

Contents

1. Introduction 3
1.1 Problem 3
1.2 Solution 3
1.3 Visual Aid 4
1.4 High-Level Requirements 4

2. Design 5
2.1 Block Diagram 5
2.2 Wireless Subsystem 5

2.2.1 Description 5
2.2.2 Requirements and Verification 6

2.3 Imaging Subsystem 9
2.3.1 Description 9
2.3.2 Requirements and Verification 9

2.4 Board Subsystem 12
2.4.1 Description 12
2.4.2 Requirements and Verification 12

2.5 Power Subsystem 16
2.5.1 Description 16
2.5.2 Requirements and Verification 16

2.6 Tolerance Analysis 18
2.6.1 Power 18
2.6.2 Imaging 18
2.6.3 Data Transfer / Wireless - Board - Imaging 18

3. Costs 20
3.1 Analysis 20
3.2 Schedule 21

4. Ethics and Safety 23
5. References 24

2

1. Introduction

1.1 Problem
One of the biggest problems surrounding frequent travelers is the issue of portability.

Items that are carried along have limits on their weight, cannot consume too much space, and
must not compromise on quality. A target area that has been identified by the Hewlett-Packard
Company (HP) lies within the commercial printer industry. Printers have remained relatively
unchanged over time with respect to other technologies that have shifted towards more portable
means. As such, they remain inconvenient for travelers who need to quickly print items on the
go. HP has identified a potential entry into the portable printer market to remain competitive in
this industry and find new methods for company innovation.

1.2 Solution
Our solution is a portable thermal printer, a system that receives wireless instructions for

printing on thermal paper. Users will be able to upload images from their phones or computer
that this system can fetch and print.

We will use a field-programmable gate array (FPGA) to implement our hardware solution
because they can stand in place for a real-world application-specific integrated circuit (ASIC)
and eventually be developed commercially in an ASIC. It will be utilized as the base of the
project. Additionally, we need to have a way to print, so we will be using the internals of a
thermal printer along with a Wi-Fi enabled microcontroller unit (MCU) to handle the wireless
functionality. Finally, we will be creating our own custom input/output shield (I/O shield) for the
PCB that has the subsystems listed further down on top of it.

3

1.3 Visual Aid

Figure 1. A high-level visual representation of the general usage of the Portable Thermal Printer.

1.4 High-Level Requirements
1. The device design is portable. It should be able to get the user-uploaded image data

wirelessly and accurately from a server to the embedded MCU. It should sit as a small
footprint of at most 12"x12" to fit comfortably within a suitcase, allowing for easy
transportation.

2. The device itself should also be completely powered by batteries, having an average (if
not worst case) battery life of ideally 1.5 or more hours.

3. The start to end time, between user upload and completing the printing, should be within
20 seconds to not consume too much time for the user.

4

2. Design

2.1 Block Diagram

Figure 2. Portable Thermal Printer system block diagram.

2.2 Wireless Subsystem

2.2.1 Description
The purpose of the Wireless Subsystem is to allow the system to wirelessly connect

between a server (can be locally hosted on a computer or on the cloud), a user, and the
ESP8266 ESP-12F MCU. The benefits of this subsystem add portability for the product and a
more "modern" feel for the user, reducing the need for excessive cables and clutter.

There will be a simple web page backed by the server that a user can interface with and
upload an image to and upon which, the user can request a connected printer to print the
uploaded image. The server will send data to the MCU through a wireless socket connection
between the MCU and the server. After receiving this data, the MCU will further process and
deliver it to other respective subsystems.

5

2.2.2 Requirements and Verification
Table 1: Wireless Subsystem R&V

Requirements Verification
● Connected users can upload an image

successfully quickly to the server.
● Images will need to be delivered to the

server within 5 seconds of upload to
reduce the amount of overall delay for
the user.

● Starting with activating the server, at
the time of user upload, we will
manually check the time using a
stopwatch (i.e., with a cellphone) to
determine that the data was received
on the server within 5 seconds.

● Upon a successful user upload, the
image that is delivered to the server
should appear in the host computer’s
local storage, as in the directory that
the server code is active on. This will
allow us to verify that the necessary
data has been received in full within the
given time and that the custom API is
successful in this requirement.

● We will repeat this for many scenarios,
such as having multiple users on the
server simultaneously, varying image
sizes and resolutions, and at different
distances from the host computer.

● The ESP8266 ESP-12F microcontroller
requires 3.0-3.6 V continuously from
the power subsystem for operation.

● Ensure the power system is active
without having the MCU soldered in
place. We will use an oscilloscope to
measure the voltage across the Vin
and GND pins on the breakout PCB to
ensure that the voltage range is safe
for the MCU operation.

● Record the voltages throughout many
different points of operation of the
battery life to ensure that the Vin does
not fluctuate outside of the 3-3.3 range.
Any higher than 3.6V will damage the
MCU.

● The ESP8266 ESP-12F microcontroller
can receive asynchronous image data
from a WebSocket client.

● Due to the limited resources on board,
we will need to send the image data to
the MCU client as a base64 encoded
string.

