
Efficient Light Control System for Plant Growth

By

Christelle Seri (seri2),

Heonjang Lee (hl8),

Sungjoo Chung (sungjoo2)

Final Report for ECE 445 Senior Design, Fall 2022

TA: Zhicong Fan

12/07/2022

Project 5

ii

Abstract
The current market for grow lights for plants mostly only features products that control the light

modules by the user. This is inefficient in the sense that during daytime, there is plenty of light coming

from the sun that we can utilize and inconvenient in the sense that the user has to manually control the

grow lights. Our project aims to create a product that automatically controls a motorized blinds and a

grow light module to maximize the electricity efficiency of the product, using light from the sun when it

is available and sufficient, and otherwise supplementing it with the LED modules.

High level requirement of our product would provide the plants with lights of wavelength that are

proven to be most beneficial for plant growth for an extended period of time. Moreover, the photosensor

should accurately measure the light intensity, and based on this data along with the target luminosity, the

software should accurately instruct our system to reach the target luminosity through instructing the

motorized blinds and the LED modules appropriately. Lastly, our application should cover enough modes

of plants to be user friendly.

iii

Contents

1. Introduction 1
1.1. Problem 1
1.2. Solution 1
1.3. Visual Aid 2
1.4. High Level Requirements 2

2. Design 3
2.1. Block Diagram 3
2.2. Subsystem Overview 3

4. Cost and Schedule 15

5. Conclusion 16

6. Appendix 18

7. References 28

1

1. Introduction

1.1. Problem

Greenhouses in the industry are essential in the agricultural fields, but also costly.

Greenhouses are proven to be an effective solution to growing plants, but over time, the

electricity costs will begin to add up. According to research, a 200ft * 100 ft greenhouse

costs about $6000 per month [1].

1.2. Solution

This project proposes an energy efficient blinds system with LED lights as a solution to

simulate a cost effective greenhouse system. A sensor can be placed on the plant vase to

measure the amount of light received. The blinds aim to adjust via an attached motor so

as to optimize the amount of light to the plant. The LED lights will turn on when the

maximum sunlight from the blinds is insufficient.

Thus the LED lights would only be used when strictly necessary, cutting down on

electricity costs as a result. Additionally, the blinds system could be scheduled and

adjusted to user needs as well.

This system will be easily controlled by a user using an application, and also statistics

will be provided on the application.

2

1.3. Visual Aid

Figure 1: Model of the system

1.4. High Level Requirements

❖ The artificial light-source, combined with available natural light, should provide

light of wavelength 400-700 nm, which has been proven to be optimal for plant

growth [2], and a maximum of 3,500 lux over a 12 hour period [3], to provide

sufficient light for high-light plants, when needed.

❖ The photosensors on the vase should correctly calculate the illumination on the plant

to minimize the discrepancy between the actual illumination on the plant and the

expected illumination within ±5%.

❖ The application should have enough modes to cover various types of plants

including cactus, tropical plants, conifers, etc

3

2. Design

2.1. Block Diagram

Figure 2: Block Diagram of the Project

2.2. Subsystem Overview

Photosensor

The photosensor used is a BH1750FVI Luminosity sensor. The advantage of this sensor

is that it is a precise digital device, and compact in size as well. The

ESP32-WROOM-32E communicates directly with the BH1750FVI via I2C. Luminosity

data is transmitted to the app through wifi. The ESP32 was chosen as it is a well

documented microcontroller with both bluetooth and wifi capabilities. This subsystem

will share a microcontroller with the grow light subsystem. The microcontroller acts as a

wireless access point, from which photosensor values can be read via GET requests.

4

Figure 3: Photosensor Schematic

Grow Lights

To maximize the energy efficiency of the system, an adjustable LED light circuit will be

implemented. LEDs were chosen for their energy efficiency, low cost and low heat

emission [4]. Implementing an LED grow light circuit allows for optimization of the light

provided to the plant. Below is a table showing the benefits of different types of LEDs

[2].

