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Abstract 

Every type of cast has its own limitations, The Remotely Adjustable Cast maximizes benefit while 

minimizing these limitations. It is designed to be clean, mobile, and auto-adjusting to keep you on the 

road to recovery. Our product is an innovation on the AirCast boot that is traditionally worn on broken 

limbs. Our innovation involves strap adjustment with one push of a button on our web application and 

assistance with correctly pumping the air cells. Additionally, all of our upgrades can be powered easily 

by a portable battery pack, so putting on or taking off the boot is easy and portable. The cast design was 

a success, The Remotely Adjustable Cast resolved the problems associated with traditional casts on the 

market to provide the patient with consistent doctor-prescribed healing. It is our hope that after further 

research about optimally using it, the Remotely Adjustable Cast leads to better patient outcomes. 
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1. Introduction 

1.1 Problem 
Several types of casts can be prescribed to patients who have broken their limbs including plaster, splint, 

fiberglass, and AirCasts [2]. While the general purpose of these varying types of casts remains the same 

– to be an assistive device in the healing process for broken limbs – they each come with different 

benefits and drawbacks. While plaster, splint, and fiberglass casts are sturdier on the limb, they are also 

bulkier and may inhibit mobility [9]. Additionally, if the inside of these casts is not cared for properly, 

they may develop mold since they are irremovable in nature. AirCasts deal with the issues of mobility 

and removability but come with the issue of improper replacement of strap tension and air cell pressure 

when the cast is taken off then put back on.  AirCasts in general may require more visits to the doctor 

for progress monitoring, and improper adjustment by the patient has the potential of leading to a longer 

healing process.  

1.2 Solution 
To address the problems explained above, we designed a remotely adjustable AirCast. This solution 

involves providing patients with the ability to control the strap tension adjustment, using motors, and air 

cell pressure values, using force resistive sensors, through a simple user interface. By automating the 

AirCast replacement process, users are still able to reap the benefits of the AirCast in terms of 

removability and mobility, while ensuring that cast components are properly adjusted, such that doctor 

visits may be limited. The intention of this solution is to allow for doctors to input the proper strap 

tension and air cell pressure values into a user interface based on their own discretion. These values can 

then be stored, and the user is able to take the AirCast on/off using the user interface as well. Not only 

does this solution allow for users to keep their broken limbs clean and as mobile as possible but 

improves the overall experience between doctors and patients.  

1.3 High-Level Requirements 
1. The cast’s straps are adjusted/tightened per doctor’s settings without manual adjustment. 

2. The doctor’s cast adjustments for pressure and tightness can be stored. 

3. All necessary components for auto-adjustment of the cast fit on the cast without extreme 

addition to the original weight of the cast. 

 

 

 

 

 



2 
 

1.4 Block Diagram 

 

Figure 1 is the block diagram of the various subsystems necessary for the remotely adjustable AirCast. 

The diagram displays the components included in each individual subsystems, as well as how 

components communicate with one another across and within different subsystems. Finally, the block 

diagram depicts how much power is being provided components of each subsystem from the original 

power supply unit.  

 

  

Figure 1. Remotely Adjustable Cast Block Diagram 
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2 Design  
This section will go over the design procedures and details for each module of this project, including the 

control, pressure, strap adjustment, and power modules.  

2.1 Design Procedure  
The design procedure for each module will be an overview of how and why we designed each module as 

we did. 

2.1.1 Control Module Procedure 

The control module was designed with the intention of being able to adjust the boot mechanically and 

to communicate with the patient. We wanted to be able to trigger the boot triggering via Bluetooth 

initially, to be able to control the motors, and to be able to read air cell pressure pins. We ended up 

choosing the ESP32 WROOM32D to fit all our needs. With this microcontroller, we can utilize the ADC 

(analog-to-digital converter) pins in order to read and send information to the adjustment modules. We 

can also use the Bluetooth capabilities of the microcontroller to connect to a web application to control 

the status of the boot as well. Our overall goal in mind with designing this module was to try to make it 

as simple as possible so that it is easier for our patient. If the control component is too complex, we risk 

making our project too complicated (and therefore not helpful) for our users. 

While more technical specifications of the control module are covered in section 2.2.1, our control 

module was designed with the intention of being able to interface with all other modules in our project 

simultaneously. For example, it is powered by the power module (cut down from 5V to 3.3V to not fry 

the microcontroller). It reads the pressure values constantly when the boot is powered to allow for 

adjustments to be made. Also, the control module instantiates the strap adjustment module which also 

being mounted on the boot. This module was designed to accomplish all our high-level requirements 

and bring together all of the functionality of the other modules. 

2.1.2 Pressure Module Procedure 

Our goal with the pressure module was to read the pressure of the air cells. This way we know the 

pressure being exerted on the patient’s ankle which is critical for the boot to fit snuggly, aid in 

rehabilitation, and to not allow the patient to hurt themselves further. Our initial design was to 

somehow fit a pressure sensor within the air cells in order to read the pressure. This would be the most 

accurate way to get the pressure cell measurements from air pressure within the cell and from the 

external pressure exerted on the air cell by the patient’s ankle. However, puncturing these air cells was 

out of the question. We only have 2 air cells to work with, and if we were to improperly seal or puncture 

the air cells, we risk losing the ability to use the air cells altogether and they are an essential part of the 

AirCast treatment. We also considered going a step further and installing pumps on the air cell ports to 

automatically inflate/deflate the air cells, however that was beyond the time span of the project. 

We completed our design for the pressure adjustment module by settling for a non-invasive way to 

measure pressure. Since these air cells were removable and sat on the walls around the patient’s ankle, 

we decided to install force sensing resistors (FSRs) between the air cell and the wall of the boot. Based 

on the pressure exerted on the FSR, we are able to convert its resistance to pressure since we know the 
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active area of the FSR, the range of Newton reading for the pad, and the linear relationship between 

resistance and force for this FSR. The control module is responsible for this conversion and for displaying 

the value of the cells on the user interface which will tell the user whether to inflate/deflate each cell 

more. The pressure adjustment module overall consists of the FSRs on the boot transmitting data to the 

control module. 

2.1.3 Strap Adjustment Module Procedure 

The strap adjustment module was designed to allow for patients to utilize the user interface to 

tighten/loosen the straps on the AirCast. The patient can click on a switch on the user interface to 

tighten/loosen the straps, after which the user interface will communicate with the control unit to run 

the motors in the necessary direction and speed to complete the action it is being asked to complete. To 

create this module, we had to begin by working with UIUC ECE’s machine shop to have stepper motors 

mounted onto the AirCast itself, with a pulley through which the cast strap could be threaded.  

After working with the machine shop on where to place these motors and how the strap needed to be 

threaded to properly run the module, we had to work on controlling the motors such that the tension 

they were applying on the straps as the program was running, was a value we could precisely measure 

and display on the user interface. This was done by finding the relationship between the motor’s pulling 

torque based on the RPM it was running at and correlating these factors with the strap length and 

pulling angle to calculate the tension. The details of these calculations will be discussed further in 

sections 2.3.3 and 3.3.  

After understanding how to control the motors such that they were performing the necessary action of 

tightening/loosening the straps of the AirCast, and applying the necessary tension, we had to complete 

the final step of providing users with the ability to tighten or loosen the straps via the user interface. 

This was done by implementing communication between the motors and ESP32 microcontroller via ADC 

pins, and between the ESP32 Microcontroller and user interface via Wi-Fi. We were able to program a 

switch into the user interface which communicated to the ESP32 about which ADC pins we wanted to 

control. This way, we were able to specify when we intended to control each motor individually and turn 

it off/on accordingly.  

2.1.4 Power Module Procedure  

The power module has one function only, and that is to power all the other modules. One of the appeals 

of AirCast boots is how mobile they are, and we wanted to maintain that by using a portable power 

supply. If the patient had to plug their boot into a wall outlet each time they needed to take off or put 

on the boot, that would be majorly inconvenient for them. Therefore, we decided to have the power 

module be a portable battery pack (like a phone power bank) that could power all other modules and 

also be mounted on the boot or on a belt. More technical specifications are provided in section 2.2.4. 
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2.2 Design Details 
The design details for each module will be more technical specifications and calculations we did to 

design each module. 

2.2.1 Control Module Details  

Multiple things were considered when designing the control module: interacting with motors, 

interacting with pressure module, and interacting with the user interface. When interacting with the 

motors, we need to be able to (1) control the tension of the straps based on prescribed tensions and (2) 

control which motor we are tightening. For the first motor control requirement, we can control the 

tension that we are setting the motors to by modifying the speed at which we are running the stepper 

motors (more in section 3.3.1) so all we needed was our control module to have a microcontroller with 

ADC pins to send signals to the motors. For the second motor requirement, we need to have enough 

ADC pins so that we can control each motor separately (therefore 8 pins total for motor interactions). 

For the pressure module interactions, we needed to have ADC pins to read the resistance of the FSRs 

when pressure is exerted so that means we need at least 10 usable ADC pins to interact with the boot 

adjustment modules. The ESP32 WROOM32D was the choice we made. 

For the user interface, we initially wanted to have Bluetooth capabilities to interact with a React Web 

App with Bluetooth in-browser functionality. In the end of our research, we decided to use Wi-Fi to 

interact with our web app. Now our requirements changed to be able to host a web server via our 

microcontroller to create a web application that can be updated with our sensor values.  

The last thing we needed to do was construct a programming circuit for our ESP32 WROOM32D. This 

was an essential part of the control module that we initially neglected. Using the development kit 

bypassed this requirement for testing, but for a production grade product and being able to mount the 

modules on the boot we included a programming circuit to our PCB so that we can upload code onto the 

microcontroller via micro-USB B. 

2.2.2 Pressure Module Details 

As mentioned in section 2.1.2, we want to be able to measure the pressure exerted on the patient’s 

ankle while wearing the boot after tightening the straps and pumping the air cells. Although we are not 

medical professionals and cannot claim that our remotely adjustable boot is a medical device yet (will 

require testing), we can try to make this boot as safe as possible. Therefore, we conducted research into 

the safe tightness around a human limb. Based on a study we found regarding external pressure and 

blood flow [5], the external pressure exerted on a limb should not exceed around 20 mmHg relative to 

the environmental pressure. This can be seen in Figure 2 below from the previously mentioned study. 
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Based on this find, we must ensure that our pressure sensing module must be able to detect pressure of 

each air cell up to at least 20 mmHg reliably. We originally wanted to use small barometers inside of the 

air cells, but we landed on using force sensing resistors (FSRs) to calculate the pressure of each air cell as 

to not modify the air cells (mentioned more in 2.1.2).  

Since we know the active area of our FSR (38.12 mm2), and that the maximum Newtons sensed by this 

FSR (10 N) we can find that the max pressure that can be measured is 51.671mmHg. 

10(𝑁)

38.12(𝑚𝑚2)
∗

1(𝑚𝑚𝐻𝑔)

0.000133322(
𝑁

𝑚𝑚2)
= 51.671 𝑚𝑚𝐻𝑔  

 

(1) 

Given that the force on the FSR is linearly related to the resistance read, we can map the resistance 

obtained from the FSR which is in a range of 0 to 4095 to a measurement in mmHg from 0 to 51.671 

mmHg. Given the tolerances of the FSR we found that the readings we were getting would be accurate 

±1.55 mmHg. This fits our constraint of reading safe pressure measurements on the ankle of the patient 

so that we do not over tighten the boot. 

2.2.3 Strap Adjustment Module Details 

Several considerations were taken into account when developing this module throughout the overall 

procedure. In the original design of this module, we planned to include a load cell or force sensor which 

would be placed underneath each of the straps on the AirCast, to measure the tension being applied by 

the motors as it tightened the straps. However, as we began the research and development phase of the 

project, we found that this tension could be calculated without the force sensors, as there was research 

Figure 2. Relative Blood Flow vs. External Compression [5] 



7 
 

available correlating the motor’s RPM to its pulling torque. Using this relationship, the length of the 

strap, and the angle the strap was being pulled at, we were able to use Equation 2, as below, to 

calculate the tension being applied to the straps, without the need for a force sensor or load cell. 

𝜏 =  𝐹 ∗ 𝑟 ∗ 𝑠𝑖𝑛𝜃 (2) 
 

Additionally, consistent communication with the machine shop was necessary for this portion of the 

project, as the stepper motors being used for strap adjustment needed to be mounted onto the AirCast 

directly. This meant speaking with the machine shop about where the motors needed to be placed on 

the AirCast, ensuring that the straps could pull at the desired angle, and that the pressure, power, or 

control modules would not be disrupted by the addition of the motors on the cast. After communicating 

with the members of the machine shop about these details, we found that the straps of the AirCast 

needed to be replaced altogether, to straps which could be threaded through the pulleys on the stepper 

motors properly.  

