

Smart Defrosting Device

Electrical & Computer Engineering

Team 49 Ben Civjan, Brad Palagi, Payton Thompson

5/2/23

The Problem

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Problem:

- Defrosting meat is a common task that is a long and tedious process with a lack of innovation
- Leaving on container, leaving in refrigerator, cool water, microwave, defrost plate

Solution:

- Hands-off, fast, and reliable meat defrosting device
- Defrost completion detection
- Heating system

High Level Requirements

Heat, shut off, alert

- Power a heating element and display the current internal temperature
- Shut off heat once 0°C and sound alarm

Fast

- Thaw faster than standard techniques
- At least 20% decrease compared to defrost plate alone

Even defrost

- Meat evenly defrosted
- Less than 10% frozen or cooked when process completed

Washable

- Device washable and reusable
- Won't damage the electronics

Final Product

Project Images

Video Demonstration

The Design

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Illustrated Diagram

Side View

Block Diagram

Control Subsystem

Control Subsystem

ATMega328PB Microcontroller

- 5V microcontroller
- Easy integration with I2C devices using libraries in Arduino IDE
- Easily programmable, enable and disable power to heating subsystem
- Produces square wave for Piezo Buzzer

Requirement

Pass temperature data from the microcontroller to the LCD Display

Verification

- When the device is powered ensure the display receives 5V DC power
- Ensure the user can view the meats estimated current internal temperature, which is sent using the I2C protocol

Requirement

Microcontroller completes defrosting once the estimated internal temperature reaches 0 degrees Celsius

Verification

- Heat and fan are enabled from button press, and are disabled when temperature reaches 0 C
- Sound an audible buzzer and display on the LCD that defrosting has completed

Issues Encountered

- Fried first two MCU's on PCB
 - Unsafe probing
 - Incomplete soldering
- Learned about external oscillator after PCB order
- Attempted to use Microchip Studio IDE
- Lead on buzzer snapped off
- 7SEG Display I2C Backpack failed

Sensor Subsystem

Sensor Subsystem

Sensor Subsystem Overview

- Infrared Thermal Sensor
 ±1.5°C maximum error
- 5 VDC power
- I²C data connection

(3.79)

Requirement

Read external meat temperature within ±2°C

Verification

- \pm 1.5°C maximum error within circular detection range
 - Radius increases with distance
 - 9cm distance yields 4.5cm radius
- Raise conductive heat plate to achieve this distance from sensor location

Requirement

Calculate internal temperature within $\pm 2^{\circ}C$

Calibration

- Test with chicken breasts of moderate size (~220g)
- Record internal temperature and thermal temp at equal intervals
- Create polynomial regression model to map thermal sensor reading to internal temperature

Javelin Pro Thermometer (accurate to 0.5°C)

Sensor Subsystem

Thermal Sensor vs. Internal Temp

Internal Temp -2.82 + 0.505x + -0.0528x² + 2.13E-03x³ R² = 0.997

Thermal Sensor (C)

Challenges

Thermal sensor readings were updating very fast and fluctuating noticeably on the display

Solution: Buffer 10 sensor readings and take their average before updating the LCD screen

Sensor takes 10 readings per second, we update display once per second

Power Subsystem

Elements to Power

- Microcontroller (5V)
- Thermal Sensor (5V)
- LCD Display (5V)
- Fan (12V)
- Heat (12V, 6A)

Components:

- 12V, 6A AC/DC Power Supply
- 5V Linear Voltage Regulator
- 2 40V, 120A MOSFETs

Requirements

Maintain an output voltage between 4.5 and 5.5 V (for microcontroller and thermal sensor)

Provide an output voltage of 12 V to the fan

Stop supplying power to the heating system once the *HEAT_ON* signal has been set to 0

Heat Subsystem controllable with On/Off button

Power Component Design

Power Supply Issues

- Our first supply rated for 1A shorted due to overcurrent protection
- Changed to heating element with higher current draw

MOSFET Turn on voltage

- Our microcontroller can only output ~4.7V
- The higher the voltage the more current flows to heater

Synchronous Buck Converter

- Needed when using 30V Power Supply to step down to 12V efficiently
- Limited to 1A current

Heat Subsystem

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Heat Requirements & Verification

Components:

- Fan (12V)
- Ripple Heater (12V, 6A, 70W)
- Conductive Defrosting Plate

Strategy:

- Convection
- Conduction

Cooler Air Temperature

Requirement:

Container air temperature consistently at 32.22°C and reaches in less than 15 min

Calculation:

Convection heating equation: $Q = V \times \rho \times c \times \Delta T$ 7579.86 $J = 0.2755 \times 1.204 \times 1870 \times 12.22$

120 sec to heat up: $\frac{7579.86J}{120sec} \approx 70W$

Heat energy required (Q), J

Volume space (V), m^3 : 0.2755 m^3 0.2286 $m \times 0.38735m \times 0.31115m$

Temperature difference (ΔT), °C: 12.22 °C 32.22 °C - 20.00 °C

Density of air (ρ), $\frac{kg}{m^3}$: 1.204 $\frac{kg}{m^3}$

Specific heat capacity of air (c), $\frac{J \times kg}{\circ c}$: $1870 \frac{J \times kg}{\circ c}$

Challenges

Challenges:

- Original Plate Heater (30V,1A,30W)
- Powering the Heat Supply
- Conduction > Convection

Unstable performance led to the power subsystem issues

Conclusions

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Smart Defroster

Ultimately our project resulted in a device with significant improvement on standard defrosting techniques.

- Defrost time reduced by 50%
- Even thawing
- Hands off
- Easily washable

Future Work

GRAINGER ENGINEERING

Future Work

Polish and Enhance

- Cosmetic Improvement
 - Relocate wires to non visible internal locations
 - Use a more compact cooler
- Performance Improvement
 - To further decrease defrosting time
 - Add more duct work to improve airflow, especially beneath the defrost plate
 - To improve ease of cleaning
 - Relocate the fan and heater mount so the defrosting plate is fully removable
 - Multiple meat type settings
 - Only applicable with system due to internal/surface temperature ratio

Thank You For Listening

Questions?

Contacts: bcivjan2@illinois.edu bpalagi2@illinois.edu pthomp22@illinois.edu

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN