Portable Thermal Printer

Gally Huang (ghuang23)
Jason Liu (jliu246)
Kevin An (kqan2)
TA: Hanyin Shao (hanyins2)
03/02/2023
ECE 445: Senior Design, Spring 2023

Team 29

Introduction
Our senior design project name is Portable Thermal Printer for ECE 445, Spring 2023.

We are Team 29, with the assistance of TA Shao Hanyin (hanyins2) and Professor
Gruev.

e Gally Huang (ghuang23)
e Jason Liu (jliu246)
e Kevin An (kgan2)

Objectives and Background
Introduction

Problem

One of the biggest problems surrounding frequent travelers is the issue of
portability. ltems that are carried along have limits on their weight, cannot consume too
much space, and have to compromise on quality. A target area that has been identified
by the Hewlett-Packard Company (HP) lies within the commercial printer industry.
Printers as a whole have remained relatively unchanged over time with respect to other
technologies that have shifted towards more portable means. As such, they remain
inconvenient for travelers who need to quickly print items on the go. HP has identified a
potential entry into the portable printer market to remain competitive in this industry and
find new methods for company innovation.

Solution

Our solution is a portable thermal printer, a system that receives wireless
instructions for printing on receipt paper. Users will be able to upload images from their
phones or computer that this system can fetch and print.

We will use a field-programmable gate array (an FPGA) to implement our
solution because they can stand in place for a real-world application-specific integrated
circuit (ASIC) and eventually be developed in an ASIC. It will be utilized as the base of
the project. Additionally, we need to have a way to print, so we will be using the
internals of a thermal printer along with a microcontroller unit (MCU) to handle the
wireless components. Finally, we will be creating our own input/output shield (I/O shield)
for the PCB that has the subsystems listed further down on top of it.

Visual Aid

Phone
LCD

Web
Server

Printer

Microcontroller

»»»»»»»»

FPGA

Goals and Benefits

e Make printing portable in the world where many other technology have already

evolved to become more portable
e Current solutions using wireless connection usually support Bluetooth, which is

short-range, or are expensive.
e The project allows for printing with a battery system and wireless uploading of

image data, making it very portable.

High Level Requirements

e The device design is portable. It should be able to wirelessly and accurately get
the user-uploaded image data from a server to the embedded MCU. It should sit
as a small footprint of at most 12"x12" as to fit comfortably within a suitcase,
allowing for ease of transportation.

e The device itself should also be completely powered by batteries, having an
average (if not worst case) battery life of ideally 1.5 or more hours.

e The start to end time, between user upload and completing the printing, should
be within 20 seconds so as to not consume too much time for the user.

Design

Block Diagram

Wireless System

Board System

SImage Data (png}— | |

P8266 SMT Module

Rx & TxACK LLGICL <“:

Inj

A

Imaging System

,—LCD Data——>

——>| ESP8266 CPU Image to Print

elally
nected
ready SPI Image Data / SPI Bitmapped Data

3.3V @ 180mA

—13.5]V @ 25mA |

Switch between Algorithms

Infrared Sensor ADC Data

Deite 10FPGA

All Power Lines are drawn in Red and
are very conservative in order to

account for real-world tolerances

3.3V @ 150mA <=9V

1A]|5V @ 2A= 10W

5V @05
USB-C s c PD Cable
Batery Pack Controller
[—~ 20 W-

Battery Level Status—————————————

Description

Wireless Subsystem
Wireless Subsystem Overview

The purpose of the Wireless Subsystem is to allow the system to wirelessly
connect between a server (can be locally hosted on a computer or on the cloud), a user,
and the ESP8266 ESP-12F MCU. The benefits of this subsystem add portability for the
product and a more "modern" feel for the user, reducing the need for excessive cables
and clutter.

There will be a simple web page backed by the server that a user can interface
with and upload an image to and upon which, the user can request a connected printer
to print the uploaded image. The server will send data to the MCU through a wireless
WebSocket connection between the MCU and the server. After receiving this data, the
MCU will further process and deliver it to the other respective subsystems.

