
 estimate , , and using the Baum-Welch algorithm, a maximum likelihood estimation 𝐴 µ Σ
 algorithm for HMMs [9]. We can write the Baum-Welch algorithm as follows:

 1. Make initial guesses for by splitting training samples into N states, calculate by 𝐴 , µ, Σ 𝐴
 counting transitions, by finding mean and covariance of each state’s MFCC vectors. µ, Σ

 2. Define probability in state at time as the probability of our being in state γ 𝑖 𝑡 𝑖 (𝑞
 𝑡

= 𝑖)

 given the observation sequence and model:

 Using Bayes’s rule, we can write:

 Note that we know half of this using , eq (2.1). Calculate the other half by defining α

 Calculate similarly to , except iterating backwards in time: β α

 Then, combine eqs 2.1, 2.3, and 2.4 to calculate : γ

 3. Define probability between states at time as the probability of transitioning from ξ 𝑖 , 𝑗 𝑡
 state to state given 𝑖 𝑗 𝑋 , Λ.

 Calculate using definition of (eq 2.1): ξ α

 9

https://www.codecogs.com/eqnedit.php?latex=P(X%7C%5CLambda)%20%3D%20%5Csum_i%20%5Calpha_i(T).#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma_i%20%3D%20%5Cfrac%7B%5Calpha_i(t)*%5Cbeta_i(t)%7D%7B%5Csum_k%20%5Calpha_k(t)%20*%20%5Cbeta_k(t)%7D.#0
https://www.codecogs.com/eqnedit.php?latex=%5Cxi_t(i%2Cj)%20%3D%20%5Cfrac%7B%5Calpha_i(t)*A_%7Bi%2Cj%7D*B_j(t%2B1%7D%7B%5Csum_%7Bk%2Cl%7D%5Calpha_k(t)%20*%20A_%7Bkl%7D*B_l(t%2B1)%7D.#0

 4. Using our definitions of (eqs 2.2 and 2.5), calculate new : γ, ξ 𝐴 , µ, Σ

 5. Repeat steps 2-4 until convergence.

 To summarize these two algorithms, we use Baum-Welch to learn parameters of our
 models given many training examples, and we then use the forward algorithm to find the
 probability of each model generating a given audio sequence. Figure 2.7 below shows plots of
 the probabilities of being generated by each model for INV and OOV words in our training data.
 Figure 2.8 below shows a plot of the probability ratio vs probability of being generated by INV.

 Figure 2.7. Probabilities of being generated by each model for INV and OOV samples.

 Figure 2.8. Probability ratio vs probability of being generated by INV group.

 10

https://www.codecogs.com/eqnedit.php?latex=A_%7Bij%7D%20%3D%20%5Cfrac%7B%5Csum_k%20%5Cxi_t(i%2Ck)%7D%7B%5Csum_k%20%5Csum_t%20%5Cxi_t(i%2Ck)%7D.#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_i%20%3D%20%5Cfrac%7B%5Csum_t%20%5Cgamma_i(t)%20x_t%7D%7B%5Csum_t%20%5Cgamma_i(t)%7D.#0
https://www.codecogs.com/eqnedit.php?latex=%5CSigma_i%20%3D%20%5Cfrac%7B%5Csum_t%20%5Cgamma_i(t)(x_t-%5Cmu_i)(x_t-%5Cmu_i)%5ET%7D%7B%5Csum_t%20%5Cgamma_i(t)%7D.#0

 Support Vector Machine

 As can be seen in figures 2.7 and 2.8, the HMM outputs fairly separable data, indicating a
 good use case for an SVM classifier. We fit an SVM on the training data using the sci-kit learn
 library [10], passing in the probability of being generated by the INV model, the probability of
 being generated by the OOV model, and the ratio of these two probabilities. We selected a
 polynomial kernel with degree = 3. Figure 2.9 below is an example decision boundary trained on
 the probability ratio vs probability of being generated by INV. As can be seen, the SVM has
 fairly good performance in placing INV words and OOV words on the correct sides of the
 decision boundary. Note that this is not a representation of our actual decision boundary, which is
 in three dimensions.

 Figure 2.9. Example SVM decision boundary, using the same data as figure 2.8.