Table 1: Improvement on Plant Growth from Different LEDs

Blue Light: increases chlorophyll

production

Yellow-Red Light: improves chlorophyll

absorption, germination and bud

development

Green Light: helps with photosynthesis

and can improve plant size

UVA Light: can enhance plant

pigmentation, and thicken leaves

Due to cost limitations, the final design does not include a UVA light. To provide a

combination of Blue, Green and Red light,GW P9LR35 mid power white LEDs were

selected. The primary benefit being the high luminosity output as well as the resulting

design simplification of having only one LED. For one grow light module, there will be

three white LEDs. To adjust light to the plant these grow light modules will be switched

5

on and off using transistors. Primarily, the output of the microcontroller will switch the

transistors from cutoff (OFF) to saturation(ON).

Figure 4: Single Grow Light Module

The microcontroller will switch modules on and off accordingly to adjust the light to the

plant. To provide sufficient light to different types of plants the required modules are as

follows,

Table 2: Modules Per Plant Type

Due to time limitations, the prototype included only 7 modules, but more could be added

as necessary

To power the lights, 120V AC is drawn from the wall and converted to 12V DC through

an AC/DC converter. If there is ever a need to power off the prototype in case of an

emergency, pressing the reset button of the microcontroller will switch all the LEDs off.

Additionally, the website hosted by the ESP32 access point has an emergency shutoff

implemented by following the link: 192.168.4.1./All_OFF.

6

In order to be able to program the microcontroller properly, a USB peripheral as well as

Enable and Boot circuits are implemented. Referencing the design of Team 47 from

Spring 2022, the boot and enable circuit were implemented and were a success [5]. To

flash the code, both the Enable and Boot buttons are pushed at the same time.

Figure 5: Microcontroller Connections

Motorized Blinds

The motorized blinds subsystem will be in charge of controlling the tilt angle of the

blinds for the plants to receive the desired amount of light. The system includes a ESP32

microcontroller, stepper motor, A4988 motor driver, LM2596 buck converter and a 12V

DC power supply.

The decision was made to use a stepper motor, more specifically the 28BYJ-48 stepper

motor, rather than a servo motor, due to the requirements of this subsystem. In our

system, the blinds will be adjusted mostly at low speed, which the stepper motor excels at

as it provides high torque, reliability and precision, at a much affordable price than the

servo motor [6]. This motor will be used to control the tilt of the blinds.

7

To stay consistent with the choice of microcontroller, this subsystem will also be

operating through the ESP32 microcontroller due to the reasons discussed in the above

section. The microcontroller will be in charge of receiving instructions from the

application, and controlling the tilt of the blinds via the motor depending on the current

state of the system.

A motor driver is implemented between the microcontroller and the stepper motor

because the microcontroller operates in low current whereas the motor operates in high

current. The A4988 Stepper Motor Driver was chosen as it is compatible with our stepper

motor, it allows the control of maximum current output which translates to maximum

voltage for the motor and that it has an over-temperature thermal shutdown system for

safety measures [7].

The LM2596 buck converter and 12V DC power supply are needed in order to supply

appropriate voltages to the components above.

2.3. Software Design

2.3.1. Procedure

Figure 6: Overall Software Structure

The role of the software part in the greenhouse system is to accept the data,

analyzed the passed data, and then control the hardware parts based on the analysis. The

design of The strength of such a design is the hardware components, which are difficult

8

to simulate and debug, do not need to be bothered with all complicated business logic. By

using the software system as a black box, the hardware parts can only focus on ensuring

its fundamental functionalities.

In order to do so, the server should have a backend server, a frontend server, and

a database server so that it can accept data from the hardware, store those data points,

and then show the status and statics to the system users. This whole system is

containerized using Docker and their images are uploaded to the Google Cloud Platform.

There, the whole system runs in a cloud so that it is connected to the internet.

2.3.1.1. Backend server

The backend server is responsible for accepting data points, calculating and

analyzing passed data points, making decisions, and sending appropriate commands to

the hardware components, and lastly, reporting the history and the current statics. For this

goal, Django is used. Django is a python backend library that is one of the most popular

backend libraries. There are many alternative popular backend frameworks such as

Spring. However, Django was chosen for many reasons. First, it is a python library.

Python is known as the most productive programming language due to its speedy

development. Unlike other languages like Java, it does not require complex programming

syntaxes. Also, it is an interpreted language in that it does not have to compile the entire

program before executing it. Therefore, it is handier to write test cases. Second, Django

has a rich community of developers due to its popularity. Therefore, it is possible to write

a more sophisticated product with a help of proven libraries.

2.3.1.2. Database

The database server is responsible for storing the data securely and offering the

stored data when requested with performance. While many types of databases are

possible such as relational databases, NoSQL databases, or graph databases, a relational

database is chosen in order to support the dependencies between data as well as

aggregation of them. For example, data points have a relationship with a photosensor. In

order to figure out aggregate the data points by a sensor, it is necessary to use a relational

database. Also, due to the high frequency of data points, graph databases are not suitable

due to their poor performance in transactions.

9

Out of many other relational databases, such as MySQL or SQLite, Postgresql is

chosen because of its high compatibility with Django. Also, it has a rich development

community as well due to its popularity.

2.3.1.3. Frontend

The frontend server is responsible for the interaction between human users and

the greenhouse system. There are a number of popular frontend frameworks such as

Vue.js, Angular, and React. Out of these frameworks, this project was implemented with

React because it is the most mobile-friendly framework. It is compatible with

ReactNative which is a mobile application framework. Because the mobile application

will be crucial for better accessibility from the users’ point of view, this feature was

important in this project. Also, because it is the most popular frontend framework as of

now, it has the richest development community.

2.3.2. Design details

2.3.2.1. Backend

The backend consists of three big subsystems: data acquisition, analyzer, and

decision maker. These three subsystems run independently(as a unique thread) of each

other with their own responsibility. Therefore, the functionality of each subsystem is

well-modularized so that each of them has a concise purpose. This lowers the

development difficulty and strengthens the stability of each subsystem. Data acquisition -

collect data and save it into the database

1. Data acquisition

Figure 7: Logical Flowchart of Data Acquisition

The system’s all business logic is fundamentally dependent on the light-intensity

data collected from the photosensor in the hardware system. Without that information, it

is not possible to analyze the current status or offer any useful information to users.

Likewise, this process is the most crucial part of the greenhouse system. In order to

10

promise stability, this process is separated into one individual thread so that it can run

without external interference.

Figure 8: Structural Diagram of Data Acquisition

In this thread, the backend server sends a request to the hardware system to

respond with a photosensor value. When the thread receives the value, it saves in the

database. This process runs in an infinite loop with a 100ms delay after each execution.

2. Analyzer

The Analyzer’s goal is to calculate how much light intensity the system is lacking

or overloaded. The calculated number will be saved into the database so that the other

thread(Adjuster) can take an action accordingly to achieve the system’s goal. In order to

synchronize with the Adjuster which runs every 10 minutes, the system will also wait 10

minutes after one cycle.

Figure: 9 Logic Flowchart for Analyzer

11

Because the project goal is to maximize the electricity consumption efficiency,

the calculation logic focuses on maximizing the natural light source usage. To do so, the

system computes the optimal insolation graph from sunrise to sunset and tries to adjust

the system based on that.

(2.1)

[9] Sun’s Flux Density Formula

In order to calculate the insolation value, the system uses the flux density formula

(2.1). In the formula is the strongest insolation of one day and the represents the

angle between the system's zenith and the center of the sun. At sunrise, it is -180 degrees

and at sunset, it is 180 degrees. Using this formula, the analyzer can compute the target

illumination bell curve as well as the difference between the current light intensity value

and the target intensity value. Refer to Appendix A for a visualization of the calculation

result;

2.3.3. Adjuster

Figure 10: Logic Flowchart for Adjuster

https://www.codecogs.com/eqnedit.php?latex=%20F%20%3D%20F_%7B0%7D%5Ctimes%20cos%20%5Ctheta_%7B0%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20F_%7B0%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctheta%20#0

12

2.3.3.1. Frontend

The frontend’s role is to deliver data generated from the backend server to a user

in a readable format and also to deliver commands from the user to the backend server.

Therefore, the frontend consists of 4 tabs: the home page, system configuration page,

report controller page, and history page. For screenshots of each page, refer to Appendix

A.

1. Home

On this page, the server shows the current configuration of the system to the user.

Therefore, the user does not need to actually see the greenhouse system in person to

check its current status.

2. System Configuration

On this page, the user can update the current status of the system, and the update

is immediately applied so that the target illumination changes correspondingly.

3. Remote Controller

On this page, the user can directly control the system remotely.

4. History

On this page, the user can see the history of the light intensity stored in the

system, Through this, the user can know whether the system is behaving as intended or

not.

13

3. Design Verification

3.1. Photosensor

The photosensor was tested by adjusting the light to the photosensor and verifying the

changes through the website. Mainly, a flashlight was shined onto the photosensor, then

turned off, and later the photosensor itself was covered by a hand. The measurements

were transmitted to the website accurately and were as expected: displaying a peak, a fall

and then an even sharper fall.

3.2. Grow Lights

The grow lights were tested both manually and through the software’s logic. Mainly,

modules could be switched on or off by redirecting to the 192.168.4.1/Module{#}_{ON

or OFF}. Through these manual tests, the light to plant visibly changed as well as was

reflected in the photosensor measurements. They also reacted as expected to directions

from the software turning on and off to supplement the light to the plant as necessary.

3.3. Motorized Blinds

The motorized blinds subsystem was tested by sending appropriate signals to turn the

motors both ways from the ESP32 and verifying that. After this was functionality was

verified, the capability of ESP32 to control the motor to angle the blinds at a desired

angle was tested by letting the ESP32 to instruct the blinds to tilt at an arbitrary angle and

confirming that the blinds is angled in the desired angle within a error. This was also2. 5°

verified. Lastly, for the responsiveness of the subsystem, the time it takes for the motors

to start moving after the ESP32 has passed on its instruction was measured and verified to

be less than 5 seconds.

3.4. Software

On the software side, all tests are done as unit tests so that they can be tested

without hardware dependency. Using a python program, it prepared a set of data or

instructions to simulate scenarios and checked whether the software system behaves as

expected. For more detailed information about the verification, refer to Appendix C.

3.4.1. Data Acquisition

While its goal and logic are simple, its tolerance and stability were the most

crucial. Therefore, its verification focuses on guaranteeing those features. For each

requirement, simulators are created so that this functionality was tested every time before

the application’s deployment.

14

3.4.2. Analyzer

The key requirement of this subsystem is that the calculation must be accurate.

Therefore, scenarios with different conditions are manually calculated, and then the

correct results are compared with the result from Analyzer

3.4.3. Adjuster

The key to this subsystem is that it should make a correct decision in various

circumstances and that decision should be executable for the hardware. (i.e., the light

power should not exceed the hardware’s hard limit)

3.4.4. Frontend

The frontend’s role is not complex. Because it only needs to deliver commands

from a user and show the data to the user in a human-readable way, it mainly needs to be

verified whether data are corrected and delivered from the server to the user and vice

versa.

3.5. Integration

As a whole, software, and hardware, the greenhouse system should either open

the blind or turn on LEDs whenever the target illumination is greater than the current

illumination on the photosensor and close or turn off LEDs whenever there is more

illumination than the expectation.

15

4. Cost and Schedule

UIUC’s ECE AY20-21 grad students have an average starting salary of $92824. Our team

consists of 3 members and each of us worked 10 hrs/per week (Appendix D). A full-time

employee works 40 hrs/week and this was a 10-week project so the total human resource cost was

$92824 per year / 52 weeks * 10 weeks * (10 hours / 40 hours) * 3 = $13388

The cost of all the components combined is $102. (Appendix D)

This brings the total cost of our project to $13490.

16

5. Conclusion

5.1. Successes and Failures

In conclusion, most of our project worked as it was intended. It accurately senses the luminosity

value from the photosensor, calculates the difference between the target luminosity and actual

luminosity and controls the LED modules to achieve the target luminosity in the end.

Furthermore, manual controls from the application such as turning the blinds and controlling the

LED modules also worked as intended. However, the ESP32 for this subsystem was unsuccessful

due to a lack of connection. Thus, separate verification tests were run with the subsystem being

instructed by an Arduino board rather than an ESP32 to confirm the functionality of it.

5.2. Further Work

Going forward, one of the features that could be improved is a potentiometer in the grow light

modules. Currently, the luminosity values coming from the LEDs differ by increments of the

brightness of each of the LED modules, meaning that there is less precision in the control of

luminosity. If a potentiometer is added to each grow light module, the system would be able to

more precisely achieve the desired luminosity by adjusting the resistance to adjust the brightness

of each LED module.

Furthermore, better quality connectors and better wire management will definitely improve the

quality of the product. The connectors that were ordered were not very stable, resulting in bad

connections. This was further worsened by the poor wire management the design faced, which

made it even more difficult to improve on the connections of the circuit.

5.3. Ethics and Safety

This project is subject to the ACM Code of Ethics 1.3Be honest and trustworthy [8]. Because we

are integrating all existing technologies into one system, we are destined to borrow ideas or

approaches made by other people. Therefore, we should cite those ideas properly to recognize the

original author. Also, privacy should be taken seriously which is related to the ACM Code of

Ethics 1.6 [11]. Our system stores user’s authentication and they use histories in our database.

This should be most firmly protected to avoid any privacy leakage.

This project is also subject to potential fire accidents at an industry level. Both the lights, and

motor are never overloaded to comply with the ACM Code of Ethics 1.2 Avoid harm [11]. In

addition to that, the LEDs may get hot when they are turned on for a certain period of time. The

users of this system should avoid touching the system directly so that they do not get burned on

their hands. The housing frame of the system encapsulates the lights.

17

Lastly, the light bulbs cluster should be located far enough away from the plants. Plants touching

the bulbs will cause fire which will damage not only the plant, but also the system itself and

potentially beyond. Because this is an automated system which has a minimum human

interaction, it is possible that plant growth can occur without the user’s expectation.

18

6. Appendix A: Software

Figure 11: Target Illumination Graph computed by the Analyzer

Figure 12: Home page

Figure 13: System Configuration

19

Figure 14: Report Controller

Figure 15: History Page

20

Figure 16: Data Acquisition Test result 1

Figure 17: Data Acquisition Test result

Figure 18: Analyzer Test result

21

Appendix B: PCB Design

Appendix C: Requirement and Verification

C.1 Photosensor

Table 3 : Requirements and Verification for Photosensor Subsystem

Requirements Verification

1. The photosensor subsystem

will transmit real time

luminosity data to the rest of

the system via bluetooth

(every second)

2. The photosensor’s

measurements will reflect

1. The data from the

photosensor will be

polled for a period of

30 seconds at the end

of which 30 accurate

measurements should

1. Successful (Y)

22

changes to the light to the

plant with a delay no greater

than 2 seconds

be uploaded to the

server

2. A phone’s flashlight

will be used to adjust

light to the plant, in a

range of none to the

maximum possible

light. The readings

from the photosensor

should reflect changes

in the flashlight

intensity.

2. Successful (Y)

C.2 Grow Lights

Table 4 : Requirements and Verification for Grow Lights

Requirements Verification Verification Status

1. The grow lights

should be able to

adjust to either

increase or

decrease the light

to the plant

2. The grow light

subsystem will

transmit real time

data on the power

used (every

second)

1. All of the grow light modules

will be gradually switched on.

The light to the plant should

increase visibly. Additionally,

the photosensor measurements

should show an increase.

2. The data from the

microcontroller will be polled

for a period of 60 seconds,

during which each of the grow

lights will be switched on/off.

At the end of this period, 60

measurements accurately

reflecting the changes should

be uploaded to the server.

1. Successful (Y)

2. Successful (Y)

23

C.3 Motorized Blinds Subsystem

Table 5: Requirements and Verification for Motorized Blinds Subsystem

Requirements Verification Verification

Status

1. The microcontroller should instruct

the motor to rotate in the desired

direction to tilt the blinds

2. The microcontroller should be able

to instruct the motors to angle the

blinds at a desired angle within an

error no bigger than , which± 2. 5°

is half the minimum increment the

blinds will be adjusted at

3. The motor should start rotating

within 5 seconds, for both

directions, of the UNO R3 receiving

instruction from the application

1. Verification step for requirement

1

a. Have application to instruct UNO

R3 to tilt the blinds in a specified

orientation

b. Confirm if the motor rotates in

appropriate direction to perform

its instruction

c. Repeat steps a~b but with

opposite orientation

2. Verification step for requirement

2

a. Have application to instruct UNO

R3 to angle the blinds at an

arbitrary angle

b. Verify that the blinds are at an

angle within the error margin

using a protractor

3. Verification step for requirement

2

a. Have application to instruct UNO

R3 to tilt the blinds in one

orientation for an arbitrary

amount

b. Start the timer, preferably a

stopwatch app or a digital timer

c. Stop the timer when the motor

1. Y

2. Y

3. N

24

starts rotating

d. Repeat steps a~c but with

opposite orientation

C.4 Data Acquisition Verification

Table 6: Requirements and Verification for Data Acquisition

Requirements Verification Verification Status

1. Values should be

correctly stored

2. All values should be

safely stored while

having high traffic

1. Tested with a simulator

that sends requests with

a random value and

checks the database

2. Tested with a simulator

that sends 100 requests

in 5 seconds and checks

the database whether

all requests are

successfully executed.

1. Y

2. Y

C.5 Analyzer Verification

Table 7: Requirements and Verification for Analyzer

Requirements Verification Verification Status

1. Computation should

correctly calculate the

target illumination

2. The Analyzer should

correctly save the value

in the database.

1. Tested with a

precalculated scenario

and compared the result

with the correct values.

2. Tested with a simulator

with a precalculated

scenario and checked

1. Y

2. Y

25

whether values are

correctly saved in the

database.

C.6 Adjuster Verification

Table 8: Requirements and Verification for Adjuster

Requirements Verification Verification Status

1. The decision made

should not exceed

limits. I.E., light

power cannot be

negative and exceed

its hard limit.

2. The decision made

should be correct

1. Tested with a simulator that

requires the system

lower/higher illumination

while it already hit its

limitation and checked

whether the limitation is

strictly kept.

2. Tested with a simulator with

pre-computed scenarios.

Checked whether the created

decisions matched the

pre-computed results.

1. Y

2. Y

C.7 Frontend Verification

Table 9: Requirements and Verification for Frontend

Requirements Verification Verification Status

26

1. The value showing on

the homepage should

be correct with the

actual configuration

2. A command should be

correctly applied to

system

3. The graph should

show data correctly

with an adequate scale.

1. Created a set of

configurations and check

whether values are correct for

each update

2. Created a set of commands

and check whether the system

execute the command

correctly.

3. Prepared a list of the data

point set and checked

whether the graph showed the

correct value with an

adequate scale

1. Y

2. Y

3. Y

Appendix D: Cost and Schedule

Table 10: Component Costs

Component Quantity Manufacturer Cost/Quantity($) Total Cost($)

BH1750 Ambient Light
Sensor

1 Rohm 4.50 4.50

Generic 4 Pin Connector 2 Molex 0.59 1.18

White LED 31 OSRAM OPTO 0,651 20.18

2 NPN Transistor 25 onsemi 0.221 5.53

10kΩ Resistor 4 EDGELEC 2.00 8

470Ω Resistor 4 EDGELEC 2.00 8

100Ω Resistor 4 EDGELEC 2.00 8

1uF Capacitor 10 KEMET 0.94 9.4

27

680uF Capacitor 1 KEMET 0.93 0.93

220uF Capacitor 1 KEMET 0.38 0.38

33uH Inductor 1 Bourns 0.86 0.86

1N5822 Schottky Diode 1 NTE Electronics 0.56 0.56

LM25-23B03 AC/DC
Converter

1 Mornsun
American

11.43 11.43

ESP32-WROOM-32E
Microcontroller

2 Espressif Systems 3.00 6.00

A4988 Stepper Motor
Driver

1 HiLetgo 1.98 1.98

28BYJ-48 Stepper Motor 1 HiLetgo 2.87 2.87

LM2596 Buck converter 1 Texas Instruments 3.20 3.20

12V Power Supply
Adapter

1 GANGQI 9.00 9.00

Total Cost 102

Table 11: Schedule

Major
Deadlines

Christelle Sungjoo Heonjang

10/3 Design
Review

Finalize PCB Finalize PCB Prepare a working
environment (cloud

setup)

10/10 1st round
PCBs

Order Parts, Simulate
Circuit

Finalize design and
print 3D part

Implement a backend
server

10/17 Soldering Soldering Soldering

28

10/24 Testing Test the board,
program the board to
receive and send data

Test the board,
program the board to
receive and send data

Implement a frontend
server

10/31 2nd Round
PCBs

Order a second final
board

Order a second final
board

Integrate the software
system with the
hardware system and
test

11/7 Soldering, testing Soldering, testing Implement statistics
analyzer, soldering

11/14 Mock Demo Prepare for Demo Prepare for Demo Prepare for Demo

11/21 Break

11/28 Final Demo Finalize adjustments
for demo

Finalize adjustments
for demo

Finalize adjustments for
demo

12/5 Final
Presentation

Finalize presentation Finalize presentation Finalize presentation

7. References

[1] Brumfield, Robin. (1992). Greenhouse Cost Accounting: A Computer Program for
Making Management Decisions. HortTechnology. 2. 10.21273/HORTTECH.2.3.420.

[2] “The visible wavelength range and its impact on plant growth”, Light Science
Technologies, https://lightsciencetech.com/visible-wavelength-range-plant-growth/

[3] Navvab, M. (2009, January). Daylighting aspects for plant growth in interior
environments. ResearchGate. Retrieved September 30, 2022, from
https://www.researchgate.net/publication/259043901_Daylighting_Aspects_for_Plant_Gr
owth_in_Interior_Environments

[4] “LED Grow Lights for Plant Production” OSU Extension,
https://extension.okstate.edu/fact-sheets/led-grow-lights-for-plant-production.html

https://lightsciencetech.com/visible-wavelength-range-plant-growth/#:~:text=610%2D700%20nm%20is%20considered,plant%20growth%20and%20optimised%20yield
https://extension.okstate.edu/fact-sheets/led-grow-lights-for-plant-production.html

29

[5] Xie, Ben & Goel, Pranav, & Wang, Honru. (2022) TimeTable Productivity Device.
https://courses.engr.illinois.edu/ece445/getfile.asp?id=20494

[6] Motors and Selecting the Right One. Motors and selecting the right one. (n.d.).
Retrieved September 29, 2022, from
https://learn.sparkfun.com/tutorials/motors-and-selecting-the-right-one/all

[7] Allegro MicroSystems. (n.d.). DMOS Microstepping Driver with Translator And
Overcurrent Protection Datasheet. Retrieved September 30, 2022, from
https://www.pololu.com/file/0J450/a4988_DMOS_microstepping_driver_with_translator.
pdf

[8] “Code of Ethics”, https://www.acm.org/code-of-ethics

[9] Ather, S. H. (2020, December 28). How to calculate solar insolation. Sciencing,
https://sciencing.com/calculate-solar-insolation-8435082.html

https://courses.engr.illinois.edu/ece445/getfile.asp?id=20494
https://www.acm.org/code-of-ethics