Wireless Subsystem Requirements
ESP8266 ESP-12F Microcontroller (MCU):

e The ESP8266 ESP-12F microcontroller is a low-cost MCU that will be embedded
on the custom PCB (we will design this as an I/O Shield for the system's FPGA).
With respect to the wireless functionality, it is responsible for allowing the printer
system itself to stay wireless, as it has a built-in WiFi microchip, enabling simple
connection to an application server (discussed below). With the MCU acting as a
client to an application server WebSocket, it can listen for asynchronous request
events made by the server, where the encoded image data is sent through the
connection.

e This MCU will then be responsible for serially delivering the image data to a
buffer for the FPGA to further process towards printing, taking advantage of the
FPGA for hardware acceleration in implementing DSP algorithms (such as the
Floyd-Steinberg dithering algorithm) in order to speed up the image manipulation
and cleaning processes. It will also send diagnostic data about the state of the
current processes to an LCD display, such as about current battery status, ready
for printing acknowledgement, and printing completion/failure statuses.

Application server:

e The application server allows the user (when connected) to upload an image
through a computer or cell phone and enables the MCU to receive the data
through a WebSocket event following the event. The front end can be created
with a simple interface (i.e., basic web development through
HTML/CSS/JavaScript) that allows users to upload an image, and an on-screen
button which initiates a POST request for the image to be sent to the server. The

back end can be handled with the Flask framework and a custom API which
allows the user to actually upload the image on the server. This process should
take a maximum of 5 seconds from initial time of upload request to appearing in
the server storage. After a successful POST, the WebSocket event that the MCU
will receive will contain the encoded to-be-printed image data (an efficient
method being through base64 string encoding through JSON) from the server.

e As mentioned previously, the server can be hosted locally for the scope of this
project as-is, especially as a means of saving a consistent amount of money as
opposed to hosting on a commercial cloud platform such as AWS or GCP. For
large scale implementation, we of course cannot rely on local servers, but this
simplifies our testing requirements with a small sample set of users and devices
to work with.

e The MCU will require ~80 mA of current and a range between 3.0-3.6V
continuously for operation, defined in the Power Subsystem how it will be
delivered. This voltage will be set on the MCU pins 8 (Vcc) and 9 (GND). Ideally,
we should be within the recommended 3.0-3.3V so minor fluctuations in the
voltage do not go above 3.6V on the MCU. We will use GPIO pins 14 as the CLK
signal, 12 as MISO, 13 as MOSI, and 15 as the SS to run SPI protocol to
communicate with the FPGA [2]. The local server, being hosted on a computer,
will require power delivered through a commercial power adapter supply (i.e.,
laptop being powered by a laptop charger), however, we allow this to be hidden
from view for the user.

Imaging Subsystem
Imaging Subsystem Overview

The Imaging Subsystem allows for three pixels to be converted and mapped into
the dithered equivalent after being processed. The processing is done entirely by
hardware as this is the "hardware accelerator" portion of our project. This will allow for
the images to be printed out at an incredible rate in a very similar fashion to how it is
done in industry with consumer grade printers at HP. Additionally, this subsystem
includes the thermal printer itself, which takes the hardware accelerator's image and
routes it back through the board so that the MCU can send the image to the printer to
be printed.

Imaging Processing Subsystem Requirements
DE10-Lite FPGA:

e An FPGA will be utilized to simulate the operation of an ASIC which is not openly
available to the mass public. FPGAs are commonly used to test HDL code at a
very cheap cost compared to a full scale tape out, albeit at a slower clock, so we
will attempt to multiply our hardware throughput at the correct proportional

speedup rate. The FPGA can run at a speed of 50 MHz [7], while mainstream
ASICs can usually run 10-50x faster than this, but this will still be much faster
than processing the image through software means (on the cloud or on the
MCU).

The FPGA must take in data through the SPI protocol and be able to send data
back out through the SPI protocol as well.

The FPGA will take in three pixels and run it through a pipeline. Firstly, the FPGA
must store all of the RGB (red, green, and blue) values of an image into its
onboard memory to prepare it to be processed. While the pixels are being stored
into memory, we can start processing some of the data while it is still in the
process of gathering data from the MCU. This is because many of the algorithms
that will be applied, such as Floyd-Steinberg dithering [6], only requires 5
adjacent pixels for the image to start being processed. We need to set up a state
machine that detects whenever a threshold amount of pixels have been loaded
into the FPGA, and then, it will start to process this data simultaneously. The third
stage of the pipeline is when the data needs to be stored in a final bitmapped
processed stage, and then this final image will be sent back out into the MCU
and will be ready for printing. This process happens very fast, and doing the
math, it should not take more than 3 * (Number of pipeline stages) * (xy) = 3xy
clock cycles in order to process a single image, where x and y are the
dimensions of the picture.

The FPGA requires constant voltage of 5V and we can assume that it requires
0.5As as well since this is being outputted by the USB-A cable everytime.