Additionally, making sure that the ADC pins being used to connect the ESP32 to the stepper motors 

were usable was a vital part of the process. To confirm they were, we used the ESP32 datasheet [3] as 

well an ESP32 pinout reference [4], to choose the ADC pins to use and tested the signals going in and out 

of the motor drivers using an oscilloscope and multimeter. For this module, the L293D motor drivers 

were used between the stepper motors and ESP32. In the original design, we intended to use DMV8833 

motor drivers, but after having issues putting the PCB together – we had to quickly switch to a stepper 

motor driver which was still available to us through the ECE445 lab and could be breadboarded. The 

signals tested to ensure the ADC pins of the ESP32 were usable, and that the motor drivers were 

receiving the correct amount of power were those going in/out of the motor driver, as well as into the 

ESP32 ADC pins.  

Furthermore, the strap adjustment module required communication between the ESP32 

microcontroller, user interface, and stepper motors. The implementation of this involved working with 

the Arduino IDE to interface between these different components. Several unipolar and bipolar stepper 

motor methods were available for use through the Arduino IDE within the Stepper class [11]. This made 

controlling the motors through the ESP32 simple, with our primary focus being on ensuring the torque 

and speed values correlated with the desired pulling tension force by the motors. In the final program 

used, the motors were controlled by setting the speed based on the torque correlation and making the 

motor step through 3 full revolutions at that speed to tighten the straps and move the same number of 

revolutions in the opposite direction to loosen the straps. While the direct implementation was simple, 

this module required several rounds of verification, as will be discussed further in section 3.3. 

2.2.4 Power Module Details 

As mentioned previously, the goal of the power module is to be able to power all other modules with a 

single portable battery pack. Therefore, the constraints of this power pack are that the voltage must be 

3.3V or higher to power the ESP32 properly (we will cut down the voltage to 3.3V) and the power rating 

must be high enough for all modules (meaning we have to have enough current to power the motors, 

pressure module, ESP32, etc.). Based on the datasheets for the FSRs and the NEMA-23 motors, we 
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estimated the total current usage to be around 2A. Therefore, a traditional phone power bank which is 

5V and 2A should be powerful enough to power the whole project. We also plan to include a linear 

voltage regulator to cut down the voltage from 5V to 3.3V so that we do not fry the microcontroller.  
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3. Design Verification 

3.1 Control Module 
Verification of the control module has a few different requirements. Verifying that the user interface is 

communicating with the ESP32, the ESP32 is correctly reading the analog inputs that are being 

communicated from the pressure module, and the ESP32 is communicating with the strap adjustment 

module properly. The user interface verification will be described below while the communication 

verifications will be described in the respective subsystem design verification sections to avoid 

repetition. 

3.1.1 User Interface Control 

The user interface is a local host server, hosted on a Wi-Fi that the ESP32 connects to. By connecting to 

the same Wi-Fi that the microcontroller is connected to, and accessing the server that the ESP32 is 

hosting, we verify that the control component can be accessed by the user. By creating a switch on the 

user interface that controlled an LED on the ESP32 development board we were able to verify that the 

switches on the user interface operated correctly and would control the motors correctly.  

3.2 Pressure Module 
Verification of the pressure module requires that both force sensing resistors (FSR) operate efficiently 

and that they are communicating properly with the ESP32. The force sensing resistors are used by the 

pressure module to determine the pressure that the air cells are applying to the leg of the user. Each 

FSR is connected to a voltage divider. The voltage divider is connected to an ADC pin of the 

microcontroller. Since we know the voltage before the voltage divider, we can easily determine the 

resistance of the FSR by reading the voltage at the division point with the ESP32 thus finding the voltage 

drop across the resistor, and since we know the value of the other resistor in the voltage divider, we can 

then determine the resistance value of the FSR. We can use the user interface to display the calculated 

resistance values of the FSRs. By using a multimeter to measure the resistance across the FSRs and 

looking at the UI displayed values, we were able to verify that the pressure module was capable of 

accurately calculating the resistance that the FSR was providing, and that the control module was 

capable of communicating successfully with the pressure module. Based on the research we found [5] 

we need the pressure module to apply pressure within 10-20mmHg of additional pressure. As above we 

know that the resistance values being measured by the ESP32 are accurate to what is being measured 

by the multimeter. Given the tolerances from the datasheet, the measured resistances are accurate 

±1.55 mmHg allowing us to confidently land within the 10-20mmHg range. 
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3.3 Strap Adjustment Module 
Verification of the strap adjustment module can be divided into three subcomponents, including stepper 

motors, motor drivers, and communication between the user interface, ESP32, and other strap 

adjustment module components. The verification for each will be discussed below. 