● At every WebSocket event initiated by
the server, we will print out the event

6

JSON data in the Arduino IDE console
and manually verify that each string(s)
matches the corresponding image
base64 encoded through a separate
Python script.

The ESP8266 ESP-12F microcontroller is a low-cost MCU that will be embedded on the
custom PCB (we will design this as an I/O Shield for the system's FPGA). With respect to the
wireless functionality, it is responsible for allowing the printer system itself to stay wireless, as it
has a built-in Wi-Fi microchip, enabling simple connection to an application server (discussed
below). With the MCU acting as a client to an application server WebSocket, it can listen for a
request event made by the server, where the encoded image data is sent through the
connection.

This MCU will then be responsible for serially delivering the image data to a buffer for the
FPGA to further process towards printing, taking advantage of the FPGA for hardware
acceleration in implementing DSP algorithms (such as the Floyd-Steinberg dithering algorithm)
to speed up the image manipulation and cleaning processes. It will also send diagnostic data
about the state of the current processes to an LCD display, such as about current battery status,
ready for printing acknowledgement, and printing completion/failure statuses.

Figure 3. Datasheet hardware operation for ESP8266 ESP-12F MCU

The MCU will require ~80 mA of current and a range between 3.0-3.6V continuously for
operation as shown in Figure 3, defined in the Power Subsystem how it will be delivered. This
voltage will be set on pins 8 (Vcc) and 9 (GND). Ideally, we should be within the recommended
3.0-3.3V so minor fluctuations in the voltage do not go above 3.6V on the MCU. We will use
GPIO pins 14 as the CLK signal, 12 as MISO, 13 as MOSI, and 15 as the SS to run SPI to
communicate with the FPGA [2]. The local server, being hosted on a computer, will require
power delivered through a commercial power adapter supply (i.e., laptop being powered by a
laptop charger), however, we allow this to be hidden from view for the user.

7

The application server component allows the user (when connected) to upload an image
through a computer or cell phone and enables the MCU to receive the data through a request
following the event. The front end can be created with a simple interface (basic web
development through HTML/CSS/JavaScript) that allows users to upload an image, and an
on-screen button which initiates a POST request for the image to the server, which enables it as
ready to be delivered to the MCU. The back end can be handled with the Django framework and
a custom API which allows the user to upload the image on the server. After a successful
upload, the MCU will receive an event through the WebSocket it is connected to (also on the
server) to get an encoded version of the to-be-printed image (an efficient method being through
base64 string encoding in a JSON) from the server.

As mentioned previously, the server can be hosted locally for the scope of this project
as-is, especially as a means of saving a consistent amount of money as opposed to hosting on
a commercial cloud platform such as AWS or GCP. For large scale implementation, we of
course cannot rely on local servers, but this simplifies our testing requirements with a small
sample set of users and devices to work with.

8

2.3 Imaging Subsystem

2.3.1 Description
The Imaging Subsystem allows for three pixels to be converted and mapped into the

dithered equivalent after being processed. The processing is done entirely by hardware as this
is the "hardware accelerator" portion of our project. This will allow for the images to be printed
out at an incredible rate in a very similar fashion to how it is done in industry with consumer
grade printers at HP. Additionally, this subsystem includes the thermal printer itself, which takes
the hardware accelerator's image and routes it back through the board so that the MCU can
send the image to the printer to be printed.

2.3.2 Requirements and Verification
Table 2: Imaging Subsystem R&V

Requirement Verification
● Processing an image with

the FPGA should be faster
than processing it with the
microcontroller.

● We will run a timing test between the
microcontroller and the FPGA. By doing this, we
will be able to clock the time between the time it
takes to process the image using the FPGA and
the amount of time it takes to process the image
using the microcontroller. The FPGA’s time should
be relatively faster than the MCU’s time with
software implementation of the image processing to
demonstrate hardware acceleration.

o This is done by using the C libraries and
calling clock() and having an equation to
calculate the amount of time a certain
function takes on our C model.

o Then we will be able to figure out the time
on the FPGA by multiplying the inverse
clock (50 MHz) by the amount of clock
cycles (3) by the amount of pixels in the
height and the width of the picture.

● The FPGA should be able
to take in picture data as
8-bit pixels and output it as
a 1-bit pixel map.

o The FPGA needs to
be able to have
proper handshaking
logic with the
microcontroller.

● We will run a testbench on the FPGA to see if the
data is able to be processed correctly. To do this,
simply load a small 16*16 image and individually
manually check each pixel to see if the data is
being processed correctly by following the
algorithm that the FPGA is following.

o To check if the handshaking is correctly
being done between the microcontroller and
the FPGA, we should monitor signals such
as transmit ready and transmit receive

9

correctly between the two modules. Then,
we can test if the ready and receive signals
update when we try to communicate
between the two.

● The FPGA should be able
to function by itself as soon
as it is turned on, without
having to be flashed again
by an external source –
simulating a commercial
printer.

● Upon the plugging in of all the components, we
should check to see if the original FPGA ROM is
loaded into the FPGA. If it is not (the LEDs are not
blinking rapidly), then we would know that the
FPGA has successfully loaded in our correct .sof
file.

● The temperature of the
surface of the enclosed
system (with the imaging
subsystem) must not
exceed 120 degrees
Fahrenheit.

