
Electronic Drawer Organization System

ECE 445: Final Paper

Group # 11

Nathan Marchosky, Michael Stoens, Michael Grawe

Professor: Viktor Gruev

TA: Stasiu Chyczewski

Abstract

This project for ECE 445 Senior Design was an Electronic Drawer System. This aimed to solve

organization issues and allow users to keep better track of where they stored their items in drawers.

Additional features included the ability to lock one of the three drawers, motorized opening capa-

bility and light emitting diode (LED) indication to locate which drawer your items are stored in.

Over the course of the semester we designed this system and the end result was a product capable

of being operated using only an android phone and plugging the system into a standard 120V wall

outlet.

ii

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Solution . 1

1.3 Visual Aids . 2

1.4 Subsystems . 3

1.4.1 Power Subsystem . 3

1.4.2 User Interface Subsystem . 4

1.4.3 Control Subsystem . 4

1.4.4 Drawer Mechanics Subsystem . 4

2 Design 5

2.1 PCB Design . 5

2.1.1 Schematic . 5

2.1.2 Layout . 8

2.1.3 Soldering & Testing . 9

2.2 Firmware Design . 9

2.3 App Design . 11

2.4 Putting it all Together and High-Level Verification 14

3 Cost & Schedule 17

3.1 Cost . 17

3.2 Schedule . 18

4 Conclusion 19

4.1 Successes and Challenges . 19

4.2 Key Takeaways . 19

4.3 Ethics & Safety . 19

References 21

Appendix 23

iii

1 Introduction

1.1 Problem Statement

One of the most important factors in productivity is the level of organization a person has in their

workspace. The ease with which someone can find the tools or paperwork they need to do a job has

a meaningful impact on the time the actual job takes. Currently, this is an area of the workplace

that needs improvement, as 28% of office workers say they would save an hour every day if their

workspace was more organized [1].

Perhaps the most common method of office organization involves drawers or cabinets of some

kind. The issue with this method occurs when people forget which drawer they put a certain item

in. Then, when they need to find it again, they waste time searching through all their drawers. This

issue scales exponentially with a large amount of drawers, or a large amount of items in drawers.

1.2 Solution

The electronic solution our group came up with eliminates the need for a person to remember what

drawer each item is stored in. This is done by storing the location of the item on a micro-controller

(MCU). The user is able to use an Android smartphone application as a way to interface with the

micro-controller. On the application, the user is able to select an item that they stored previously

in a searchable list, and the micro-controller will then search for that item and notify the user as to

which drawer the item is located in. This notification can come in the form of physically opening

the correct drawer or lighting an LED mounted on the side of the corresponding drawer.

Some more specifics for the functionality of the drawer system might help make the system a

little more clear. The drawer system has three drawers, each of which has a linear motor, a limit

switch, and an LED mounted on the side. The drawer will be opened by controlling a linear motor

that will push the drawer open. The locking mechanism for the drawer will be a solenoid that will

drive a metal pin into a slot in the drawer to lock, and retract to unlock. The LED will be mounted

on the side of the drawer system for maximum visibility.

1

1.3 Visual Aids

Figure 1 shows the visual aid. Figure 2 shows the block diagram. Lastly Figure 3 shows the final

assembly of the drawer system.

Figure 1: Visual Aid

Figure 2: High Level Block Diagram

2

Figure 3: Drawer Assembly

1.4 Subsystems

1.4.1 Power Subsystem

The Electronic Drawer Organization System drawers will be powered from a wall-outlet using a

120V to 12V AC/DC converter. The 12V supply is then converted to 5V and 3.3V using linear

regulators to power the USB and MCU respectively. We sized our 12V power supply to ensure

that we would be able to drive two drawers at once. Since our motors require a maximum current

of 3A [2], our solenoid requires a maximum of 1.1A [3], and our MCU requires a maximum of

500mA [4], we decided that a 10A power supply would be well suited for our needs.

3

1.4.2 User Interface Subsystem

The User Interface is a smartphone application that will be connected via Bluetooth to the Control

subsystem. This application is on an Android phone. The application gives the user the ability

to interact with the MCU to store, remove, and find items stored in the item-drawer pair data

structure. It also give the user the ability to determine their indication preferences on the physical

drawers, as well as set their desired password for the locking drawer, and view the status of whether

or not each of the drawers are open, locked, or the LEDs are on. All the communication between

the app and the MCU takes place over Bluetooth.

1.4.3 Control Subsystem

As shown by the high level block diagram in Figure 2 the Control module contains an MCU, an H

Bridge motor controller, and a Power MOSFET for lock control. The MCU used for this system is

the ESP32. The ESP32 was chosen mainly due to its on-chip Bluetooth capability [4] . The MCU

is able to process any input and output signal (IO) necessary to control all auxiliaries in other parts

of the control system. The ESP32 has 520KB of static random access memory (SRAM) which is

enough to store our program data [4]. The H-bridge, a BD62130AEFJ, which can tolerate input

logic signals less than 5.5V, is used for control of the linear actuators. [5]. The DMN2300UFB4-7B

is used for our N-type MOSFET (NMOS) that can control our solenoid as it can carry 1.3A needed

to run through the solenoid [6].

1.4.4 Drawer Mechanics Subsystem

The drawer mechanical subsystem is responsible for interfacing between the control system and

the drawer hardware to open and lock the drawers, as well as to detect if the drawer is closed.

The drawer hardware subsection is comprised of three linear actuators (Ok03 model), one solenoid

(ROB-11015), three limit switches (MZ-7611), and three LEDs (WP7113ID5V). The linear actua-

tors are controlled by an H-Bridge which enables forward and reverse operation. The solenoids are

controlled by an NMOS connected to the MCU. The limit switches provide inputs to the MCU to

signal the open or closed status of the drawer. The LEDs are each controlled by the MCU through

an NMOS to identify drawers if the user does not want to open the drawer at that time.

4

2 Design

2.1 PCB Design

2.1.1 Schematic

When completing the schematic, the circuit board was divided into subsections to improve the

organization and readability. These subsections include: Power, USB, MCU, and I/O. Shown in

Figures 4, 5, 6 and 7. respectively.

The Power subsection is comprised of a barrel jack for connecting the 12V power supply and

two linear regulators with filtering capacitors for converting the supply voltage to 5V and 3.3V

to power our on board components. Furthermore the requirements and verification tables for the

power system is shown in Table 1.

Figure 4: Power Schematic

The USB subsection is responsible for providing the interface between a computer and the

ESP32 for programming. This section includes the USB port, two BJTs which control the boot

sequence of the ESP32, and the CP2012 USB to UART integrated circuit (IC).

The MCU section holds ESP32 as well as the needed passive components to ensure reliable

functionality. The most complex component of designing the MCU schematic was choosing our pin

assignments. This involve utilizing the datasheet to identify which pins could be utilized for UART

communication and which pins could be used for GPIO [4].

The input/output section holds all of the components to interface with the motors, solenoid,

switches and LEDs. The motors are controlled through an H-Bridge IC which enables the motors to

move in both directions. The LEDs and solenoid are controlled by N-type MOSFETs. Debouncing

circuitry is used to filter the switch signal from the limit switches.

5

Table 1: Power Subsystem Requirements and Verification Table

Requirement Verification Procedure

• Supply 12V+/-10%
and 10A+/-10% as
output from power
supply

• Plug in power supply to wall outlet. Using a digital multi-meter in
the lab, measure the output voltage and current, making sure it is in
the desired range. Success!

• 5V LDO supplies
5V+/-10%, 3A+/-
10% at output, once
it has been connected
to 12V power supply.

• Using digital multi-meter in the lab, measure the output voltage of
the buck converter after connecting it to the power supply. Success!

• Using digital multi-meter in the lab, measure the output current of
the buck converter. after connecting it to the power supply. Success!

• 3V LDO supplies
Current of at least
500mA, Voltage
of 3V+/-10% to
the ESP32 micro-
controller.

• Using digital multi-meter in the lab, measure the output voltage of
the LDO. Success!

• Using digital multi-meter in the lab, measure the output current of
the LDO. Success!

Figure 5: USB Schematic

6

Figure 6: Microcontroller Schematic

Figure 7: I/O Schematic

7

2.1.2 Layout

After completing the schematic portion of the printed circuit board (PCB), the next step was

completing the layout. We began by placing the most vital components, such as the ESP32 MCU

and the USB/UART chip. After the MCU, we began planing the input/output components and

identified the optimal placement of components for routing. This involved changing the ESP32

pin assignments for more organized routing. The board was designed in such a way to ensure the

power components were kept far away from the USB and communication components. In addition,

we ensured the data lines for USB and UART were kept above solid planes for best performance.

(a) Bottom Layer (b) Top Layer

(a) Top Layer Tracing (b) 3D View

8

2.1.3 Soldering & Testing

After our printed circuit board arrived, we moved on to assembling our board for testing. We

first soldered the components needed for programming the board as we believed this was the most

important functionality to verify. During our first night of soldering, we soldered the ESP32, the

USB/UART chip, USB connector, BJTs and necessary passive components for the previously listed

devices. After we finished soldering the components needed for programming the ESP32, we paused

the soldering process to test communication with the board. We quickly found that our board was

not recognized by out computers. After significant troubleshooting of our system, we identified

the problem as a bad connection to our USB/UART chip. To resolve this issue, we modified our

PCB to fix the connection and we were then able to connect to the ESP32. Next, we checked the

basic functionality of our LEDs, MOSFETs, switches and motor drivers. We verified that all of

our components worked as expected except for our motor drivers. We found that we could not

control two out of our three motor drivers. Testing with a multimeter, we found that we were not

getting an output from the ESP32. After consulting the datasheet, we realized the general purpose

input/ouput (GPIO) pins we were using on the ESP32 were input only [4]. We once again modified

our PCB to utilize different GPIO which solved our issues. Lastly, we had an issue with our motors

getting stuck upon trying to retract. After significant debugging with the oscilloscope to measure

our input power to the motor drivers, we identified there was a large inrush current when the

motors would change directions. This caused the motor drivers to shut down due to over-current

protection. To resolve this issue, we placed a small 1.1Ω resistor in series with each motor to limit

the current. After this modification, our motors and overall project functioned flawlessly.

2.2 Firmware Design

The firmware subsystem is responsible for connecting the hardware and software designs together.

It must be able to successfully toggle pins based on the current state of the drawers and motors.

In addition it must do this while interacting with Bluetooth commands and ensure that it does not

violate any safety concerns. In order to do this, firmware must monitor the state of the switches,

the locks, and any messages from the app.

To code the ESP32 the Arduino IDE is used and is setup per the steps [7]. To begin testing we

9

Table 2: Drawer Mechanics Subsystem Requirements and Verification Table

Requirement Verification Procedure

• Linear actuators are
driven by the H-Brige
of the Control Sub-
system

• Initially verify MCU GPIO output is functioning as expected by using
an LED connected to a GPIO pin and control using the app. Success!

• Remove LED and connect H-Bridge to GPIO. Use a multimeter to
verify output of H-Bridge is as expected. Success!

• Connect linear actuator to output of H-Bridge. Verify actuator rotates
as expected. Success!

• Solenoids are con-
trolled by the MCU
to lock the drawers

• Verify GPIO functionality using the above test procedure. Success!

• Connect the gate of an NMOS to the GPIO pin of the micro-controller

• Connect the negative terminal of the solenoid to the drain of the
MOSFET and +12V to the positive terminal of the solenoid.Verify
the solenoid actuates as expected when toggling the output of the
micro-controller. Success!

• Limit switches are
able to detect when
the drawer is open or
closed

• Connect 3.3V to limit switch

• Connect limit switch to input of micro-controller

• Actuate the switch and monitor the input of the micro-controller to
verify expected behavior. Success!

used the steps discussed in [8] and in [9]. This successfully allowed LED flashing using the ESP32

WROOM dev-kit. Once Bluetooth LED flashing was successfully established, the next step was

to implement the usage of non-volatile memory for storage of drawer components. This was done

with the data structure found in preferences.h whose operation is discussed in [10].

The firmware subsystem ensures that no illegal states are possible by checking all of the states

on our drawers before driving the motors or solenoids. It does this using simple if and else if

commands. In addition it runs on a simple system of having a list of possible commands that can

be sent from the MCU. For example find item commands, add item commands, unlock drawer

commands etc.

This is all run as shown in the block diagram in Figure 10. Once a power reset occurs, all the

ESP32 pins are set to safe states. Namely, the solenoid is locked upon turn on, all the motors are

deactivated, all the LED’s are turned off, and all variables are set to the proper state. Then the

loop begins and we check for Bluetooth commands. If there are any, we then store the string and

10

Figure 10: ESP32 Firmware Block Diagram

any corresponding commands. Then, we run the command and clear the string buffer. Finally, we

run any callback commands like blinking off an LED after one second.

Lastly to verify that the firmware system operated as intended the requirements and verification

shown in Table 3. As shown everything in the table operates successfully.

2.3 App Design

To complete the project design, it was necessary to design an Android application to function as

the user interface. The design for the app involved the usage of different screens to house different

functional components of to app. This introduced the first difficulty of the app development

process, as the Bluetooth connection between the phone and MCU was severed every time a screen

was switched on the app. This problem was solved with help from the online resource and YouTube

channel Robojax. This channel showed an app implementation that utilized Bluetooth connection

11

Table 3: Control Subsystem Requirements and Verification Table

Requirement Verification Procedure

• Receive command
from user interface
via Bluetooth

• When command to light LED is sent from the phone, the microcon-
troller must turn on the LED. Success!

• Micro-controller can
determine using sen-
sors if a drawer is
open or closed and re-
lay that information
to the phone app.

• If drawer is closed, it appears as closed on the app, with some potential
delay (1 second maximum). Success!

• If drawer is open it appears as opened on app with some potential
delay (1 second maximum). Success!

• Micro-controller can
toggle its output pins

• Flash Micro-controller with simple program that drives pins and mea-
sure the voltage at those pins with a multi-meter. Success!

• Setup the pins output a PWM waveform and verify with an Oscillo-
scope that the output matches the desired PWM signal. Success!

between Android and ESP32 with a virtual screens method that only visually changed the screen by

triggering a change in the visibility of different app components when a given button was pressed [9].

In this way, It was ensured that the app would run smoothly in conjunction with the MCU, without

breaks in the Bluetooth connection, since the actual screen was never actually changed.

Screen 1 in Figure 11a acts as a home screen, and provides a way for the user to navigate to the

other screens, as well as connect to other Bluetooth devices. This home screen also has a button

that reads the MCU pins connected to the LEDs, switches, and solenoid to print the status of these

different circuit elements on the screen for the user.

Screen 2 in Figure 11b acts as a preferences or settings screen. The user is able to flip switches

to determine their preferred method of drawer indication when an item is searched. On this screen,

there is also an option for the user to choose whether they want to have locking capability for the

bottom drawer, as well as set the necessary password in the case that locking is enabled.

Screen 3 in Figure 11a contains the functionality of the app to add, remove, and find items from

within the MCUs dictionary of drawer-item pairs. To add an item, the user first clicks the ”Add

Item” button. Then, a text box will appear where the user can type the name of the item they

wish to add and use the drawer list picker to select which drawer the item will be stored in. To find

or remove an item, the user can either enter the name of the item in the text box at the bottom

12

(a) Main Menu (b) Open Settings (c) Item Manipulation Menu

Figure 11: App Screens

of the screen and click the corresponding button or use the ”Find Item” and ”Remove Items” list

pickers at the top of the screen. These list pickers are buttons that show the user a searchable list

of the items currently stored in the drawers. The list is updated every time that an item is added

or removed.

The interaction between the ESP32 and Android app via Bluetooth when an item operation is

attempted in the app is detailed in the flowchart below. When the button to add, find, or remove

an item is clicked, the app first determines which operation it is trying to perform. If that operation

is find, the app first must communicate with the MCU to find which drawer the item is stored in.

If the item is found in drawer 3, the bottom locking drawer, the app checks whether the drawer is

locked. If it is locked, it will prompt the user to enter their password and send an unlock command.

If the command is either find or remove, the app will simply send the command to the MCU, and

indicate whether the Bluetooth has timed out or there was an error/duplication in removing or

adding the item. The overall functionality of our App is verified in Table 4.

13

Figure 12: Flowchart for Item Manipulation in App

2.4 Putting it all Together and High-Level Verification

Once the firmware, software, and hardware were brought to a reasonably workable stage, the rest

of the design process involved combining all of these different components to create a cohesive

project. Due to some testing that had been previously done using the ESP-32 development kit in

conjunction with the Android application, we were confident in the functionality of the FW/SW

when isolated from the hardware. Thus, the majority of the final design process involved modifying

the firmware to support the PCB. The debugging steps taken to solve these issues are detailed above

in the individual sub-system that they pertain to. Overall, this process was extremely successful,

and all of our High-Level Requirements were met, as detailed in Table 5.

14

Table 4: User Interface Requirements and Verification Table

Requirement Verification Procedure

• Send and receive
data to and from
the ESP32 micro-
controller via Blue-
tooth

• Test data sending capability by using an LED connected to a GPIO
pin on the micro-controller. Send a digital signal from phone telling
MCU to light the LED. Verify LED lights up.Success!

• Test data receiving capability by sending a known string of Bluetooth
data to the phone app. Have the app echo the received data and verify
it matches the sent string.Success!

• Micro-controller re-
sponds to user input
within 1 second.

• Verify this capability using the same test procedure as above, with
an LED and a GPIO pin on the ESP32. Using a stopwatch, time
the response between LED turning on/off and the request for LED to
turn on/off. Success!

• If a stopwatch is too slow to time accurately, then our latency must
be low enough.

• User interface re-
sponds to micro-
controller status
within 1 second

• Test this capability using the same test procedure as above, sending a
Bluetooth signal from the micro-controller telling the phone app that
a certain drawer is closed or opened. Use a stopwatch to verify that
the time between the data send and app update is less than 1 second.
Success!

• If a stopwatch is too slow to time accurately, then our latency must
be low enough.

15

Table 5: High Level Requirements and Verification Table

Requirement Verification Procedure Result

• MCU command pro-
duces correct binary
result on mechanical
components (LED,
switch, solenoid)

• Using Android App, toggle
the LEDs on/off, the motor
open/closed, and the solenoid
locked/unlocked. Verify correct
behavior visually.

• LEDs turn on visually when LED
pin is high. SUCCESS

• When motor pins are configured
to extend linear actuator, the
linear actuator extends. SUC-
CESS

• When motor pins are configured
to retract linear actuator, the lin-
ear actuator retract. SUCCESS

• When solenoid pin is set high, the
solenoid is in the retracted po-
sition. When it is set low, the
solenoid is in the extended posi-
tion. SUCCESS

• All operations per-
formed by the draw-
ers must be initiated
by the Android appli-
cation.

• Verify that final product can
open drawers, close drawers, find
items, add items, remove items,
lock/unlock, etc. all through An-
droid application. No separate
software should be used.

• All commands for the item data
structure and drawer mechanics
originate from the Android appli-
cation. SUCCESS

• Bluetooth connection
between MCU and
Android application
should be established
up to the largest di-
mension of an average
room.

• The size of an average room is
14x16 feet, thus the Bluetooth
connection must be established
for at least 21.26 feet [11]. Ver-
ify using a tape measure.

• The Bluetooth connection was es-
tablished up to a distance of 41.2
feet. SUCCESS

16

3 Cost & Schedule

3.1 Cost

The total cost for parts as seen below in Table 6 before shipping is $168.20. 5% shipping cost adds

another $8.41 and 10% sales tax adds $16.82. We can expect a salary of $40/hr*2.5hr*60 = $6000

per team member. We need to multiply this amount with the number of team members, $6000* 3

= $18,000 in labor cost. This comes out to be a total cost of $18,193.43.

Table 6: Cost Analysis Table of Components

Description Manufacturer Quantity Total
Price

MCU ESP-WROOM-32 EspressIf Systems 1 $4.20
H Bridge BD62130AEFJ-E2 ROHM Semiconductor 3 $5.61
Solenoid Lock ROB-11015 SparkFun Electronics 1 $5.50
Linear Actuator OK03 SZMWKJ 3 $81.54
12V Power Supply LJH128 ALITOVE 1 $35.00
LDO LM3940 Texas Instruments 1 $0.59
LED WP7113ID5V Kingbright 3 $0.20
Micro Limit Switch MZ-7811 Moujen 3 $3.82
MOSFET N-CHANNEL 20-V Vishay 4 $2.28
USB to UART Bridge QFN28 Silicon Labs 1 $5.06
LED Side Mount 8mm Chanzon 3 $8.71
Passive Components Various N/A $15.69
– – – $168.20

17

3.2 Schedule

Table 7: Schedule table

Week Task Assignee

Week 1 9/26 - 10/2

Design Check & Met Machine Shop Again to Verified
Component Selection

Everyone

Verified Parts, Started Schematic & Ordered ESP32
Dev-kit

Michael S

Ordered Android Phone for Group & Researched An-
droid Programming

Michael G

Researched ESP32 Programming Nathan

Week 2 10/3 - 10/9

Design Review & PCB Board Reviews Everyone
Finished Schematic, Ordered Components, & Started
Layout

Michael S

Began Coding App & Interfaced with ESP32 Michael G
Began Testing Code on ESP32 & Interfaced With
Phone

Nathan

Week 3 10/10 - 10/16

First PCB Way, Teamwork Evaluation & Last Ma-
chine Shop Check

Everyone

Finished Layout & Assisted Testing Michael S
Continued App & Started Basic ESP32 Tests Michael G
Assisted Michael G With App & Performed Tests Nathan

Week 4 10/17 - 10/23 Tested/Developed Software & Firmware Everyone

Week 5 10/24 - 10/30

Started Assembling PCB & Tested Hardware Everyone
Tested Hardware & Modified PCB Schematic Michael S
Tested App on PCB Michael G
Tested ESP32 on PCB Nathan

Week 6 10/31 - 11/6

Second PCB Way Order Everyone
Finished Layout Changes & Tested Michael S
Debugged Software Michael G
Debugged Firmware Nathan

Week 7 11/7 - 11/13 Developed Software & Firmware Everyone

Week 8 11/14 - 11/20 Mock Demo & Debug Everyone

Week 9 11/28 - 12/4 Final Debug & Demo Everyone

Week 10 12/5 - 12/8 Final Presentation & Finished Paper Everyone

18

4 Conclusion

4.1 Successes and Challenges

Overall, this project was a success. Our hardware, firmware and software all functioned together in

the desired manner to produce the result described in our project proposal and design document.

Our app was able to add remove and find items in the drawer system via Bluetooth connection

to the MCU, and our firmware and hardware was able to handle these requests and perform the

desired indication, whether it be opening the drawer, unlocking drawer or lighting LED at the

side of the drawer. However, despite the overall success of the project, their were still challenges

that had to be overcome along the way. These challenges ultimately helped our group to think in

creative ways to debug the issue, which is a skill that is extremely valuable for engineers to have.

4.2 Key Takeaways

One of the biggest takeaways that our group got from this project was gaining experience working

with mechanical designs for an electronics project. In typical ECE classes, the focus is on the

circuitry and electronic components. In order to be successful on a project like this one, we had

to work closely with the machine shop and get creative to mechanically figure out how our system

works. Additionally, our team had many opportunities to apply our knowledge from ECE and CS

classes in unrestrained and creative ways. This was a valuable opportunity, and a refreshing change

of pace from the typical restricted and problem based theoretical applications that are done in a

classroom setting. Finally, we gained valuable experience debugging hardware and software issues

in a team setting. Initially, our debugging process was a little disorganized and inefficient, as we

would end up trying the same things multiple times to fix an issue. To combat this inefficiency, we

developed a more systematic approach as a team to debug our problems, which was a big reason

for our success.

4.3 Ethics & Safety

In order to have a successful product at the end of the senior design process, creating the project

in a safe and ethical manner was paramount.

First and foremost, safety concerns that might be potential issues with the project must be

19

addressed (IEEE Code of Ethics I.1) [12]. Because the project in question is a drawer system, there

are not many inherent safety risks, although some still are present. One concern that exists is a

possibility of electrical shock or fire due to poor wiring of circuits or incorrect regulation of current

and voltage. This was remedied by making sure that the wires used in the project are in working

order, and making sure to check that our currents and voltages don’t surpass the maximum rating

values for any of our components. Another safety concern is the possibility of injury if a motorized

opening drawer is pushed open into a person. This cannot be completely mitigated in the design

process, as the user of the product has some responsibility to not put themselves in harm‘s way.

However, by having the linear motor operate at a relatively low speed, the risk of injury from such

an event can be minimized.

Ethical concerns for the project must be addressed to ensure that the design process is completed

in a manner compliant with IEEE standards. The main concern with ethics with regards to this

specific project involves plagiarism (IEEE Code of Ethics II.5) [12]. This project required its

designers to perform research on different components and design methods. To make sure that

credit is given to the correct people, we made sure that every effort was put forth to make sure the

proper sources are cited in the proper manner.

20

References

[1] S. Borsheim, ”Organizing & time management statistics,” Simply Productive, 23-

Apr-2014. [Online]. Available: https://www.simplyproductive.com/2012/03/

time-management-statistics/. [Accessed: 12-Sep-2022].

[2] ”12V 330lb 1500N Linear Actuator Electric DC Motors for Medical Car

Lifting Sofa” ebay.com. [Online]. Available: https://www.ebay.com/itm/

12V-330lb-1500N-Linear-Actuator-Electric-DC-Motors-for-Medical-Car-Lifting-Sofa-/

112752531430. [Accessed: 26-Sep-2022]. a

[3] ”Rob-11015: Digi-Key Electronics,” Digi. [Online]. Available: https://www.digikey.

com/en/products/detail/sparkfun-electronics/ROB-11015/6163694. [Accessed: 25-

Sep-2022].

[4] ”ESP32 series - espressif.” [Online]. Available: https://www.espressif.com/sites/

default/files/documentation/esp32_datasheet_en.pdf. [Accessed: 24-Sep-2022].

[5] ”BD62130AEFJ,” ROHM. [Online]. Available: https://www.rohm.com/products/

motor-actuator-drivers/dc-brush-motor/bd62130aefj-product. [Accessed: 24-Sep-

2022].

[6] ”DMN2300UFB4 - diodes incorporated.” [Online]. Available: https://www.diodes.com/

assets/Datasheets/DMN2300UFB4.pdf. [Accessed: 25-Sep-2022].

[7] ”Installing ESP32 in Arduino IDE (windows, mac OS X, linux),” Random Nerd

Tutorials, 19-Apr-2022. [Online]. Available: https://randomnerdtutorials.com/

installing-the-esp32-board-in-arduino-ide-windows-instructions/. [Accessed:

01-Nov-2022].

[8] ”Esp32 bluetooth classic with Arduino IDE - Getting Started,” Random Nerd Tu-

torials, 10-May-2019. [Online]. Available: https://randomnerdtutorials.com/

esp32-bluetooth-classic-arduino-ide/. [Accessed: 01-Nov-2022].

21

https://www.simplyproductive.com/2012/03/time-management-statistics/
https://www.simplyproductive.com/2012/03/time-management-statistics/
https://www.ebay.com/itm/12V-330lb-1500N-Linear-Actuator-Electric-DC-Motors-for-Medical-Car-Lifting-Sofa-/112752531430
https://www.ebay.com/itm/12V-330lb-1500N-Linear-Actuator-Electric-DC-Motors-for-Medical-Car-Lifting-Sofa-/112752531430
https://www.ebay.com/itm/12V-330lb-1500N-Linear-Actuator-Electric-DC-Motors-for-Medical-Car-Lifting-Sofa-/112752531430
https://www.digikey.com/en/products/detail/sparkfun-electronics/ROB-11015/6163694
https://www.digikey.com/en/products/detail/sparkfun-electronics/ROB-11015/6163694
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.rohm.com/products/motor-actuator-drivers/dc-brush-motor/bd62130aefj-product
https://www.rohm.com/products/motor-actuator-drivers/dc-brush-motor/bd62130aefj-product
https://www.diodes.com/assets/Datasheets/DMN2300UFB4.pdf
https://www.diodes.com/assets/Datasheets/DMN2300UFB4.pdf
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-instructions/
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-instructions/
https://randomnerdtutorials.com/esp32-bluetooth-classic-arduino-ide/
https://randomnerdtutorials.com/esp32-bluetooth-classic-arduino-ide/

[9] ”ESP32 board: Turn on and off led using Bluetooth from mobile device,” Robojax. [On-

line]. Available: https://robojax.com/learn/arduino/?vid=robojax_ESP32_Bluetooth_

LED_blink. [Accessed: 31-Oct-2022].

[10] ”Esp32 save data permanently using preferences library,” Random Nerd Tu-

torials, 06-Mar-2021. [Online]. Available: https://randomnerdtutorials.com/

esp32-save-data-permanently-preferences/. [Accessed: 01-Nov-2022].

[11] L. Eiler, ”The average bedroom size & what to consider when Remodeling yours,” CRD

Design Build, 28-Jul-2021. [Online]. Available: https://www.crddesignbuild.com/blog/

average-bedroom-size. [Accessed: 12-Sep-2022].

[12] ”IEEE code of Ethics,” IEEE. [Online]. Available: https://www.ieee.org/about/

corporate/governance/p7-8.html. [Accessed: 12-Sep-2022].

22

https://robojax.com/learn/arduino/?vid=robojax_ESP32_Bluetooth_LED_blink
https://robojax.com/learn/arduino/?vid=robojax_ESP32_Bluetooth_LED_blink
https://randomnerdtutorials.com/esp32-save-data-permanently-preferences/
https://randomnerdtutorials.com/esp32-save-data-permanently-preferences/
https://www.crddesignbuild.com/blog/average-bedroom-size
https://www.crddesignbuild.com/blog/average-bedroom-size
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html

Appendix

Table 8: Common Abbreviations for Electronics Terms

Electrical Term Abbreviation

Input/Output I/O

Integrated Circuit IC

Light-Emitting Diode LED

microcontroller MCU

N-Type MOSFET NMOS

Printed Circuit Board PCB

23

	Introduction
	Problem Statement
	Solution
	Visual Aids
	Subsystems
	Power Subsystem
	User Interface Subsystem
	Control Subsystem
	Drawer Mechanics Subsystem

	Design
	PCB Design
	Schematic
	Layout
	Soldering & Testing

	Firmware Design
	App Design
	Putting it all Together and High-Level Verification

	Cost & Schedule
	Cost
	Schedule

	Conclusion
	Successes and Challenges
	Key Takeaways
	Ethics & Safety

	References
	Appendix