3.3.1 Stepper Motor Verification 

The stepper motors used for the strap adjustment module, the NEMA-23 bipolar motors in this case, 

included measuring the tension force being applied to the straps by the motors and ensuring enough 

power was being provided to the motors. The first requirement of this module was being able to 

calculate the tension of the straps such that the motor would only run until the holding tension value 

was +/- 3N of the doctor’s prescribed strap tension value (Appendix A, Table 5). This was to be verified 

originally by reading the tension applied by the straps through a force sensor which would be placed 

underneath each strap. However, after finding research correlating the speed of a NEMA-23 stepper 

motor and its pulling torque as in Figure 3 below, we were able to eliminate the need for a force sensor 

in this verification process.  

By combining information from Figure 3 and Equation 2, we calculated the tension force being applied 

by the motor on the straps, to verify that the applied force was within +/- 3N of the doctor’s prescribed 

value. Furthermore, verifying that enough power was provided to the motors was calculated by probing 

the output of the motor drivers using a multimeter, and confirming the values against the NEMA-23 

datasheet [1]. 

3.3.2 Motor Driver Verification 

Verifying the motor driver portion of the strap adjustment module included hooking all components up 

to the driver correctly based on the datasheet and ensuring that power going in/out of the driver was 

within the range of what the motor driver could handle, while still providing the motors with enough 

power to run properly. Once the connections to the motor driver were verified using the L293D 

datasheet [10], voltages going in/out of the driver were assessed through multimeter probing – in which 

the voltage going into the driver was 5V directly from the power source, and the voltage going out to 

Figure 3: NEMA-23 Speed 
(RPM) vs Torque (Nm) 
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the stepper motors was 1.5V per coil of the motor, aligning with the necessary power consumption for 

proper running of the motors.  

3.3.3 Communication Verification 

The final portion of the strap adjustment module to be verified was communication between the ESP32 

and stepper motors. The requirement outlined at the start of the design process for this was to ensure 

the motor could be toggled on/off through a signal from the microcontroller. This was verified by 

programming the ESP32 microcontroller such that a toggle switch on the user interface would cause the 

speed of the motor to change from 0 to a value > 0 (Appendix A, Table 5). We were able to confirm this 

verification was met by demonstrating the motor tightening/loosening the straps based on the toggle of 

two separate switches for each action on the user interface, therefore verifying that the motor was 

moving at a speed greater than 0 RPM when either switch was toggled on.  

3.4 Power Module 
Verification of the power module was done by checking that all the components of device were 

receiving the correct amount of power. By using a multimeter, we were able to check that the voltage 

and current values throughout the circuit, and make sure that the measured values were as expected. 

We were able to verify that the power bank was supplying 5 volts and that the linear regulator that we 

chose was cutting that voltage down to around 3.3 volts. The ESP32 was receiving 3.3 volts and was 

grounded correctly. We were also able to verify that the motors had enough current to successfully 

operate. While the PCB was never fully working, the power circuitry on the board was confirmed to 

work properly, by probing different parts of the board we were able to verify that components were 

receiving the correct voltages.   



12 
 

4. Costs 

4.1 Parts 
Table 1: Parts Costs 

Part Manufacturer Quantity Link Cost ($) 

AirCast boot DJO Global 1 Link $13.37 – just shipping, 
preowned 

ESP32 MCU Module Adafruit 1 Link $8.95 

NEMA-23 Stepper 
Motor 

Adafruit 2 Link $49.90 - both 

SEN-09376 ROHS 
Pressure Pad Sensor 

Sparkfun 2 Link $25.00 - both 

USB Battery Pack KMASHI 1 Link $15.99 

Linear Voltage 
Regulator - 

LM3940IT-3.3 

Digi-Key 1 Link $2.63 

Power jack Digi-Key 1 Link $0.69 

0.2 Ohm Resistor Digi-Key 2 Link $4.38 - both 

ESP32 Dev Kit Amazon 4 Link $44.00 - all 

Micro-USB B port Digi-Key 2 Link $1.40 - both 

CP2102 – 
programmer 

Digi-Key 1 Link $5.06 

Motor driver – 
L293D 

Adafruit 2 Link $17.90 - both 

Total    $189.27 

 

4.2 Labor 
On average, University of Illinois at Urbana-Champaign Engineering graduates make around $87,000 a 

year [7]. This translates to $41.83 per hour for labor of one of our engineers. While our initial estimate 

was that this project would take around 200 hours collectively to complete, we ended up spending 

around 22 hours a week each in the ECE 445 Laboratory to do work for 10 weeks which is a grand total 

of 660 hours on the project by our group members. The duration of this project was longer than 10 

weeks, however this number should account for some slower weeks and some more intense weeks. 