● The temperature of the printer system as a whole is
important for user safety, in which it cannot exceed
a recommended temperature limit of 120 degrees F
[9] for handling.

● During the startup, idle, and active printing stages
of operation we will measure the temperature of
many surfaces of the printer enclosure using an
infrared thermometer.

● We will record the temperatures of every tested
region in Fahrenheit, ensuring it does not exceed
120 degrees F, as this enclosure is for our final
design.

● If it does exceed this temperature at a certain
position, we will need to acknowledge that position
on the enclosure is not safe for direct contact.

A DE10-Lite FPGA will be utilized to simulate the operation of an ASIC which is not
openly available to the mass public. FPGAs are commonly used to test HDL code at a very
cheap cost compared to a full-scale tape out, albeit at a slower clock, so we will attempt to
multiply our hardware throughput at the correct proportional speedup rate. The FPGA can run at
a speed of 50 MHz [7], while mainstream ASICs can usually run 10-50x faster than this, but this
will still be much faster than processing the image through software means (on the cloud or on
the MCU).

The FPGA must take in data through the SPI protocol and be able to send data back out
through the SPI protocol as well. The FPGA will take in three pixels and run it through a
pipeline. Firstly, the FPGA must store all the RGB (red, green, and blue) values of an image into
its onboard memory to prepare it to be processed. While the pixels are being stored into
memory, we can start processing some of the data while it is still in the process of gathering
data from the MCU. This is because many of the algorithms that will be applied, such as
Floyd-Steinberg dithering [6], only require 5 adjacent pixels for the image to start being

10

processed. We need to set up a state machine that detects whenever a threshold number of
pixels have been loaded into the FPGA, and then, it will start to process this data
simultaneously. The third stage of the pipeline is when the data needs to be stored in a final
bitmapped processed stage, and then this final image will be sent back out into the MCU and
will be ready for printing. This process happens very fast, and doing the math, it should not take
more than 3 (Number of pipeline stages) * (xy) = 3xy clock cycles to process a single image,
where x and y are the dimensions of the picture.

Figure 4. Floyd-Steinberg Dithering block diagram.

As for the printer, the printer must be able to interact with the MCU correctly. This means
that the ports coming out of the MCU have to be connected correctly to the printer. The firmware
that is needed for the printer to print is provided already by Adafruit through its proprietary
libraries, however we need to figure out for ourselves how the connection between the printer
and the MCU is done as well. The connection between the printer and the MCU is TTL serial,
and it can be done over 3.3V or 5V so there is no need for any level shifters. However, we also
need to make sure that the printer receives enough power so it will be run with power through its
own dedicated rail since we expect that at least 10W will be used by the printer during peak run
time.

11

2.4 Board Subsystem

2.4.1 Description
The Board Subsystem is an interactive and diagnostic block that allows for the user to

check the status of the entire system briefly.

The primary component is a small 1.8" raw TFT display [4] that displays useful
information about the battery level and the status of a printing job for user diagnostics (e.g.,
completed, failed), all of which is processed and delivered from the MCU.

There will also be an infrared receiver sensor that will sense if there is still a supply of
thermal paper for the thermal printer to print on. If the sensor detects a change in the paper
supply, this information will be sent to the MCU, which will have the LCD print out a visual
warning/error and prevent the printing process.

Finally, there will be a switch box that the user can use. Switches, when turned on and
off, will change which algorithm the FPGA will use when processing the image to “fine tune” it
better for various printing applications (e.g., Floyd-Steinberg Dithering, Burke's Dithering [5],
etc.).

2.4.2 Requirements and Verification
Table 3: Board Subsystem R&V

Requirement Verification
● The diagnostic LCD must be

responsive if the system status
changes.

● Start at a known system state where
the diagnostic LCD is outputting a
steady state.

● Change the system state by either
hardcoding a state change or disabling
the printer. At this point, start recording
time elapsed on a stopwatch.

● Stop the stopwatch when the
diagnostic LCD updates its display to
the correct status.

● Record the start-stop readings and the
time taken. Repeat for all possible
system status changes.

● The ideal time for all changes should
be < 5 seconds guaranteed, reflecting
upon the system status with little lag for
the user.

12

● The “algorithms” switchbox controls the
image processing algorithm that the
FPGA uses.

● Start with all switches in the OFF
position. Change one of the switches to
ON. Record what algorithm this switch
should map to.

● We will write a TestBench file that
allows us to analyze the value per bit
after the FPGA processes the image.

● Since the image processing algorithms
are deterministic, we can compare
values at specific subarrays. We will
check that values are correct through a
Python script that performs the naïve
dithering algorithms (guaranteed to
work) and asserts all the values are the
same.

● At startup, the diagnostic LCD status
should read “Ready” before printing.

● Check that there is enough paper in the
printer beforehand, and that the system
is idle (i.e., just starting up)

● Power the system on, with the printer
plugged into a power supply running at
5–9V and 2A, power ground to the
power supply ground, the printer
ground to the microcontroller ground.

● Connect the TX pin of the
microcontroller to the RX pin of the
thermal printer

● We will not be initiating any transfer of
data for this requirement test, and
instead the microcontroller should be
programmed to display “Ready” on the
LCD once connected to the server
WebSocket.

● We will manually verify that the LCD
reads “Ready” at this stage of
operation, demonstrating that the
microcontroller is connected properly
and ready to listen for events from the
server.

● The diagnostic LCD must display
correct information (considering delay)
about the battery. The value of the

● Ensure that the system is powered off
completely initially.

● At time of powering the system on, we
can force the statuses of different
situations to occur.

13

battery level must be within 10% of the
actual battery level.

● At various charge levels of the battery,
a circuit with different node voltages in
order to indicate the current battery
level of the battery pack using LEDs
that have different forward voltages.
We will use an oscilloscope to measure
the voltage across each node to ensure
they measure the right remaining
voltage in the battery, and record the
results.

● While the system is on, start a printing
job with paper loaded. The status
displayed should be “Completed” when
the thermal paper finishes printing.

● Check that there is an adequate
amount of paper in the printer prior to
testing

● Connect the printer power to a power
supply running at 5-9 V and 2 A, power
ground to the power supply ground, the
printer ground to the microcontroller
ground.

● With the TX pin of the microcontroller
connected to the RX pin of the thermal
printer, we can feed in serialized
sample data to print (i.e., a hardcoded
bitmap)

● Upon completion of the printing job, we
will manually verify if the LCD displays
the word “Completed”. Otherwise, this
indicates there is an issue with the
microcontroller’s ability to identify the
end of the program.

● While the system is on, start a printing
job with no paper loaded. Check the
LCD, and the status displayed should
be “Failed”, not “Completed”.

● Check that there is no thermal paper
loaded in the printer prior to testing

● Connect the printer power to a power
supply running at 5-9 V and 2 A, power
ground to the power supply ground, the
printer ground to the microcontroller
ground.

● With the TX pin of the microcontroller
connected to the RX pin of the thermal
printer, we can attempt to feed in
serialized sample data to print (i.e., a
hardcoded bitmap)

● The IR sensor should recognize this,
send data to the microcontroller which
will refuse the print job. We will

14

manually verify that the word “Failed” is
shown on the LCD.

This block contributes to the overall design by providing a reasonable level of user
experience. It informs the user of potential issues pertaining to battery life and printer status and
allows the user to change between different image processing algorithms based on their printing
needs. While not directly responsible for the Board Subsystem, the MCU is responsible for
sending and processing data that is delivered to this subsystem. Without it, the LCD would fail
to function, the sensor data would be unable to be processed, and as a result, the Board
Subsystem would essentially be rendered useless.

The board subsystem has the components of all the sensors, the MCU, and the LCD.
These components all together all draw 3.3 V and each <500mA of current collectively. We shall
be able to power this subsystem quite easily on its own line since the amount of power drawn is
quite small compared to the imaging subsystem.

15

2.5 Power Subsystem

2.5.1 Description
The power subsystem supplies power to every other subsystem. Namely, it powers

components such as the ESP8266 ESP-12F MCU at 3-3.3 V [2], the thermal printer at 5-9 V [3],
the FPGA at 5 V [7], the LCD at 3.3 V [4], and the infrared sensor at 3-5 V [10]. Its components
are a USB-C controller that will be connected to a PC's USB-C port. This connection will supply
and charge power to a battery pack that is protected by its own integrated circuit. There will also
be a voltage regulator system in this subsystem that will step voltage input levels to the correct
output levels per component. It will also flash the MCU (send program information to the MCU to
execute).

This subsystem is necessary for supporting the continued operations of the entire
system, which includes displaying the diagnostic information, the Wireless Subsystem receiving
image data, processing image data, and printing.

2.5.2 Requirements and Verification
Table 4: Power Subsystem R&V

Requirement Verification
● The power provided this

subsystem generates must be
sufficient for the entire system.

● We will measure the voltages across other
components with a multimeter (insert the
leads into the pin and ground). The voltage
ranges and current ranges accepted for
verification are:

o ESP8266 ESP-12F MCU 3-3.3 V @
80 mA [2]

o Thermal printer
5 - 9 V @ 2 A [3]

o FPGA
5 V ± 5% @ 0.5 A [7]

o LCD
3.3 V ± 5% @ 150 mA [4]

o Infrared sensor
3-5 V @ 3 mA [10]

● The subsystem is safe. It does
not exceed the hard limit of 20
W.

● While the system is active, ensure that
there is no power overage by measuring the
power. It should not exceed our cap of 20
W.

16

● The subsystem can push out
code/flash to the microcontroller
to program it.

● While the system is active, try to send
C/C++ code to the microcontroller that tries
to turn its LED on and off.

● If the test LED turns on and off, we
conclude we have successfully flashed the
MCU with our test code.

● The subsystem must be able to
provide power to the entire
system for 1.5 hours from full
charge without recharging
during this time.

● Verify that the batteries are fully charged by
measuring the voltage drop across it with a
multimeter or oscilloscope. This voltage
drop should be around 7.4 V. If not, then
charge the batteries until this condition is
true.

● Plug the PC in to the USB-C controller and
turn the system active.

● Start a stopwatch as a user starts the first
printing job since the system turned on by
uploading an image to the local server.

● Have the user constantly upload images as
the printing jobs are completed.

● If the stopwatch records 1.5 hours and the
system is still active, this requirement has
been verified. Otherwise, this requirement
has failed.

17

2.6 Tolerance Analysis

2.6.1 Power
The Power Subsystem is the block in our system that is critical to the success of our

project and the most challenging to us. There are two major requirements for the Power
Subsystem that relates to tolerance: it must generate enough power to all components without
exceeding the required limits, and it must not exceed a limit of 20 W. This is a generous limit
given that we have the power requirements above to be:

𝑃
𝑠𝑦𝑠𝑡𝑒𝑚

≤ 𝑃
𝑀𝐶𝑈

+ 𝑃
𝑃𝑟𝑖𝑛𝑡𝑒𝑟

+ 𝑃
𝐹𝑃𝐺𝐴

+ 𝑃
𝐿𝐶𝐷

+ 𝑃
𝐼𝑅

 (1)

𝑃
𝑠𝑦𝑠𝑡𝑒𝑚

≤ 3. 3 𝑉 * 0. 08 𝐴 + 7. 4 𝑉 * 2 𝐴 + 5. 025 𝑉 * 0. 5 𝐴 + 3. 465 𝑉 * 0. 15 𝐴 + 5 𝑉 * 0. 003 𝐴

𝑃
𝑠𝑦𝑠𝑡𝑒𝑚

≤ 17. 87365 𝑊

To achieve the two requirements above, we use a voltage regulator circuit so that our
components don't have excessive voltage drop. If this were to be the case, our components
may overheat or burn out.

Since we want our system to last at least 1.5 hours on battery power, we must choose a set of
battery packs that satisfy:

We are drawing an estimated current from all sources as follows:

MCU + FPGA + LCD + IR + Printer = Total current draw (Peak Current Draw during printing)

0. 08 𝐴 + 0. 5 𝐴 + 0. 15 𝐴 + 0. 003 𝐴 + 2. 0 𝐴 = 2. 733 𝐴 (2)

2 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑝𝑎𝑐𝑘𝑠 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 @ 2000 𝑚𝐴ℎ 𝑒𝑎𝑐ℎ = 4000 𝑚𝐴ℎ

4000 𝑚𝐴ℎ / 2. 733 𝐴 = 1. 465 ℎ𝑜𝑢𝑟𝑠 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑝𝑒𝑎𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑟𝑎𝑤

2.6.2 Imaging
The printer itself needs to operate at over 150 degrees Fahrenheit to activate the

thermal paper, and therefore we must ensure, for the safety of the device for the user, that the
specific area intended to be held by the user remains under 120 degrees Fahrenheit throughout
operation. The reason for 120 degrees Fahrenheit is because this is generally agreed upon for
handheld products as the upper limit of a safe-to-touch temperature [9], and it would be
extremely detrimental if the device were to cause harm by exceeding this rating.

2.6.3 Data Transfer / Wireless - Board - Imaging
We will try to compute a bad case printing job but not so bad that an HTTP request

hangs for an indefinite amount of time. In that case, it will take an infinite amount of time to finish
printing - it may not even finish the printing job even.

We assume that the worst case scenario is where our images take 5 seconds to upload
to our local server, this is dependent on our internet speed and latency of our network. Now, the

18

MCU must send a GET request to retrieve the image data. The time taken to complete this
request depends on the size of the request, time needed to encode the request data, bandwidth
of the shared network, and even the server load. Because there are so many variables, let n be
the time (in seconds) it takes for the MCU to complete the GET request and receive image data.

From the datasheet, data transfer with the RX and TX pins of the MCU can reach 4.5
Mbps (megabits). Assuming our image is an x by y image, where x = pixels per row of the image
and y = pixels per column of the image and each pixel is represented by a byte, it will take
(xy)/562500 seconds to output the image data to the FPGA.

We need the FPGA to process the image using its algorithm, which has a runtime of
O(3xy) clock cycles.

Then, we have the final time needed to print the image on the thermal printer, which will
take O(xy*c) time. This is because printers print out rows, and for a fixed row, they print from
one side of the paper to the other side of the paper. The following computes for c.

Now, assume the printer has to print out a width of 48 mm per row, which is the print
width on the thermal printer, (so x = 48a, where a is some constant) but is reasonably bounded
by a height of h mm per row (so y = hb, where b is some constant). Assume that a dot is
equivalent to a pixel for simplicity.

The thermal printer can print 60 mm/sec to 80 mm/sec (at 8.5 V) [11]. Let’s assume we
have a slow thermal printer such that it prints at a rate of 60 mm/sec. This number means that
the thermal print head moves at 60 mm/sec as it prints at the head. Therefore, it can print out a
row of 8 px tall in 0.8 seconds. For a given h, it will take 0.8 seconds * h seconds. Assuming that
the print head needs to realign every row back to the other side of the paper, the head needs to
move 48.0104 mm, which takes an additional 0.8002 seconds. Therefore, for a given h, it will
take 0.8 * (h / 8) + 0.8002 * ((h / 8) - 1) seconds. For example, if y = 100 px, it will take around
12 seconds to print.