 Datasets

 In order to train, tune, and test our model, we created train, validation, and test datasets,
 respectively. In order to create the INV corpus, one teammate recorded themselves saying the
 word “hamster” 350 times. Of these 350 samples, 250 went into the train dataset, 50 into
 validation, and 50 into test. In order to create the OOV corpus, a combination of custom
 recordings and online datasets were used. One teammate recorded themselves saying 300
 random words, of which 200 went into the train dataset, 50 into validation, and 50 into test.
 Additionally, 900 0.3-1.2 second long “chunks” were extracted from the LibriSpeech dataset
 [11], with 800 going into train, 50 into validation, and 50 into test. Tables 2.1 and 2.2 below
 summarize this.

 11

 Train Validation Test Total

 “Hamster”
 recordings

 250 50 50 350

 Total 250 50 50 350
 Table 2.1. INV datasets breakdown.

 Train Validation Test Total

 Random word
 recordings

 200 50 50 300

 LibriSpeech
 chunks

 800 50 50 900

 Total 1000 100 100 1200
 Table 2.2. OOV datasets breakdown.

 2.2.3 Control Unit

 Ports on the ATmega were grouped according to their respective function (input or
 output) and then accessibility in the PCB design. The following table lists each pin used and its
 function along with a figure showing the pinout in relation to the chip [12] (Software: SW,
 Button: BT).

 Table 2.3. Pin assignments for ATmega328P

 Pin Selected Input/Output Description

 B1 O PWM to servo

 C0 O BLUE LED

 C1 O GREEN LED

 C2 O RED LED

 D0 I PROCESSING
 SW

 D1 I UNLOCK SW

 D2 I UNLOCK BT

 12

 D5 I LOCK BT1

 D6 I LOCK BT2

 D7 I LOCK SW

 2.2.4 Mock Door

 The HS-311 servo uses 50 Hz pulse width signals to determine its position according to
 Figure 2.9 [13]. With the servo mounted on the door the lock and unlock positions for our design
 were found to be at 1.4 ms and 2.0 ms respectively.

 Figure 2.11. Servo Pulse Widths.

 The ATmega328P outputs the pulse width signals by using counters to output high until a
 given value, then low until the reset value is reached. Equation 2.1 is used by the controller to
 determine the number of counts required for this operation. Frequency of the clock will be 16
 MHz, TOP will be the number we use in the code to specify count number, and then N is a
 prescaler divider which changes how many pulses before the counter counts. This affects signal
 resolution and how much work the controller has to do (N is 1,8,64, or 256, set as 8).

 Values were found by modifying equation (2.6) [11], using a PWM frequency of 50 Hz to
 find the reset value, then solving the equation for times according to 1.4 and 2.0 ms to find the
 times for those as well. Then the servo is set to one of those values to set the position.

 2.2.5 Power

 Since our power supply was a purchased adapter, we didn’t have to add any additional
 circuitry or adjust anything on it. We used a barrel jack adapter to plug into the supply and
 convert that to usable Vcc and GND pins for our circuit.

 13

 3. Verification

 Table 3.1 below shows our requirements and verification (RV) table.

 Requirements Verification

 ● The LED will display three different
 colors based on status:

 ○ Red, meaning door locked
 ○ Green, meaning door open
 ○ Blue, meaning processing

 ● Initialize the lock system with no one
 talking and no ambient sound, ensure
 that the LED is red.

 ● Then, speak an incorrect password to
 the system. The LED should turn blue
 for processing time, and then turn
 back to red.

 ● Then, speak the correct password to
 the system. The LED should turn blue
 for processing, and then green as the
 door unlocks.

 ● The keyphrase recognition software
 should be able to handle audio inputs
 up to 3 seconds long.

 ● Audio inputs up to 3 seconds long will
 be provided to the keyphrase
 recognition software.

 ● Ensure that the software can
 accurately detect the correct password
 if it is uttered in the 3 second audio
 input, passing accuracy requirements
 detailed below.

 ● Keyphrase recognition should not take
 more than 5 ± 1 seconds.

 ● After inputs are fed to the keyphrase
 recognition system, the Python time
 package will be used to time how long
 keyphrase recognition takes.

 ● Should be able to distinguish
 correct/incorrect keyphrases with at
 least 80% ± 5% accuracy.