Using a 2.5 overhead factor for this project, we can calculate the total cost of labor for accomplishing 

our project: 

$41.83

ℎ𝑜𝑢𝑟 ∗ 𝑝𝑒𝑟𝑠𝑜𝑛
∗

22 ℎ𝑜𝑢𝑟𝑠

𝑤𝑒𝑒𝑘
∗ 10 𝑤𝑒𝑒𝑘𝑠 ∗ 2.5 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 ∗ 3 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 = $𝟔𝟗, 𝟎𝟏𝟗. 𝟓𝟎 

4.3 Total Cost of Project 
The overall cost of completing of our project is the sum of the parts cost and the labor cost: 

$189.27 + $69,019.50 = $𝟔𝟗, 𝟐𝟎𝟖. 𝟕𝟕 

https://www.djoglobal.com/products/aircast/airselect-short
ESP32%20MCU%20Module
https://www.adafruit.com/product/5117
https://www.sparkfun.com/products/9376
https://www.kmashi.com/products/kmashi-10000mah-universal-external-power-bank
https://www.digikey.com/en/products/detail/texas-instruments/LM3940IT-3-3/3695215
https://www.digikey.com/en/products/detail/cui-devices/PJ-037A/1644545
https://www.digikey.com/en/products/detail/ohmite/43JR20E/1125008
https://www.amazon.com/HiLetgo-ESP-WROOM-32-Development-Microcontroller-Integrated/dp/B0718T232Z
https://www.digikey.com/en/products/detail/gct/USB3076-30-A/9859635
https://www.digikey.com/en/products/detail/silicon-labs/CP2102-GM/696598
https://www.adafruit.com/product/807
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4.4 Team Schedule 
Table 2: Team Schedule Breakdown 

Week Task Person 

September 25 - 30 Talk with ECE Machine Shop about motors for strap 

adjustment and placement 

Everyone 

Begin PCB design (list of components needed on board) Alice + Saloni 

Sensor data ↔ microcontroller transmission design  Jack 

Complete Design Document Everyone 

October 3 - 7 Continue PCB design (& PCB Board Review) Alice + Saloni 

Design Review with Instructor & TAs Everyone 

Start designing strap adjustment module with motors and 

sensor data readings 

Jack 

Soldering Assignment Individual - 

Everyone 

October 10 - 14 Place PCBway Orders (Need to pass audit by 10/11) Everyone 

Teamwork Evaluation I Everyone 

Visit Machine Shop (Revisions) Everyone 

October 17 - 28 Place Second PCB Order (with programming circuit) Everyone 

Continue strap adjustment module with motors + Sensor 

data testing 

Alice + Saloni 
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Begin pressure sensor module sensor testing Jack 

October 31 - 

November 4 

 

 

 

  

Create Web Server on ESP32 (WiFi not Bluetooth)  Alice 

Work on PCB and other modules Everyone 

Individual Progress Reports Individual - 

Everyone 

November 7 - 11 Work on PCB board Alice + Saloni 

Finalize strap adjustment and pressure subsystems Jack 

November 14 - 18 Finalize PCB board and all subsystems Everyone 

Mock Demo to TA Everyone 

November 21 - 25 FALL BREAK N/A 

November 28 - 

December 2 

Final Demo to Instructor and TAs Everyone 

December 5 - 9 Final Presentation Everyone 

Complete Final Papers Everyone 

Complete Lab checkout + Lab Notebook Everyone 

Final teamwork evaluation Everyone 
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5. Conclusion 
The Remotely Adjustable cast was a successful design allowing users to remove the cast without 

compromising the consistency of their treatment. Since the design was a success, more research on how 

this technology affects patient recovery can be done, and the design could be further developed to be 

more portable and lighter for users before being released to the public. 