The total runtime is therefore

𝑇(𝑥, 𝑦) ≤ 5 + 𝑛 + 𝑥𝑦
562500 + (0. 8 8𝑦

𝑏 + 0. 8002(8𝑦
𝑏 − 1)) 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (3)

19

3. Costs

3.1 Analysis

Table 5: Parts Cost
Part Manufacturer Retail

Cost ($)
Bulk Purchase

Cost ($)
Actual Cost ($) Link

ESP8266
SMT Module -
ESP-12F

Ai-Thinker $6.95 $1.976/ea $9.88
For 5x

Amazon

Thermal
Printer

Adafruit $49.95 N/A $49.95
For 1x

Adafruit

USB A to
Micro USB-B
Cable

CableMatter $4.99
For 3x

$1.663/ea $4.99
For 3x

Amazon

ESP8266
SMT Module
Breakout
Boards

Songhe $9.95 $2.776/ea $13.88
For 5x

Amazon

FPGA DE-10
Lite

Intel $179.99 N/A $0 Amazon
(Free from UIUC)

Lithium Ion
Battery Pack

Urgenex $24.99 N/A $24.99 Amazon

IR Sensor Adafruit $2.95 N/A $2.95 Adafruit
LCD Adafruit $9.95 N/A $9.95 Adafruit
LEDs (x30)
UHD111A-FK
A-C3K23E1L
3VG5ZB3Z3

Cree LED $0.10 $0.034/ea $1.02
For 30x

Mouser

Resistors 100
ohm (x100)
RC0402FR-0
7150RL

Yageo $0.10 $0.00580/ea $0.58
For 100x

Digikey

Capacitors
0.1uF
(x100)
0402YC104K
AT2A

KYOCERA AVX $0.10 $0.00640/ea $0.66
For 100x

Digikey

USB IC
Controller

STMicroelectro
nics

$3.49 N/A $3.49
For 1x

DigiKey

USB C 3.1
Receiver

Tulead $11.59 $0.2318/ea $11.59
For 50x

Amazon

Total $145.98
(Adjusted for
9% sales tax)

…

Assume the market rate for an ECE major graduate is 35$/hour. We assume we will
work on the Portable Thermal Printer for 15 hours a week for the rest of the weeks, assumed to

20

https://www.amazon.com/ESP8266-ESP-12F-Wireless-Transceiver-Development/dp/B07YYLQJGN/ref=sr_1_8?crid=3R2BQV61VUW18&keywords=esp8266+smt&qid=1676175316&sprefix=esp8266+smt%2Caps%2C266&sr=8-8
https://www.adafruit.com/product/2751?gclid=Cj0KCQiAxbefBhDfARIsAL4XLRrQ7z6-hDFZIpR1Lsvkt_IZPqpwMfxulegzzOwO3K8eloM4N13TQGcaAkTHEALw_wcB
https://www.amazon.com/Cable-Matters-3-Pack-Gold-Plated-Micro-B/dp/B00UM9UOA0/ref=sr_1_8?crid=2URTIKATKQIBP&keywords=micro+usb+cable&qid=1676409572&sprefix=micro+usb+%2Caps%2C402&sr=8-8
https://www.amazon.com/SongHe-NodeMcu-Development-ESP8266-Compatible/dp/B07RBNJLK4/ref=sr_1_9?crid=2RUCGLGK6ZZRB&keywords=esp8266+12f+board&qid=1676176328&sprefix=esp8266+12f+%2Caps%2C451&sr=8-9
https://www.amazon.com/Terasic-Technologies-P0466-DE10-Lite/dp/B0789ZTCD9
https://www.amazon.com/URGENEX-Battery-Capacity-Batteries-Chargers/dp/B08XZP4CDJ/ref=sr_1_20?keywords=rc+battery+lithium+ion&qid=1677203463&sr=8-20
https://www.adafruit.com/product/2167?gclid=CjwKCAiAl9efBhAkEiwA4Torig7jkbBsvWjdQcoR6RKd5FIGrdAx7Q0BRxkJwCHjEVuKQTGRAnwX7BoCeawQAvD_BwE
https://www.adafruit.com/product/618
https://www.mouser.com/ProductDetail/Cree-LED/UHD111A-FKA-C3K23E1L3VG5ZB3Z3?qs=By6Nw2ByBD3YkYuT8GWBrg%3D%3D
https://www.mouser.com/ProductDetail/Cree-LED/UHD111A-FKA-C3K23E1L3VG5ZB3Z3?qs=By6Nw2ByBD3YkYuT8GWBrg%3D%3D
https://www.mouser.com/ProductDetail/Cree-LED/UHD111A-FKA-C3K23E1L3VG5ZB3Z3?qs=By6Nw2ByBD3YkYuT8GWBrg%3D%3D
https://www.mouser.com/c/optoelectronics/led-lighting/led-emitters/standard-leds-smd/
https://www.digikey.com/en/products/detail/yageo/RC0402FR-07150RL/726543
https://www.digikey.com/en/products/detail/yageo/RC0402FR-07150RL/726543
https://www.digikey.com/en/products/detail/yageo/RC0402FR-07150RL/726543
https://www.digikey.com/en/supplier-centers/avx
https://www.digikey.com/en/products/detail/kyocera-avx/0402YC104KAT2A/3080100
https://www.digikey.com/en/supplier-centers/stmicroelectronics
https://www.digikey.com/en/supplier-centers/stmicroelectronics
https://www.digikey.com/en/products/detail/stmicroelectronics/STUSB4500QTR/9092196?utm_adgroup=Integrated%20Circuits%20%28ics%29&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Supplier_STMicroelectronics&utm_term=&utm_content=Integrated%20Circuits%20%28ics%29&gclid=Cj0KCQiAutyfBhCMARIsAMgcRJRG3dobaD5uLxUrUSa2LEO4iGqETXq0_WQOFv_5EjHjMh3ye9NQmVUaAuAwEALw_wcB
https://www.amazon.com/Tulead-Connector-Female-Transmission-Charging/dp/B07WK21N81/ref=sr_1_9?crid=1LR9NRKUF8DLY&keywords=usb+c+socket+solder&qid=1677211230&sprefix=usb+c+socket+solde%2Caps%2C120&sr=8-9

be 9, in this semester, for which we will get paid for. Then, the labor cost for producing the
Portable Thermal Printer will be:

𝐶
𝑙𝑎𝑏𝑜𝑟

= 35 𝑑𝑜𝑙𝑙𝑎𝑟𝑠/ℎ𝑜𝑢𝑟 * 15 ℎ𝑜𝑢𝑟𝑠/𝑤𝑒𝑒𝑘 * 9 𝑤𝑒𝑒𝑘𝑠 / 𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟 * 3 𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑠 = 14, 175 𝑑𝑜𝑙𝑙𝑎𝑟𝑠 (4)

And to produce it, we need to purchase the above parts:

𝐶
𝑝𝑎𝑟𝑡𝑠

= $145. 98

𝐶
𝑡𝑜𝑡𝑎𝑙

= 𝐶
𝑙𝑎𝑏𝑜𝑟

+ 𝐶
𝑝𝑎𝑟𝑡𝑠

= $14, 175 + $145. 98 = $14320. 98

3.2 Schedule
Table 6: Work Schedule

Week Gally Jason Kevin Everyone
2/20 Power Schematics Design Web Server Design Web Server Design Doc
2/27 (PCB Review)
Finish Wireless
Subsystem!!!

HAS EXAM FEB 27th

HDL Verification

Verify functionality of
web server

Verify functionality of
web server

PCB Traces
Layout

Proposal v2
3/6 (First Round PCB) Verifying functionality

of thermal printer with
ESP8266

Prioritize Everyone
Task

HAS EXAM MARCH
9th

Running C model of
FPGA on ESP8266

Prioritize Everyone
Task

HAS EXAM MARCH
9th

Writing Firmware to
Interface ESP w/
Printer

Prioritize Everyone
Task

SPI Interface
between FPGA
and MCU

Order batteries
& IC’s for
USB-C

HDL Verification

3/13 Verify Functionality of
Power Subsystem
PCB

Prioritize Everyone
Task

Verify Functionality of
Power Subsystem
PCB

SPI Interface
between FPGA
and MCU

HDL Verification
3/20 Finish Imaging
Subsystem (HDL)!!!

Spring Break Spring Break Spring Break Fix Potential
Issues in PCB
and resubmit!

Order Voltage
Regulators

3/27 (Second Round
PCB)

Integrate Jason &
Kevin’s Firmware

LCD Firmware Sensors (IR &
Battery Sensor)
Firmware

Power
Subsystem
Whitebox Testing

4/3 Finish Board
Subsystem!!!

Assemble Imaging
System w/ Board
System

HAS EXAM APRIL 3 rd

Verify Imaging
System Works with
Board System w/o
batteries

HAS EXAM APRIL
4th

Begin full system
integration

4/10 Finish Power
Subsystem!!!

HAS EXAM APRIL
10th

Verify Power
Subsystem works!

Assemble Power
Subsystem

Verify Power
Subsystem works!

Find an
enclosure for
Portable Printer

21

4/17 (Mock Demo) Buffer Week for final
touch ups

Buffer Week for final
touch ups

Buffer Week for final
touch ups

4/24 (Final Demo) - - HAS EXAM APRIL
27th

Final Demo/
Final Papers /
Finish lab
notebook

5/1 - - - Final
Presentation /
Final Papers /
Finish lab
notebook

Most of the scheduling that happens for this project happens on an individual subsystem
basis. We plan to finish the most important parts of the subsystem first to achieve partial credit if
there is not enough work done by the deadline. Therefore, we plan to implement and design the
core parts of the project such as the microcontroller and the FPGA first. We should also plan to
interface with the printer as well, so we have a system that could print out a bitmap first. After
we finish this core system and demonstrate a successful print, we can then start working on the
power and the rest of the peripherals of our system such as the switches and the LCD.

We shall split up the work so that Gally interfaces more with the FPGA while Jason and
Kevin work on the microcontroller more. This is because Kevin and Jason both are computer
engineers who have more experience with coding high level languages and being able to utilize
the microcontroller better in its environment. This will prove useful as well since the
microcontroller is the brain of the entire system and it controls how the rest of the system will
behave. The FPGA on the other hand requires more experience with HDL, and Gally has more
support from his connections at HP and his experience with ECE 411 for this portion. For the
power electronics, we split it up very evenly due to our lack of experience with the USB C power
and data delivery. We will need to work as a group on that portion of the project and we should
consult outside resources who specialize in power such as the head TA and Professor Gruev for
this.

22

4. Ethics and Safety
Our project aims to create a convenient and speedy printing solution for consumers. As

such, we must ensure that the design of the printer system is safe for users to handle and
interact with on a consistent basis. While many of the components listed are found in everyday
objects and are consumer grade, there are some components that may pose risks in their
usage. According to the IEEE Code of Ethics I.1 [1], we must remain transparent with our
design process and disclose the factors that might endanger the public and/or environment.

One concern that is associated with our power subsystem is the use of battery packs.
These batteries are lithium-ion rechargeable batteries, which, due to their energy density, makes
them susceptible to explosion when in contact with high temperatures or manufacturing defects.
This was demonstrated with the Samsung Note 7 smartphone case study [8], where the battery
packs caught on fire due to a defect in the phone design that allowed the battery leads to touch
and short circuit. We aim to follow all appropriate guidelines and documentation related to
proper charging and discharging of the battery, ensuring it operates at a safe temperature and
delivers the correct voltages and current to the rest of the system. As the most volatile part of
our system, we need to monitor the battery’s performance with the most scrutiny. We will follow
the lab safety manual for batteries at
https://courses.engr.illinois.edu/ece445/documents/GeneralBatterySafety.pdf for guidance in
order to prevent the potential danger in overcharging and discharging the batteries.

Another concern that is associated with our system is the printing subsystem itself. We
are using a thermal printer, as previously mentioned, which can reach upwards of 150 degrees
Fahrenheit during the printing operation. For the common case, where a user will meet the
printer while it is both in and not in use, we need to ensure that the printer is safe to handle. We
intend to design an enclosure that can allow users to handle and transport the printer safely,
while not compromising on the overall functionality. We will also thoroughly test and record the
temperatures of the surface of the finished product in order to properly disclose necessary
details about the printer’s safety.

Through this project, not only do we expect to provide new innovation in the way
portable printing is achieved, but we also expect to find new in-depth discoveries in image
processing and power electronics. We will transparently discuss our findings in hopes of
benefitting not only ourselves but to society and the engineering discipline as a whole.

23

https://courses.engr.illinois.edu/ece445/documents/GeneralBatterySafety.pdf

5. References

[1] IEEE Policies, Section 7 - Professional Activities (Part A - IEEE Policies), IEEE Code of
Ethics 2020.

[2] AI Thinker, "ESP-12F Datasheet," 2018. Accessed: Feb. 07, 2023. [Online]. Available at:
https://docs.ai-thinker.com/_media/esp8266/docs/esp-12f_product_specification_en.pdf

[3] P. Burgess and Adafruit Industries, "Mini Thermal Receipt Printer," Nov. 2021. Accessed:
Feb. 07, 2023. [Online]. Available at:
https://www.mouser.com/datasheet/2/737/mini_thermal_receipt_printer-2488648.pdf

[4] Truly Semiconductors Co., "JD-T18003-T01."
https://cdn-shop.adafruit.com/datasheets/JD-T1800.pdf (accessed Feb. 07, 2023).

[5] T. Helland, "Image Dithering: Eleven Algorithms and Source Code."
https://tannerhelland.com/2012/12/28/dithering-eleven-algorithms-source-code.html
(accessed Feb. 09, 2023).

[6] justinkraaijenbrink, "Exploiting the Floyd-Steinberg Algorithm for Image Dithering in R,"
Medium, Jan. 30, 2021.
https://medium.com/analytics-vidhya/exploiting-the-floyd-steinberg-algorithm-for-image-dith
ering-in-r-c19c8008fc99 (accessed Feb. 09, 2023).

[7] Terasic, "DE10-Lite User Manual," Jun. 05, 2020.

[8] R. Rox, "Samsung Galaxy S7 explodes during charge," Notebookcheck, Sep. 03, 2017.
https://www.notebookcheck.net/Samsung-Galaxy-S7-explodes-during-charge.246242.0.htm
l (accessed Feb. 08, 2023).

[9] Johns Manville, "Too Hot to Handle?," www.jm.com, Feb. 25, 2015.
https://www.jm.com/en/blog/2015/february/too-hot-to-handle/ (accessed Feb. 08, 2023).

[10] Vishay Semiconductors, "TSOP382.., TSOP384.., TSOP392.., TSOP394..," Feb. 2011.
Accessed: Feb. 09, 2023. [Online]. Available:
https://cdn-shop.adafruit.com/datasheets/tsop382.pdf

[11] Adafruit, “A1 micro panel printer user manual.doc”, Accessed: Feb. 23, 2023. [Online].
Available: https://cdn-shop.adafruit.com/datasheets/A2-user%20manual.pdf

24

https://tannerhelland.com/2012/12/28/dithering-eleven-algorithms-source-code.html

