

# Backpack Buddy

Emily Grob, Jeric Cuasay, Rahul Kajjam

ECE 445 Final Presentation Spring 2023 Team #8 Professor: Arne Fliflet TA: Zicheng Ma

### Problem



- For many people, walking home is unsafe at night
- Oftentimes, victims of harassment/assault have trouble noticing pedestrians following them



- 1) Distinguish pedestrians from other moving objects at a rate of 4-6 frames per second
- 2) Alert the user with haptic feedback if a pedestrian is less than 3 meters away
- 3) Send emergency alerts to given emergency contact if a pedestrian is within 30cm





## Demonstration





BACKPACK BUDDY

**GRAINGER ENGINEERING** 

## Demonstration (Night Time)







## **Block Diagram**

# **I** PCB Design





## **I** Final Product





**GRAINGER ENGINEERING** 

### Firmware Development







#### Atmega Flowchart



## **Image Processing Flow Chart**

**GRAINGER ENGINEERING** 

## Image Processing: Gathering Training Data

- Gathered 500 images and labeled each person
- Example Images:



- Originally wanted to use YOLO algorithm for object detection
- Switched to EfficientDet0 architecture because it prioritizes speed



EfficientDet: Scalable and Efficient Object Detection (M. Tan, R. Pang, Q. V. Le ) 2020



#### **Parameters**:

- Number of Training Images = 500
- Number of Test Images = 100
- Epochs = 50

| Model architecture | Size(MB)* | Latency(ms)** | Average Precision*** |
|--------------------|-----------|---------------|----------------------|
| EfficientDet-Lite0 | 4.4       | 146           | 25.69%               |
| EfficientDet-Lite1 | 5.8       | 259           | 30.55%               |
| EfficientDet-Lite2 | 7.2       | 396           | 33.97%               |
| EfficientDet-Lite3 | 11.4      | 716           | 37.70%               |
| EfficientDet-Lite4 | 19.9      | 1886          | 41.96%               |

#### Training Loss vs. Epoch



#### **Our Average Precision =** 27.44%

### Image Processing: Camera Output





- Challenges
  - Cellular hotspot has unique DNS resolution
  - Inconsistencies with batteries
  - Programming with USB
- Successes
  - Person detection works fabulously
  - Met high level requirements
  - Working PCB





GRAINGER ENGINEERING

- For wearable products, design must be:
  - Robust
  - User-focused
- Importance of incremental testing
- Productivity came from good communication, delegation





## Conclusions

- Save picture or video upon emergency signal detection
- Internal rechargeable power supply circuitry
- Ability to have multiple emergency contacts set up
- Market focused work



Urban Crew iSafe Backpack, https://www.wired.com/2012/08/urban-crew-isafe-backpack-2/

GRAINGER ENGINEERING







- Privacy is maintained during video capture (IEEE Code of Ethics I.1)
  - Divergence can be made in emergency
- Batteries with chemistry can be hazardous

# Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN