
ECE 445 - Design Document

Extending IMU Degrees of Freedom for Pose Estimation Using
AI on Chip
Spring 2023

Team 71
Chirag Rastogi (chiragr2)
Lukas Zscherpel (lukasez2)

1. Introduction 3
1.1 Problem 3
1.2 Solution 3
1.3 Visual Aid 4
1.4 High-Level Requirements List 4

2. Design 5
2.1 Block Diagram 5
2.2 Subsystem 1: Inertial Measurement Unit 7
2.3 Subsystem 2: Control Unit 9
2.4 Subsystem 3: Position Estimation using AI on Chip 16
2.5 Subsystem 4: Power Supply 29
2.6 Tolerance Analysis 30

3. Cost and Schedule 31
3.1 Cost Analysis 31
3.2 Schedule 32

4. Discussion of Ethics and Safety 33
4.1 Ethics and Safety Issues 33

5. Citations and References 34

1. Introduction

1.1 Problem
An Inertial measurement unit (IMU) is a combination of sensors that collects data based on movement.
IMU’s normally include an accelerometer and a gyroscope which track the specific acceleration and the
angular acceleration of the object.

The sensors are:
● Accelerometers: Used to measure linear acceleration in three dimensions. This information can be

used to estimate the velocity and position of the object over time.
● Gyroscopes: Used to measure angular velocity in three dimensions. This information can be used

to estimate the orientation of the object over time.
● Magnetometers: Used to measure the direction of the Earth's magnetic field. This information can

be used to determine the orientation of the object with respect to the Earth's magnetic field, which
can be used to correct errors in the orientation estimate obtained from the gyroscopes.

IMU’s are used in a wide range of applications but they are really important in the medical field and in
consumer electronics. Some example applications include movement tracking on patients to detect
disorders or even tracking movement in your cell phone to get its orientation.
9DOF IMU sensors can be found for as low as $10-$20 for basic models, but these sensors have lower
accuracy. For projects that require greater accuracy, the cost can go up to 300$ (https://x-io.co.uk/ngimu/)
and this limits projects that require multiple such devices.

1.2 Solution
An AI on chip solution may have the potential to reduce the cost of 9DOF IMU sensors by enabling the
integration of multiple sensors and processing functions onto a single chip, which can simplify the design,
reduce the bill of materials, and lower the manufacturing costs.

By leveraging AI algorithms among others, an AI on chip can enable 9DOF IMU sensors to perform
advanced sensing and processing tasks on-device, reducing the data transmission requirements and
minimizing the need for external computing resources.

Our solution is to take a cheap 6 DOF IMU and combine it with a RNN that we train to calculate the other
3 DOF that a magnetometer normally provides. We will then take this AI model and put it onto a chip.
The AI on chip will work together with the 6DOF IMU to emulate a 9 DOF IMU in a handheld format.

https://x-io.co.uk/ngimu/

1.3 Visual Aid

Figure 1. Visual Aid

1.4 High-Level Requirements List

● The IMU interfacing system must be able to accurately measure and monitor the orientation and
movement of a device to within a maximum error of 3 degrees and 0.5 cm/s.

● The system must be able to perform calibration on the data outputted by the IMU to within a
maximum error of 0.5 degrees and 0.2 cm/s to ensure accuracy and consistency.

● For a given IMU the system must be able to determine the parameters for each algorithm, out of a
set of predefined algorithms, that are effective at minimizing the error and noise outputted by the
IMU. This would ensure a Mean absolute percentage error of less than 5% over 20 mins of data
collection.

2.Design

2.1 Block Diagram
The proposed project comprises of two block diagrams, each representing a different stage of the project.
The first block diagram depicts the initial deliverable, which is intended to serve as the minimum viable
product for the project. This block diagram focuses on testing various algorithms on the NVidia Jetson,
which will be used to process the data generated by the IMU. The separation of the Jetson from the rest of
the subsystems enables us to quickly and easily deploy different algorithms without having to make any
changes to the other subsystems.

Figure 2. Initial Deliverable Block Diagram

The second block diagram represents the reach goal of the project. After evaluating the performance of
various algorithms, we aim to integrate the most promising ones into the PCB. This could be
accomplished through hardware implementations using filters or onto a FPGA unit. In this design, the
data processing will be directly connected to the IMU, eliminating the need for an intermediary control
unit. However, the control unit will still play a critical role in managing the flow of data and providing the
same functionalities as in the initial deliverable design.

Figure 3. Reach Design with Hardware Accelerated AI Block Diagram

2.2 Subsystem 1: Inertial Measurement Unit
This subsystem will consist of a 6 DOF or 9 DOF IMU that we acquire from a third party distributor. We
plan on using a MPU-6050 and MPU-9250 for this project. We will test the accuracy of these two IMU’s
and how well they work when combined with noise-reducing algorithms to produce the most accurate
data with the least amount of noise. The MPU-6050 and MPU-9250 are relatively similar IMU’s with a
couple key differences. They both have onboard temperature sensors which can be used when calibrating
the data output. They also both contain a Digital Motion Processor (DMP) which correlates the data from
the sensors. The differences between the two IMU’s is that the MPU-9250 has 9 DOF while the
MPU-6050 has 6 DOF. The MPU-9250 also claims to have more accuracy within its sensors when
compared to the MPU-6050. While both IMU’s are relatively low cost, inside the United States the
MPU-9250 can be found for a price ranging from around $7 to $20 while the MPU-6050 can be found for
a price ranging from around $4 to $10.

Figure 4: MPU-9250 chip pinout and board model

Figure 5: MPU-6050 chip pinout and board model
Both IMU’s require very little power. They both run on 3.3 volts, but they accept an input voltage in a
range between 3 and 5 volts as they contain internal voltage regulator systems. Both IMU’s also draw

very little current and require no more than 5mA of current which can be easily supplied by the power
supply subsystem.

We will connect this IMU to the microcontroller to get values from the accelerometer, gyroscope and the
magnetometer if available. This connection will be done through the I2C protocol as it is supported by
both IMU’s as well as the microcontroller. The IMU’s don’t have a built in way of calibrating their
sensors, so the calibration and application of offset will be done by the microcontroller. The IMU will
simply pass on the raw data it collects from its sensors. The IMU’s do have multiple different power
modes which we will be utilizing during the calibration and testing processes. The different modes can be
seen in the following table (For the MPU 6050 there are less modes available as it does not have an
internal gyroscope).

Mode Name Gyro Accel Magnetometer DMP

1 Sleep Mode Off Off Off Off

2 Standby Mode Drive On Off Off Off

3 Low-Power Accelerometer Mode Off Duty-
Cycled

Off On or Off

4 Low-Noise Accelerometer Mode Off On Off On or Off

5 Gyroscope Mode On Off Off On or Off

6 Magnetometer Mode Off Off On On or Off

7 Accel + Gyro Mode On On Off On or Off

8 Accel + Magnetometer Mode Off On On On or Off

9 9-Axis Mode On On On On or Off

We are able to specify which of the modes to use using commands in the I2C protocol and we plan on
testing the use cases for each of the modes.

Requirement Verification

● The IMU must accurately measure
orientation and motion data with a
minimal error rate within the
manufacturer's tolerance range.

● The error rate of the IMU for measuring orientation
data must be less than 3 degrees within the
manufacturer's tolerance range of ±2 degrees.

● The IMU must operate at the same
voltage level as the rest of the PCB and
communicate using the I2C protocol
with a low error rate.

● The IMU must operate at 3.3V with a tolerance of
0.2V

● The I2C communication between the IMU and the
microcontroller must have an error rate of less than 1%
for reliable data transfer.

● The IMU must have a stable and
consistent output rate of at least 100Hz

● The output rate of the IMU must be within ±5Hz of the
specified rate of 100Hz.

● The output rate of the IMU must not fluctuate by more
than ±2Hz over a 10-minute testing period.

2.3 Subsystem 2: Control Unit
The Control Unit is a critical component of our design, tasked with interfacing with the IMU and
directing the raw data it outputs. Communication between the Control Unit and IMU will be established
using the I2C data protocol, and the Control Unit will also be responsible for calibrating the IMU.
Additionally, the microcontroller will be connected to a USB port for interfacing with the NVidia Jetson
in the deliverable model and for communication with an external display in the reach model. The Control
Unit, as the central entity for data flow management, enables us to incorporate user interface components
such as a button for activating and deactivating data flow, buttons for calibrating the IMU to determine
the error size, and a small OLED display screen to convey instructions and information to the user.

The control unit subsystem will be comprised of an ESP32 as the microcontroller, a 128x64 OLED
display screen, 6 LED’s of various colors, 3 push buttons, one 2 position toggle switch, a MCP2200
UART to USB chip, and a USB interface. The ESP32 has two I2C bus modules, one of which will be
used to communicate with the IMU subsystem and the other to control the OLED display. The ESP32 also
has 36 general purpose I/O pins (GPIO) which is plenty to connect with any switches, buttons or LED’s
that we will use. The ESP32 has 520kB of SRAM and 2MB of on board flash memory which is plenty for
storing the code for the program and data that we collect temporarily during the calibration process. The
RP2040 also runs at 160MHz which is fast enough to collect the data from the IMU without any losses.
The 128x64 OLED display screen is a small cheap monochrome OLED screen that can display graphics
and text. The 128x64 OLED display has a built in I2C module which makes it simple to connect to the
ESP32, it is also supported by many open source code libraries which makes programming the ESP32 to
use the display straightforward. We plan to use the display to communicate with the user what mode the
mode the microcontroller is in, to display the data when the microcontroller is transmitting data from the
IMU, and to give instructions to the user when the microcontroller is calibrating the IMU.

Connected to one of the ESP32’s GPIO pins will be a power on/off switch which will control whether the
control unit and IMU subsystems will be powered on or off. This switch will be connected to the 3V3_EN
port of the ESP32. In conjunction with the power switch will be an LED which is turned on when power
to the rest of the PCB is enabled. This helps give visual information to the user letting them know that the
ESP32 has finished booting up and is ready to run. We will use one of the push buttons to control whether
the microcontroller is in data transmission mode, this push button will be the start/stop button labeled in
the block diagram. During the data transmission mode the microcontroller will collect data from all the
sensors on the IMU, apply the offsets it has calculated during the IMU calibration, then send the data
straight out of the USB port to the connected device. If this push button is pressed when the

microcontroller is calibrating the IMU the input on the button will be ignored until the calibration has
finished and the user has chosen to exit calibration mode. There will also be a LED that is used in
conjunction with the transmission mode button that will light up to let the use know that data is being
transmitted.

Figure 6:ESP 32 pinouts

The rest of the buttons and LEDs will be exclusively used to interface with the user when the user is
trying to calibrate the IMU. These buttons and LEDs are the calibration select button, the calibration
mode button, the calibration LED, the accelerometer calibration LED, the gyroscope calibration LED, and
the magnetometer calibration LED. If the microcontroller is powered on and the microcontroller is not in
the data transmission mode, the user will be able to press the calibration select button to enter the
calibration mode. Once the microcontroller has entered the calibration mode then the calibration LED will
turn on letting the user know that they have successfully entered the mode. The microcontroller will then
display options on the OLED display for the user to select either accelerometer, gyroscope, or
magnetometer calibration or to exit the calibration mode. To change the selections between the different
options the user can press the calibrate mode button. In addition to the OLED display highlighting the
choice the user is currently selecting, each of the respective sensor’s LEDs will blink when that mode is
highlighted and the calibration LED will blink if the user is highlighting the exit calibration mode option.
Once the user has highlighted the choice they want to select they can press the calibration select button to

confirm that choice. To help with the calibration of the IMU the PCB with the IMU will be attached to a
3D printed cube.

If the user has selected to calibrate the accelerometer then the microcontroller will enter the accelerometer
calibration mode and the accelerometer calibration LED will be turned on. To calibrate the accelerometer
we will first implement a simple method using gravity, if we are able to calibrate the accelerometer
successfully using this method we will then attempt to validate the calibration using numerical integration
and forces other than gravity. The simple method of calibration using gravity is as follows: we will have
the user put the PCB with the IMU onto a level surface and have them wait for a couple seconds so that
we can record the accelerometers readings for each DOF. After the microcontroller has finished recording
the values for that position, we will have the user turn the IMU onto a different face of the cube and let
the microcontroller record data again. This will be repeated for each of the 6 faces of the cube so that each
DOF that the accelerometer reads is able to experience a force of 1g, -1g, and 0g. After all the data has
been recorded the microcontroller will then calculate the average offset of the data from the expected
value at each of the different rotations to create an offset matrix.

Figure 7: Accelerometer data uncalibrated vs calibrated example

The following are plots are created using data.

If the user has selected to calibrate the gyroscope then the microcontroller will enter the gyroscope
calibration mode and the gyroscope calibration LED will be turned on. There are many different ways to
calibrate the gyroscope, but for our initial deliverable we will implement a simple calibration routine. If
we are able to successfully implement the simple calibration routine we will explore validating the
calibration through numerical integration as well as other calibration routines such as using the onboard

temperature sensor for the IMU. The basic gyroscope calibration routine is as follows: we will simply
have the user place the IMU onto a flat surface and record the data that the gyroscope sensor reads.
Because the IMU is just sitting still and not rotating, the values read by the gyroscope should be centered
around zero, if the data read by the gyroscope is not equal to zero we will calculate the offset of the mean
of each DOF and store it within a matrix to be applied later.

Figure 8: Gyroscope data uncalibrated vs calibrated example

The following are plots are created using data.

If the user has selected to calibrate the magnetometer then the microcontroller will enter the
magnetometer calibration mode and the magnetometer calibration LED will be turned on. When
calibrating a magnetometer there are two different calibrations that can be performed depending on the
data that is recorded by the magnetometer. These calibration methods are hard iron offsets and soft iron
offsets. For the initial deliverable of this project we will focus on performing a hard iron offset to the data

as soft iron offsets are more complicated and are only necessary if the rotation of the IMU gyroscope data
does not maintain a circular form. Hard iron offset calibrations are performed as follows: for each axis of
the IMU we will have the user rotate the block 360 degrees around that access multiple times for a
defined amount of time, during this time the microcontroller will record the magnetic response of the
planar magnetometer sensors. If graphed the data will be represented by a circular figure which denotes
the rotation around the relative axis for each planar magnetometer sensor. We calibrate this data by
calculating the offset of the center of each circle from the origin of the graph. Each of these calculated
values represent the hard iron offset for each axis.

In order to streamline the calibration and make it easy for any user to perform an instruction manual will
be created with information on how to calibrate each of the different sensors.

The calibration interface will be hosted on the PCB, but the processing of data for the calibration will be
done on the Nvidia Jetson in the reach model of the project. This is because it allows us to use the PyCal
library to process the data and make our jobs easier.

Requirement Verification

● The Control Unit must be able to
process and transmit data quickly and
accurately from the IMU to the device
connected to the USB port.

● The Control Unit must be able to process IMU data at
a rate of at least 100Hz.

● The Control Unit must be able to transmit data to the
device connected to the usb port at a rate of at least
10Mbps.

● The I2C communication link between the IMU and the
ESP32 must have a maximum data transmission error
rate of 5%.

● The control unit must perform accurate
calibration of the raw IMU output data

● The calibrated IMU data must remain stable with less
than less than 1% drift (pose and position) when the

to account for any manufacturing bias
and environmental factors. In the reach
model the calibration will be done on
the Nvidia jetson.

IMU is placed on a flat surface with no rotation, for a
duration of 20 minutes

● Verify that the calibrated data has a mean value of zero
within a tolerance range of +/- 0.1 degrees

● Verify that the calibration process can be repeated with
consistent results within a tolerance range of +/- 0.1
degrees.

● The calibration process must be able to calibrate each
of the 3 different sensors and the data that they output.

● Verify that the calibration process does not introduce
any additional errors or noise to the IMU's output data,
and that the calibrated data accurately represents the
physical orientation and motion of the sensor.

● The user interface of the Control Unit
must be designed in such a way that it
is easy for a user to perform calibration
and data collection tasks without the
need for extensive technical
knowledge. The user should be able to
initiate calibration and data collection
processes with minimal effort and
without the need for complex
configuration or setup procedures.

● The user interface must have clearly labeled buttons or
controls that correspond to each functionality, such as
"Calibrate" and "Collect Data". Each button or control
must be labeled with clear and concise text or symbols
that are easily understood by the user.

● The user interface must provide clear instructions or
prompts on how to initiate the calibration and data
collection processes. These instructions or prompts
should be displayed prominently on the interface and
should be written in simple and easy-to-understand
language. The user should be able to follow these
instructions without any confusion or difficulty.

2.4 Subsystem 3: Position Estimation using AI on Chip
AI on chip either through Nvidia Jetson or fpga that will take the output of the IMU and predict what the
orientation of the device will be.
We have deployed an LSTM model to begin with, however we will be looking into the following
algorithms as well: Accelerometer Inclination, Gyroscopic Integration, Complementary Filter, Kalman
Filter, Digital Motion Processing, Madgwick Filter, Mahony Filter. The hardest challenge of this project
will be the hardware acceleration of these algorithms and processing data while dealing with noise.
https://ieee-dataport.org/open-access/estimating-relative-angle-between-two-6-axis-inertial-meas
urement-units-imus.

https://ieee-dataport.org/open-access/estimating-relative-angle-between-two-6-axis-inertial-measurement-units-imus
https://ieee-dataport.org/open-access/estimating-relative-angle-between-two-6-axis-inertial-measurement-units-imus

The data we will be using for this project is collected from 2 IMUs as shown above. The IMUs used are
MPU-6050.

Here, IMU 1 does not move, while IMU 2 rotates about the Y Axis. IMU2 is attached to a motor and we
use the encoder values as ground truth. 9 trials were conducted and each trial lasted 25 minutes. In this
section, we go over the data and the algorithms used.

Gyroscope Values:

For the plots, we have compared the gyro reading across each axis on each IMU and placed them against
the encoder rate. This encoder rate was obtained by dividing the encoder difference, i.e difference in
degrees between 2 consecutive readings and the time difference (ideally 10ms but calculated based on
time stamp).

Y axis

We begin with the Y axis readings as that is the only axis we are rotating about. As we can see, the
Gyroscope value closely matches the encoder rate. This is a very good sign as it shows that the gyroscope
readings even from the cheapest IMU can provide relatively accurate measurements. IMU1 gives a 0
reading with noise, and this is expected as well.

As we can see, the peaks of the Gyro are higher than that of the encoder rate. Here, we suspect that either
the IMU was subjected to noise or the imu was not perfectly aligned when conducting the experiment.
This is further supported by the next graphs.

X Axis

As we can see, the gyro readings are almost 0 for both. However, IMU 2 has non-zero readings that
follow the pattern of the encoder. This leads us to believe that the IMU was either subjected to noise, or it
was slightly tilted, causing values to be registered on the X axis as well. We will be reaching out to the lab
that conducted this experiment to confirm. If it was perfectly aligned, we will find a way to accommodate
this during calibration.

Z Axis

As we can see, the gyro readings are almost 0 for both and they are just jubjected to noise. IMU2 closely
follows IMU1, showing that the rotation adds only upto a degree in noise.

Accelerometer Values:

For the plots, we have compared the accelerometer reading across each axis on each IMU and placed
them against the encoder degrees.

X Axis

We expect the accelerometer to register periodic values on the X and Z axis as those are subject to
movement. As we can see the X value begins with 2g as expected, as it experiences 1g from gravity at
rest and 1g due to the speed. We see a periodic pattern with a lot of noise being repeated. This is
something we can work on improving, as the noise causes a lot of errors to accumulate when calculating
the 3d orientation. As we can see, the values accurately follow the encoder degree.

Y Axis

The Y axis is almost 0 however it follows the peaks and troughs of the encoder. This could be because of
the tilt issue we mentioned earlier.

Z Axis

The Z axis follows the peaks and troughs of the encoder. As we can see, the values accurately follow the
encoder degree.

3D rotation from DMP

Quaternions for 3D orientation

We use the quaternion values calculated by the Digital Motion Processor (given by the author of the
dataset) to obtain the pitch angle. As we can see, the pitch closely matches the pattern, with the peaks and
troughs matching, however we believe that Deep learning algorithms can give a better estimate.

Seen below are the Yaw and Roll calculated for the IMU and as we can see, the Yaw is extremely
inaccurate with the values drifting upward.

Standard Algorithms:

We will begin by implementing 3 of the 7 standard algorithms selected based on the performance
seen below.

We will be implementing the Kalman Filter, Madgwick Filter, and Mahony Filter.

Kalman Filter:

A Kalman filter is a type of mathematical algorithm that is used to
estimate the state of a system over time. In the context of
orientation tracking, a Kalman filter can be used to estimate the
orientation of an object by combining the measurements from an
accelerometer and a gyroscope.

Madgwick Filter:

The Madgwick filter is a type of complementary filter used to
estimate the orientation of an object.

Here, the block diagram represents the complete orientation filter

We will try to implement the following code
(https://github.com/bjohnsonfl/Madgwick_Filter/blob/master/madgwickFilter.c)

Mahony Filter:

https://nitinjsanket.github.io/tutorials/attitudeest/mahony

The Mahony filter is a type of complementary filter used to estimate the orientation of an object
and is known for its high accuracy and fast processing times.

We will try to implement the following code
(https://github.com/gaochq/IMU_Attitude_Estimator/blob/master/src/Mahony_Attitude.cpp)

https://nitinjsanket.github.io/tutorials/attitudeest/mahony

Deep learning

When a large range of different dynamic and static rotational and translational motions is considered, the
attainable accuracy is limited by the need for situation-dependent adjustment of accelerometer and
gyroscope fusion weights. We investigate to what extent these limitations can be overcome by means of
artificial neural networks and how much domainspecific optimization of the neural network model is
required to outperform the conventional filter solution.

We have made an initial LSTM to test results. Although not greate, we can see a clear pattern in the
predictions

We will keep improving our models and deploy the ones from the following papers.

(https://arxiv.org/pdf/2005.06897.pdf)

https://arxiv.org/pdf/2005.06897.pdf

We can see based on results from papers that using a RNN or CNN minimizes the RMSE and
provides promising results.
We will begin by implementing the following code
(https://github.com/mbrossar/denoise-imu-gyro) for Denoising IMU Gyroscopes for Open-Loop
Attitude Estimation. (https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9119813)

This paper has promising results and we will compare the RMSE with that obtained by the standard
algorithms. If this approach is significantly better, we will move onto accelerating this using hardware
optimizations.

https://github.com/mbrossar/denoise-imu-gyro
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9119813

Neural Networks on FPGA:

The CNN is costly and will reduce the frequency of output. Therefore our reach goal is to deploy the
CNN on an FPGA.

(https://www.youtube.com/watch?v=a2wOjxRf_xg&list=PLJePd8QU_LYKZwJnByZ8FHDg5l1rXtcIq&i
ndex=2)

Requirement Verification

● The Algorithm used must be able
to minimize RMSE on the dataset

● As we already know that standard models can
perform with an RMSE of <6 degrees within 25
mins, the deep learning model needs to
outperform these algorithms

● The Output of the model should be easy to
understand and be subjected to unseen test data
taken from other trials

● The Algorithm used should output
the 3D rotation of the IMU

● The Algorithm will provide us with quaternions
values that we need to use to display a 3D model
on a screen

● The IMU can display the Euler angles on the
LCD or OLED screen on the PCB.

● The Algorithm used can minimize
the error over the data

● The calculated Mean absolute percentage error
should be less than 5% over 20 mins of data
collection

https://www.youtube.com/watch?v=a2wOjxRf_xg&list=PLJePd8QU_LYKZwJnByZ8FHDg5l1rXtcIq&index=2
https://www.youtube.com/watch?v=a2wOjxRf_xg&list=PLJePd8QU_LYKZwJnByZ8FHDg5l1rXtcIq&index=2

2.5 Subsystem 4: Power Supply
The Power Subsystem will serve as the primary source of energy for the various components in our
design, including the IMU, microcontroller, AI on chip, and any hardware filters. This subsystem will
perform the conversion of AC power from the wall outlet to DC power and regulate the DC power to
meet the varying voltage requirements of the different components. For the power supply in the initial
deliverable model we will use the 12V power supply that comes with the Nvidia Jetson developer kit to
regulate the power that comes out of the wall socket and provide it to the Jetson.

For the initial deliverable model, to power the IMU and the control unit in the initial deliverable model we
will use a USB cable to connect the PCB to the Jetson. The USB cable will not only transmit data
between the microcontroller and the Jetson, but it will also supply the PCB with a 5v input voltage. We
will then use a 3.3V voltage regulator to convert that voltage down to 3.3V which is what the ESP32 runs
on. We can then use that reduced 3.3 voltage to power the IMU and OLED display. A USB 2.0 port can
supply 500mA of current at 5V. This is enough to power everything on the PCB, including the ESP32, the
IMU, and the OLED display. In standard mode the ESP32 consumes about 260mA of current which
leaves plenty for the other components. The IMU does not consume more than 5mA of current and the
OLED display does not draw more than 50mA of current when the display is fully illuminated.

For the reach model of our project we will no longer rely on the USB cable to deliver power to the control
unit and IMU subsystems, instead we will use a proprietary voltage regulator such as the LM1117
connected to a DC power adapter such as the Belker 12W Universal AC/DC Power Adapter. The 12W
power adapter should be able to supply more than enough energy to the PCB as the ESP32 along with the
OLED display board and IMU does not consume more than 1.5 watts of power. We will have to choose a
suitable FPGA for the reach model that does not require more than 10W of power as we will need to use a
bigger power adapter in that case.

Requirement Verification

● The power supply must provide a
stable output voltage of 3.3 volts to the
PCB and a stable output voltage of 12
volts to the NVIDIA Jetson.

● Measure the output voltage of the PCB power supply
using a multimeter and verify that the value is 3.3 volts
with a tolerance range of +/- 0.1 volts.

● Measure the output voltage of the Jetson power supply
using a multimeter and verify that the value is 12 volts
with a tolerance range of +/- 0.5 volts

● Place the PCB under varying load conditions and
measure the output voltage to ensure it remains stable
within the tolerance range.

● The power supply must be able to
handle a maximum input voltage of 24

● Increase the input voltage of the power supply in small
increments while measuring the output voltage until

volts with a tolerance range of +/- 0.5
volts.

the maximum voltage is reached, and record the output
voltage value.

● Verify that the power supply can handle the maximum
input voltage without damaging any components or
causing any safety hazards.

● The power supply must have
overvoltage protection to prevent any
voltage spikes from damaging the
components.

● Introduce a voltage spike to the input voltage of the
power supply and measure the output voltage to ensure
it remains within the tolerance range.

● Verify that the overvoltage protection activates and
prevents any voltage spikes from passing through to
the components.

● The power supply must have
short-circuit protection to prevent any
damage to the components in case of a
short circuit.

● Introduce a short circuit to the output of the power
supply and verify that it shuts down and prevents any
current from flowing.

● Verify that the short-circuit protection activates and
prevents any damage to the components.

● The power supply must have an
efficiency of at least 85% to minimize
power loss and heat generation.

● Measure the input and output power of the power
supply and calculate the efficiency.

● Verify that the power supply meets the efficiency
requirement under varying load conditions.

2.6 Tolerance Analysis
One aspect of our project that is critical to its success is whether the ESP32 can process the data as fast or
faster than it receives the data from the IMU. This is important otherwise we can’t get a real time pose
estimation of the IMU.

Based on the known parameters of the IMU and the ESP32 , we can perform a tolerance analysis to
determine whether the ESP32 can handle the data collection and processing requirements for the project.
The IMU has a sample rate of 400 Hz and outputs data with 9 degrees of freedom. The data processing
only requires applying constant integer offsets to the IMU data.

With a raw data output rate of 3.2 Mbps, the data transfer from the IMU to the ESP32 will not be a
limiting factor, as the ESP32 has a maximum data transfer rate of 480 Mbps. We can estimate the
computational requirements for processing the IMU data by considering the worst-case scenario of having
to process all 400 samples per second. Each sample contains 9 values, each requiring one integer offset
calculation. This results in a total of 3,600 integer calculations per second.

The ESP32 has a clock speed of 240 MHz, which means it can perform approximately 480,000 integer
calculations per second. Therefore, the ESP32 is more than capable of handling the required processing
for the project, even in the worst-case scenario. The maximum number of integer calculations required per
second is well below the ESP32’s capabilities, and the data transfer rate between the IMU and ESP32 is
not a limiting factor.

In conclusion, the tolerance analysis shows that the ESP32 has ample processing power to handle the data
collection and processing requirements of the project. Therefore, we can confidently state that this aspect
of the project is feasible and can meet its requirements.

3.Cost and Schedule

3.1 Cost Analysis

Labor: 40$/hour x 2.5 x 8 hours per week x 7 weeks x 2 partners = $10,200
The total cost for parts as seen in the table below is $206.71 before shipping. 5% shipping cost adds
another $10.34 and another 10% sales tax adds another $20.67. This adds up for a total of $237.71

Adding up labor and parts the total cost for this project comes out to be $10,437.71

Part #/Description Distributer Quantity Total Cost

MPU-6050 IMU Amazon 3 $10

MPU-9250 IMU Amazon 1 $15

ESP32 Microcontroller Digikey 1 $5

128x64 OLED Display Amazon 1 $7

SDSDXXU-064G-GN4IN
64GB SD card

Amazon 1 $15

Nvidia Jetson Developer Board Nvidia 1 $150

AA3528QBS/D 465nm LED Kingbright 6 $2.76

1k Ohm Resistor Yageo 6 $0.60

1825910-6 push button TE Connectivity 3 $0.60

612-EG1201A Switch Mouser Electronics 1 $0.75

MCP2200T-I/MQ USB 2.0 to UART Mouser Electronics 1 $2.84

Protocol Converter

3.2 Schedule

Dates Tasks

2/19-2/25
Design Document 2/23
Team Contract 2/24

Lukas: Finish up design document and team contract and start designing
PCB
Chirag: Finish up design document and team contract and Finish
implementing the standard models on test IMU data (contact lab)

2/26 - 3/4
Design Review

Lukas: Finalize first draft of PCB design and start testing ESP32 and
IMU’s
Chirag: Finish one of the models from the papers that we have
mentioned (Start with CNN) and compare performance with standard
model results

3/5 - 3/11
First Round PCB 3/7
Teamwork Evaluation 3/8

Lukas: Start constructing mock up of pcb using a breadboard to ensure
that all the components work together and are able to interface as
expected
Chirag: Finish deep learning models from the papers and start using the
Jetson for displaying the final 3d estimate using all algorithms and assist
with pcb design

3/12 - 3/18 SPRING BREAK

3/19 - 3/25 Lukas: Start testing pcb and order more parts if needed
Chirag: Begin testing hardware acceleration for the Models and assist in
testing pcb

3/26 - 4/1
Second Round PCB 3/28
Progress Report 3/29

Lukas: Start designing second round pcb with reach model in mind
Chirag: Assist in testing second round pcb and move forward depending
on results from the Deep learning models and acceleration hardware

4/2 - 4/8 Lukas: Finalize second round pcb design
Chirag: Assist in finalizing second round pcb

4/9 - 4/15 Lukas: Finalize testing the for bugs and ensuring the hardware works
Chirag: Finalize testing the for bugs and ensuring the hardware works

4/16 - 4/22
Team Contract 4/16
MOCK DEMOWEEK

Lukas: Finalize construction and assembly of final design of project
Chirag: Finalize construction and assembly of final design of project

4/23 - 4/29
FINAL DEMOWEEK

Lukas: Prepare for final demo and work on final report
Chirag: Prepare for final demo and work on final report

4/30 - 5/6
FINAL PRESENTATION

Lukas: Prepare for final presentation
Chirag: Prepare for final presentation

4.Discussion of Ethics and Safety

4.1 Ethics and Safety Issues
In accordance with the IEEE Code of Ethics, it is of utmost importance to maintain originality and
integrity in the project ideas and research process. Any sources used during the research must be properly
cited and credited to avoid plagiarism (IEEE Code of Ethics II.5). Our project is aligned with the ongoing
efforts in improving the accuracy of IMU sensors, and while referencing relevant research papers, all
sources used will be properly cited and credited. Our project aims to differentiate itself from existing
technologies by utilizing unique methods of implementation. Furthermore, the IEEE Code of Ethics I.5
requires that all claims and estimates be honest and realistic. In the context of our project, we strive to
enhance the precision of IMU data output to the best of our abilities, which includes verifying the
reliability of raw data from various IMU sensors.

In terms of safety, our team is committed to following the laboratory safety regulations set by the Division
of Research Safety in the Office of the Vice Chancellor for Research and Innovation (ECE 445 p.3). To
minimize any potential risks, our team will work in pairs during laboratory sessions, promptly report any
broken equipment, maintain cleanliness after each session, and avoid consuming food within the lab.The
main concern of safety within out project is that of a short circuit within our PCB or power supply that
cause elements of the electrical circuit to overheat and burn the users of the project. To mitigate this risk
we will exercise caution to avoid skin contact with electrical circuits and separate electrical systems with
high voltage requirements from human interaction. We will also thoroughly test our circuits against
varying voltages and currents to make sure that a power surge will not cause any potential damage or
safety hazards within our project.

5.Citations and References

[1] X-IO Technologies. “NGIMU: The Complete Sensor Fusion Solution.” X-IO Technologies,
www.x-io.co.uk/ngimu/.

[2] X-IO Technologies. “NGIMU: Sensor Fusion with IMU & AHRS.” YouTube, uploaded by X-IO
Technologies, 9 Apr. 2018,
www.youtube.com/watch?v=a2wOjxRf_xg&list=PLJePd8QU_LYKZwJnByZ8FHDg5l1rXtcIq&
index=2.

[3] "IEEE Code of Ethics." IEEE, www.ieee.org/about/corporate/governance/p7-8.html.

[4] Association for Computing Machinery. “ACM Code of Ethics.” Association for Computing
Machinery, www.acm.org/code-of-ethics.

[5] Kim, Hyunseok, et al. “Evaluating the Accuracy of Inertial Measurement Units: A Comparative
Study on Real-World Data.” arXiv, Cornell University Library, 8 May 2020,
arxiv.org/pdf/2005.06897.pdf.

[6] Brossard, Marc. “Denoise-Imu-Gyro.” GitHub, github.com/mbrossar/denoise-imu-gyro.

[7] Adafruit Industries, LLC. “Adafruit 9-DOF Absolute Orientation IMU Fusion Breakout -
BNO055.” Adafruit Industries, LLC, www.adafruit.com/product/4502.

[8] HiLetgo. “HiLetgo MPU-6050 3 Axis Accelerometer Gyroscope Module 6 DOF IMU for
Arduino.” Amazon,
www.amazon.com/HiLetgo-MPU-6050-Accelerometer-Gyroscope-Converter/dp/B01DK83ZYQ?
th=1.

[9] Hrisko, J. (2019). Accelerometer, Gyroscope, and Magnetometer Analysis with Raspberry Pi Part
I: Basic Readings. Maker Portal.
https://makersportal.com/blog/2019/11/11/raspberry-pi-python-accelerometer-gyroscope-magneto
meter

[10] Shimmer Sensing. “Wireless Sensor Networks Videos.” Shimmer Sensing,
shimmersensing.com/support/wireless-sensor-networks-videos/.

[11] Adafruit. “Magnetometer Calibration.” Adafruit Learning System,
learn.adafruit.com/ahrs-for-adafruits-9-dof-10-dof-breakout/magnetometer-calibration.

[12] Hackster.io. “MPU9250 Datasheet.” TDK InvenSense, 2015,
invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf.

http://www.x-io.co.uk/ngimu/
http://www.youtube.com/watch?v=a2wOjxRf_xg&list=PLJePd8QU_LYKZwJnByZ8FHDg5l1rXtcIq&index=2
http://www.youtube.com/watch?v=a2wOjxRf_xg&list=PLJePd8QU_LYKZwJnByZ8FHDg5l1rXtcIq&index=2
http://www.ieee.org/about/corporate/governance/p7-8.html
http://www.acm.org/code-of-ethics
http://www.adafruit.com/product/4502
http://www.amazon.com/HiLetgo-MPU-6050-Accelerometer-Gyroscope-Converter/dp/B01DK83ZYQ?th=1
http://www.amazon.com/HiLetgo-MPU-6050-Accelerometer-Gyroscope-Converter/dp/B01DK83ZYQ?th=1
https://makersportal.com/blog/2019/11/11/raspberry-pi-python-accelerometer-gyroscope-magnetometer
https://makersportal.com/blog/2019/11/11/raspberry-pi-python-accelerometer-gyroscope-magnetometer

[13] Christopher Barnatt. "Raspberry Pi Pico Tutorial #5: Pico and Accelerometers." YouTube,
uploaded by ExplainingComputers, 2 Feb. 2021, www.youtube.com/watch?v=XCyRXMvVSCw.

[14] Christopher Barnatt. "Raspberry Pi Pico Tutorial #6: Pico and Gyroscopes." YouTube, uploaded
by ExplainingComputers, 6 Feb. 2021, www.youtube.com/watch?v=mzwovYcozvI.

[15] IMU Filters https://nitinjsanket.github.io/tutorials/attitudeest/mahony

http://www.youtube.com/watch?v=XCyRXMvVSCw
http://www.youtube.com/watch?v=mzwovYcozvI
https://nitinjsanket.github.io/tutorials/attitudeest/mahony