 ● Precision, recall, and specificity
 should also pass this same benchmark.

 ● Each team member will provide 20
 attempts to unlock the door (10 with
 the correct password and 10 with the
 incorrect password for 40 attempts
 total).

 ● Results will be noted in a confusion
 matrix, which will be used to calculate
 accuracy, precision, recall, and
 specificity.

 ○ Accuracy = TP+TN/Total
 ○ Precision = TP/TP+FP
 ○ Recall = TP/TP+FN
 ○ Specificity = TN/TN+FP

 14

 ● The servo motor must have enough
 torque to operate the deadbolt lock.

 ● Assemble servo onto the lock and test
 varying PWM signals to check that
 lock will turn

 ● Send PWM signals to the Servo to
 control locking and unlocking controls

 ● Connect servo and confirm output
 from microcontroller will rotate into
 desired positions

 Table 3.1. RV Table.

 Verifications for the LED, servo motor, locking system, and timing for speech recognition
 were verified at our demo, and can also be verified in our video: https://youtu.be/tJNp-pIufbc .

 Our verification for the speech recognition module is shown below, in table 3.2.

 Ground Truth (spoken word)

 INV (“Hamster”) OOV (Random)

 Classified as
 (Door action)

 INV (Door unlocks) 18 3

 OOV (Door locks) 2 17
 Table 3.2. Confusion matrix generated in verification of speech recognition.

 From table 3.2, we calculated metrics of classifier performance, including precision,
 recall, specificity, accuracy, and F1 score. These are summarized below, along with their
 meanings:

 ● Precision = 0.857.
 ○ If the door unlocks, the probability that the user said “hamster” is 85.7%.

 ● Recall = 0.9.
 ○ If the user says the word “hamster,” the door unlocks 90% of the time.

 ● Specificity = 0.85.
 ○ If the user says a random word, the probability that the door stays locked is 85%.

 ● Accuracy = 0.875.
 ○ Probability that the lock correctly classifies the provided password.

 ● F1 Score = 0.878.
 ○ Blend of precision and recall, standard measure of classifier accuracy.

 As can be seen above, our design passes all of the requirements listed in table 3.1, and
 passes our high-level requirements described in section 1 .

 15

https://youtu.be/tJNp-pIufbc

 4. Cost

 Hourly wages will be $40/hr, found using average expected salary for ECE graduates at UIUC
 [14] and converted to an approximate hourly rate. There are 2 in our group and we averaged our
 hours spent on the project. We also had the machine shop build our mock door for us so we can
 value their time the same way and add 6 hours for that as well.

 𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 = 2 ⋅ $40
 ℎ𝑟 ⋅ 2 . 5 ⋅ 100 ℎ𝑟 + $40

 ℎ𝑟 ⋅ 2 . 5 ⋅ 6 ℎ𝑟 = $20 , 600

 Table 4.1. Cost Analysis

 Part Description Provider Part Number Quantity Cost

 USB PnP Microphone ShopSimple 1 $ 6.99

 ATmega328 Microcontroller
 Bootloader Uno

 ECE Supply X000048 1 $7.20

 SERVO MOTOR HS-311 ECE Supply HS-311 1 $11.01

 Single Cylinder Stainless Steel
 Deadbolt

 Home Depot NA 1 $12.47

 Raspberry Pi 4 B Adafruit 2885 1 $35.00

 AC/DC Wall Mount Adapter
 5V 3A

 BestBuy NA 1 $17.95

 LED RGB Clear T-1 3/4 T/H Digi-Key
 (Kingbright)

 754-2153-ND 1 $2.02

 Momentary Button - Panel
 Mount

 Sparkfun COM-11992 3 $3.15

 Misc. Electronics for circuitry ECE Supply NA NA $10.00

 Total Parts Cost $103.80

 Labor $20,600

 Total Cost $20,705.79

 16

 5. Conclusions

 Overall, our project proved to be successful. All hardware components operate as
 intended for user input/output and operating the lock. Meanwhile, our software exceeded all
 requirements placed upon it during planning. We met the accuracy expectation for the keyphrase
 recognition and the system functions well within the allotted time frame.