The printer requires constant power of 10W when it is active, whether this is
through 5V or 9V is dependent on the input voltage to the system.

https://github.com/Jellyyz/ECE445/tree/main/Proposal#7
https://github.com/Jellyyz/ECE445/tree/main/Proposal#6

Diagram of sample algorithm (all are pretty similar except for different ALUs):
Floyd-Steinberg Dithering

¥

Red Bufier Comparator

Green Bufier Comparator

A

w e cFiRald Aage Daba - s cemnn e e

Blue :Buffer Comparator

YYY

ry

64 x 64 = 4096

e As for the printer, the printer must be able to interact with the MCU correctly. This
means that the ports coming out of the MCU have to be connected correctly to
the printer. We also need to make sure that the printer receives enough power so
it will be run with power through its own dedicated rail, since we expect that at
least 10W will be used by the printer during peak run time.

Board Subsystem
Board Subsystem Overview

The Board Subsystem is the interactive and diagnostic block that allows for the
user to check the status of the entire system at a glance.

The primary component is a small 1.8" raw TFT display [4] that displays useful
information about the battery level and the status of a printing job for user diagnostics
(e.g., completed, failed, paper jam), all of which is processed and delivered from the
MCU.

There will also be an infrared receiver sensor that will sense if there is still a
supply of thermal paper for the thermal printer to print on. If the sensor detects a change
in the paper supply, this information will be sent to the MCU, which will have the LCD
print out a visual warning/error and prevent the printing process.

Finally, there will be a switch box that the user can use. Switches, when turned
on and off, will change which algorithm the FPGA will use when processing the image
(e.g., Floyd-Steinberg Dithering, Burke's Dithering [5], etc.).

Board Subsystem Requirements

e This block contributes to the overall design by providing a reasonable level of
user experience. It informs the user of potential issues pertaining to battery life
and printer status and allows the user to change between different image
processing algorithms based on their needs.

e One requirement for the LCD is that it must be able to refresh its status/display at
a decent rate so that monitoring/debugging the system is reasonably convenient
for the user (< 5 seconds). If something changes in the status of the system, the
LCD should be able to reflect upon this change with little lag.

e While not directly responsible for the Board Subsystem, the MCU is responsible
for sending and processing data that is delivered to this subsystem. Without it,
the LCD would fail to function and as a result, the Board Subsystem would
essentially be rendered useless.

Power Subsystem
Power Subsystem Overview

The power subsystem supplies power to every other subsystem. Namely, it
powers components such as the ESP8266 MCU at 3-3.3V [2], the thermal printer at 5-9
V [3], the FPGA at 5V [7], the LCD at 3.3V [4], and the infrared sensor at 3-5 V [10]. Its
components are a USB-C controller that will be connected to a PC's USB-C port. This
connection will supply power to our four 18650 batteries. We use a regulator system to

https://github.com/Jellyyz/ECE445/tree/main/Proposal#4
https://github.com/Jellyyz/ECE445/tree/main/Proposal#5
https://github.com/Jellyyz/ECE445/tree/main/Proposal#2
https://github.com/Jellyyz/ECE445/tree/main/Proposal#3
https://github.com/Jellyyz/ECE445/tree/main/Proposal#7
https://github.com/Jellyyz/ECE445/tree/main/Proposal#4
https://github.com/Jellyyz/ECE445/tree/main/Proposal#10

10

maintain constant voltage levels to the components stated above. It will also flash the
MCU (send program information to the MCU to execute).

This subsystem as a whole is necessary for supporting the continued operations
of the entire system, which includes displaying the diagnostic information, the Wireless
Subsystem receiving image data, processing image data, and printing.

Power Subsystem Requirements

e The other subsystems must be powered on with this subsystem at the stated
voltage and current levels or with a maximum of -5% deviation.

e |tis important that the power system is able to supply the upper conservative limit
of 20W as well, since this would be able to provide enough power to the system
in the case of sub components requiring peak power.

e \We also must be able to check the current battery level percent of the 18650
batteries on the LCD in the Board Subsystem. This diagnostic data is to be
delivered to the Board Subsystem for displaying to the user.

Risk / Tolerance Analysis

Servers are considered outside the scope of this class, so it may be difficult to
implement. Additionally, based on our implementation of accepting data from a user, we
can have our local server (and hence, our local device) be susceptible to a cyber attack.
Using JavaScript makes us potentially vulnerable to some control flow hijacking, which
can allow users to attack our device. Since our code is online, attackers can try to
precisely send images to hijack the server.

The printer itself needs to operate at over 150 degrees Fahrenheit in order to
activate the thermal paper, and therefore we must ensure, for the safety of the device
for the user, that the specific area intended to be held by the user remains under 120
degrees Fahrenheit throughout operation. The reason for 120 degrees Fahrenheit is
because this is generally agreed upon for handheld products as the upper limit of a
safe-to-touch temperature [9], and it would be extremely detrimental if the device were
to cause harm by exceeding this rating.

We will try to compute a bad case printing job but not so bad that a request
hangs for an indefinite amount of time. In that case, it will take an infinite amount of time
to finish printing - it may not even finish the printing job even. We assume that the worst
case scenario is where our images take 5 seconds to upload to our local server, this is
dependent on our internet speed and latency of our network. Now, the MCU must send
a request to retrieve the image data. The time taken to complete this request depends
on the size of the request, time needed to encode the request data, bandwidth of the
shared network, and even the server load. Because there are so many variables, let n
be the time (in seconds) it takes for the MCU to complete the request and receive image
data. From the datasheet, data transfer with the RX and TX pins of the MCU can reach
4.5 Mbps (megabits). Assuming our image is an x by y image, where x = pixels per row
of the image and y = pixels per column of the image and each pixel is represented by a

https://github.com/Jellyyz/ECE445/tree/main/Proposal#9

11

byte, it will take —>2—seconds to output the image data to the FPGA. We need the

FPGA to process the image using its algorithm, which has a runtime of
0(3xy) clock cycles. The FPGA runs at a clock speed of 50 MHz, so we expect the

runtime of image processing to be around

1 second 3x
3xy cycles * () = Y seconds.

50%10° cycles 50*10

Then, we have the final time needed to print the image on the thermal printer,
which will take O(y * c) time. This is because printers print out row by row. In particular,
the thermal printer device we have prints out rows of 60 mm/sec to 80 mm/sec (at 8.5
V) [11]. The following computes for c. Assume that 1 pixel is equal to d dots.

Let's assume we have a slow thermal printer such that it prints at the minimum
rate of 60 mm/sec. The printhead resolution is equal to 8 dots/mm, which means that
per square millimeter of paper, there will be 8 ink pigment units. The greater the

resolution, the sharper the image will be. Per second, the printer can print
60mm _ 60mm 4 8dots _ 480dots _ 480dots 4 1pixel _ 480 pixels
1second ~ 1second 1mm ~ 1second ~ 1second ddots ~ dseconds *

Therefore, for a given vy, it will take the printer

dseconds __ yd
480 pixels 480

y pixels * seconds.

The total runtime is therefore...

_ Xy 3xy vd
Tx,y) =5+ n+ 2 om0’ + 50 Seconds.

e 5 ->Assumption based on worst-case requirement for image to take 5
seconds to upload to server
e n ->Time taken for MCU to fetch image data

o —~r— ->Time taken for MCU to transfer image data to FPGA plus Time

taken to transfer finished image to printer

° Lyﬁ -> Time taken for FPGA to process image data with algorithm

50*%10

4%50 -> Time taken for thermal printer to print image

12

For example, if we have an image of 640 pixels by 480 pixelsandd =1, n=1, it will
take around 8.11 seconds to finish the printing job.

For the same image, if d = 3, it will take 9.1107 + n seconds, meaning as long as our
MCU can fetch the image data in less than 20 - 9.1107 = 10.8893 seconds, the printing
job will be finished in less than 20 seconds.

We believe that power is also a big issue for our printer. This is because there
are many voltages running in parallel for the internals of the printer so we need to make
sure whatever we are doing is safe not only for ourselves but for people around us as
well. There should be voltage regulators between the battery and the entire system,
even for devices that run on the same voltage such as the printer and the battery itself
(7.4V). Nevertheless, other devices should also have a voltage regulator hooked up
between it and the battery. We considered using LDO’s instead of a switching buck
converter for the rest of the circuit but this in turn is cause for concern since LDO’s have
a limited voltage dropout value that we cannot control. If the voltages are too far apart
such as from the 7.4V to the 3.3V rail, then this would cause for the LDO to heat up too
much and start a fire on the PCB. Therefore we decided that it would be best to layer
our power system to be:

Battery -> 2x buck converters -> 3x LDO out of 2 buck converters.