5.1 Accomplishments 
The main accomplishments are that the remotely adjustable cast fulfilled all of the high-level 

requirements and all of the subsystems operated as we intended them to. The cast was able to store the 

doctor prescribed tension and pressure values, and the strap adjustment module tightened the straps to 

the prescribed tension with only the click of a button on the user interface. While the motors added a 

larger than expected weight, the addition of all of the components required for auto adjusting the cast 

did not add excessive weight to the cast. The cast worked as we imagined it would. By simply clicking a 

button on the user interface the straps were tightened or loosened, and the pressure applied by the air 

cells was measured and displayed to the user. There was text on the user interface that informed the 

user that the air cells were inflated to the proper values. Finally, the tolerances for the tension and 

pressure measurements were within an acceptable range, so our measurements are accurate. Overall, 

the project was a success. 

5.2 Uncertainties 
Since we were unable to obtain small weights to test the force sensing resistors, we were not able to 

verify that the part was measuring force as it was designed too. We used our hands to test the 

sensitivity and deemed that it was accurate in determining light to hard presses and relied on the data 

sheet and the provided part tolerances. Another uncertainty was with our PCB and why a successfully 

programmed ESP32 that seemed to be soldered and powered correctly was not connecting to Wi-Fi. We 

programmed an ESP32 on a devkit, desoldered it from the devkit and soldered it to the PCB and 

measured that the ESP32 was receiving 3.3 volts and that it was grounded correctly but for some reason 

it was not connecting to Wi-Fi. 

5.3 Ethical considerations 
In terms of ethical considerations of our product, there are many. Since we are upgrading a medical 

device, we must consider the safety aspects of our product to the user, especially. Section I.1 of the IEEE 

Code of Ethics [6] says that we must “hold paramount the safety, health, and welfare of the public.” The 

goal of our remotely adjustable cast is to help with the rehabilitation of patients’ limbs. It is critical to 

not harm the user more than they already are. The main ethical concern of our project is malfunction. If 

the strap tightening module were to malfunction and accidentally tighten the straps too much, it could 

cut off the blood circulation to the foot which could extend the recovery time for the patient even more. 

The same goes for not tightening the straps enough and accidentally causing the patient to roll an ankle. 

In order to mitigate this risk, we disclose any and all possible risks to the user. We also have carefully 

chosen the motors so that we cannot provide too much tension to the bootstraps with the motor 

specifications. 
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Another ethical concern is that of data privacy and hackers. Since the user interface is storing patient 

medical data it is important to make sure that only the patient and doctors can access that data. Since 

our design has the user interface hosted on a local server connected to WiFi it is important that the user 

is using a password protected WiFi so that hackers can’t connect to it and loosen the boot or access the 

medical data. A password protected personal mobile hotspot is perfect because the user can make sure 

that only allowed people have access to the WiFi and this is the most likely case since the user may want 

to take off or adjust the cast at a place that is not their home. 

Additionally, while we are trying to improve upon the AirCast boot to make it an even better experience 

to the user, we must make sure that these added benefits are worth the added cost. Upgrading the 

AirCast boot to have remotely adjustable functionality comes at an increased price, however we do not 

want to increase the cost too much to the patient if they were prescribed it. Thankfully, if this boot were 

to go to production it would cost significantly less than $69,000 (or even $189) to produce each boot. 

The added benefits of the cast that we are providing must be substantial enough from testing to warrant 

the price increase that it would take for the patient. 

5.4 Future work 
Given the opportunity to continue working with this product, some changes would be made to ensure a 

cleaner better product. The PCB would be re-organized (for example, the programing circuit would be 

moved to the edge of the board to be more easily reached) and would be adjusted so that it works 

properly. A belt attachment would be made to house the PCB and power bank, so they don’t have to be 

mounted to the cast. The cast would also have clamps attached to the side that clamp down on the 

straps allowing the user to turn off the motors when wearing the cast instead of relying on the holding 

torque of the motors. This would increase the life of the battery pack and the life of the motors. The cast 

would also utilize smaller motors that were out of stock since these motors would weigh less and still 

provide the necessary torque. If we could control the manufacturing of the air cells, we would switch 

back to the original design of inserting a barometer in the air cells to get a more consistent reading of 

the pressure. We would also like to partner with medical professionals to allow for testing of our cast to 

see how it affects treatment. If professions could administer tests to see what the ideal strap tension 

and air cell pressure is it could improve treatment for people. After this more tests would need to be 

done to see whether or not this cast provides a distinguishable enough increase in treatment. If it was 

found that it did provide a distinguishable increase in treatment, we would get final approval and move 

to production. 
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Appendix A Requirement and Verification Table 
 

A. Control Component 
 
The microcontroller chosen, an ESP32, will communicate with the Bluetooth/WiFi chip, force sensor for 
the strap adjustment module, and pressure sensor for the pressure module via UART interfaces. 
Additionally, the microcontroller should send signals to the motor for the strap adjustment module via 
I2C bus and receive sensor readings from the force and pressure sensors via UART as well. 