 Our project has no major ethical or safety concerns. The only ethical concern that could
 be relevant is privacy concerns due to recording audio for the lock. If this were being used to
 record conversations this would be a violation of people’s privacy which would break the IEEE
 Code of Ethics section I part 1 [15] and also the ACM code part 1.6- Respect Privacy [16].
 However, our design will only record short inputs (3 seconds) which prevents it from recording
 entire conversations and will contain any audio recordings internally. Audio recordings will not
 be shared with any other device and will not be stored, so we do not pose the risk of violating
 user’s privacy or sharing sensitive information.

 Our project also does not have any broad impact in any type of large context, but it could
 provide some smaller impact on schools if the design were implemented. Since the design is
 meant for fairly specific uses, such as lab access, even if the design were implemented it would
 be very unlikely that there would be any huge impact from it. It would provide easier alternatives
 for places where it’s expected that many people would need entry, but would in no way
 revolutionize entry into secure facilities.

 17

 6. References

 [1] Nair, Pratheeksha. “The Dummy's Guide to MFCC.” Medium , Prathena, 27 July 2018,
 https://medium.com/prathena/the-dummys-guide-to-mfcc-aceab2450fd.

 [2] Chen, Guoguo, et al. “Small-Footprint Keyword Spotting Using Deep Neural Networks.”
 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) ,
 2014, https://doi.org/10.1109/icassp.2014.6854370.

 [3] Rose, R.C., and D.B. Paul. “A Hidden Markov Model Based Keyword Recognition System.”
 International Conference on Acoustics, Speech, and Signal Processing , 1990,
 https://doi.org/10.1109/icassp.1990.115555.

 [4] Këpuska, V.Z., and T.B. Klein. “A Novel Wake-up-Word Speech Recognition System,
 Wake-up-Word Recognition Task, Technology and Evaluation.” Nonlinear Analysis: Theory,
 Methods & Applications , vol. 71, no. 12, 2009, https://doi.org/10.1016/j.na.2009.06.089.

 [5] “T-1 3/4 (5mm) Full Color LED Lamp.” Kingbright USA, Kingbright, Released Nov. 15,
 2019.
 https://www.kingbrightusa.com/images/catalog/SPEC/WP154A4SEJ3VBDZGC-CA.pdf.

 [6] “Scipy.signal.savgol_filter.” Scipy, SciPy,
 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html.

 [7] “Librosa.feature.mfcc.” Librosa 0.10.1dev Documentation ,
 https://librosa.org/doc/main/generated/librosa.feature.mfcc.html.

 [8] Hasegawa-Johnson, Mark. “ECE 417 Lecture 14: Hidden Markov Models.” 2021.

 [9] Hasegawa-Johnson, Mark. “ECE 417 Lecture 15: Baum-Welch.” 2021.

 [10] “Sklearn.svm.SVC.” Scikit , Scikit-Learn,
 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.

 [11] Panayotov, Vassil, et al. “Librispeech: An ASR Corpus Based on Public Domain Audio
 Books.” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
 (ICASSP) , 2015, https://doi.org/10.1109/icassp.2015.7178964.

 [12] ATmega48A/PA/88A/PA/168A/PA/328/P, megaAVR Data Sheet , Microchip, May 2019.

 18

 [13] SERVO MOTOR CONTROL . AjlonTech.
 http://www.ajlontech.com/7.SERVO%20MOTOR%20CONTROL.pdf#:~:text=Hitec%20HS-
 311%20Standard%20Detailed%20SpecificationsControl%20System%3A%20%2BPulse%20
 Width,Operating%20Temperature%20Range%3A%20-20%20to%20%2B60%20Degree%20
 C.

 [14] “Salary Averages.” The Grainger College of Engineering Electrical and Computer
 Engineering , Electrical and Computer Engineering,
 https://ece.illinois.edu/admissions/why-ece/salary-averages. Accessed 21 Feb. 2023

 [15] “IEEE - IEEE Code of Ethics.” IEEE , IEEE,
 https://www.ieee.org/about/corporate/governance/p7-8.html. Accessed 9 Feb. 2023.

 [16] “Code of Ethics.” Association for Computing Machinery , Association for Computing
 Machinery, https://www.acm.org/code-of-ethics. Accessed 9 Feb. 2023.

 19