Ethics and Safety

Our project aims to create a convenient and speedy printing solution for consumers. As
such, we must ensure that the design of the printer system is safe for users to handle and
interact with on a consistent basis. While many of the components listed are found in everyday
objects and are consumer grade, there are some components that may pose risks in their
usage. According to the IEEE Code of Ethics 1.1 [1], we must remain transparent with our
design process and disclose the factors that might endanger the public and/or environment.

One concern that is associated with our power subsystem is the use of battery packs.
These batteries are lithium-ion rechargeable batteries, which, due to their energy density, makes
them susceptible to explosion when in contact with high temperatures or manufacturing defects.
This was demonstrated with the Samsung Note 7 smartphone case study [8], where the battery
packs caught on fire due to a defect in the phone design that allowed the battery leads to touch
and short circuit. We aim to follow all appropriate guidelines and documentation related to
proper charging and discharging of the battery, ensuring it operates at a safe temperature and
delivers the correct voltages and current to the rest of the system. As the most volatile part of
our system, we need to monitor the battery’s performance with the most scrutiny. We will follow
the lab safety manual for batteries at

13

https://courses.engr.illinois.edu/ece445/documents/GeneralBatterySafety.pdf for guidance in
order to prevent the potential danger in overcharging and discharging the batteries.

Another concern that is associated with our system is the printing subsystem itself. We
are using a thermal printer, as previously mentioned, which can reach upwards of 150 degrees
Fahrenheit during the printing operation. For the common case, where a user will meet the
printer while it is both in and not in use, we need to ensure that the printer is safe to handle. We
intend to design an enclosure that can allow users to handle and transport the printer safely,
while not compromising on the overall functionality. We will also thoroughly test and record the
temperatures of the surface of the finished product in order to properly disclose necessary
details about the printer’s safety.

Through this project, not only do we expect to provide new innovation in the way
portable printing is achieved, but we also expect to find new in-depth discoveries in image
processing and power electronics. We will transparently discuss our findings in hopes of
benefitting not only ourselves but to society and the engineering discipline as a whole.

https://courses.engr.illinois.edu/ece445/documents/GeneralBatterySafety.pdf

14

References

[1] IEEE Policies, Section 7 - Professional Activities (Part A - IEEE Policies), IEEE Code
of Ethics 2020.

[2] Al Thinker, "ESP-12F Datasheet," 2018. Accessed: Feb. 07, 2023. [Online]. Available at:
https://docs.ai-thinker.com/_media/esp8266/docs/esp-12f product specification_en.pdf

[3] P. Burgess and Adafruit Industries, "Mini Thermal Receipt Printer," Nov. 2021. Accessed:
Feb. 07, 2023. [Online]. Available at:
https://www.mouser.com/datasheet/2/737/mini_thermal_receipt_printer-2488648.pdf

[4] Truly Semiconductors Co., "JD-T18003-T01."
https://cdn-shop.adafruit.com/datasheets/JD-T1800.pdf (accessed Feb. 07, 2023).

[5] T. Helland, "Image Dithering: Eleven Algorithms and Source Code."
https://tannerhelland.com/2012/12/28/dithering-eleven-algorithms-source-code.html (accessed
Feb. 09, 2023).

[6] justinkraaijenbrink, "Exploiting the Floyd-Steinberg Algorithm for Image Dithering in R,"
Medium, Jan. 30, 2021.
https://medium.com/analytics-vidhya/exploiting-the-floyd-steinberg-algorithm-for-image-dithering
-in-r-c19¢8008fc99 (accessed Feb. 09, 2023).

[7] Terasic, "DE10-Lite User Manual," Jun. 05, 2020.

[8] R. Rox, "Samsung Galaxy S7 explodes during charge," Notebookcheck, Sep. 03, 2017.
https://www.notebookcheck.net/Samsung-Galaxy-S7-explodes-during-charge.246242.0.html
(accessed Feb. 08, 2023).

[9] Johns Manville, "Too Hot to Handle?," www.jm.com, Feb. 25, 2015.
https://www.jm.com/en/blog/2015/february/too-hot-to-handle/ (accessed Feb. 08, 2023).

[10] Vishay Semiconductors, "TSOP382.., TSOP384.., TSOP392.., TSOP394..," Feb. 2011.
Accessed: Feb. 09, 2023. [Online]. Available:
https://cdn-shop.adafruit.com/datasheets/tsop382.pdf

https://tannerhelland.com/2012/12/28/dithering-eleven-algorithms-source-code.html