 
Table 3: Control Component Requirements and Verifications 

 

Requirement Verification 

Microcontroller implements control 
system for the motor of the strap 
adjustment module by taking inputs 
from force sensors and outputting 
motor speed. 
Microcontroller also translates 
pressure data to the web interface 
telling the user if they need to pump 
the air cell more.  

If the Bluetooth/WiFi functionality of the microcontroller is 
enabled, the proper sensor readings from the pressure sensor 
and force sensors will be displayed on the web application 
after being read by the microcontroller. The measured force 
and pressure readings displayed on the app will match doctor 
prescription. 

Microcontroller must be able to 
interface with a web application via 
Bluetooth. 

Controls enabled on the developed web application can 
properly change functionality of the microcontroller, and 
therefore of the strap adjustment and pressure modules as 
intended.  

 
 
 
B. Pressure Module 
 
The pressure module will sense the air pressure inside of the air cells via a SEN-09376 barometric 
pressure pad sensor between the air cell and the wall of the boot. The force exerted on the pressure pad 
gives us a sense of how inflated our air cells are. The pressure on the pressure pad will be 
communicated to the microcontroller. If the stretch goal is hit it will also automatically fill the air cells up 
until it has reached the prescribed pressure (controlled by microcontroller). 
 

Table 4: Pressure Component Requirements and Verifications 

Requirement Verification 

Pressure pad sensor must be able to indicate 
to the user when they have inflated/deflated 
the air cells to the intended pressure, while 

When the user views the web application, they should 
be able to view the correct pressure value of the air 
cells such that as they inflate/deflate the air cells using 
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staying within 10-20 mmHg of the local 
environment pressure value such that the 
user’s blood circulation is not cut off. 

the included pump, the reported value in the front-
end interface displays the value changing accordingly, 
and a warning is shown to users if the pressure value 
reaches 20 mmHg above the local environmental 
pressure value. The local environmental pressure 
value will be measured by a separate pressure sensor 
located directly mounted on PCB. 

 
 
C. Strap Adjustment Module 
 
The strap adjustment module should be able to utilize a force sensor to find the tension of the straps on 
the cast and communicate this tension reading with the microcontroller. The microcontroller should in 
turn communicate back with the motor in this module to properly adjust the straps based on the force 
read, and strap tightening necessary based on the stored strap adjustment value. 
 

Table 5: Strap Adjustment Component Requirements and Verifications 

Requirement Verification 

The tension of the straps must be able 
to be calculated such that the motor 
runs until the calculated tension value 
is within the prescribed value ± 3N 
(estimated maximum value will be 
~26N) 

When the intended torque is applied to the strap of the 
boot via the stepper motor at a given angle, the 
microcontroller receives the tension read by the force 
sensor and stops the motor when the prescribed tension is 
reached, while displaying a reading that is accurate to this 
tension value. The maximum possible value displayed should 
be no more than 26N according to the maximum torque 
provided by the motor (~0.8 N*m) at the angle the motor 
will be pulling the strap at (12°). 

Motor must be able to be toggled 
on/off by receiving a signal from the 
I2C bus from the microcontroller. 

Utilizing the Arduino IDE compatible with the ESP32 
microcontroller, the microcontroller is programmed to 
control the motor, such that a specific command leads to 
the motor speed changing from 0 to a value > 0. 

 
D. Power Subsystem 
 
The power supply chosen must be able to power the microcontroller as well as the pressure and strap 
adjustment modules. Additionally, the power supply should be easily rechargeable by the user and be 
placed in a safe location on the boot where physical damage cannot come easily. 
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Table 6: Power Component Requirements and Verifications 

Requirement Verification 

Power must not exceed 3.6V ± 0.3V 
when feeding into the 
microcontroller 

Measure voltage going into the microcontroller at different 
power supply charges to make sure this is always true 

Must be able to power all chips on 
the board and the adjustment 
modules 

Measure voltage input to all parts that receive power from the 
power supply & make sure all receive enough power to 
function based on data sheets 

 


