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Abstract

The self solving and self scrambling Rubik’s Cube is a functional toy-puzzle with

integrated motors and controllers. The components are all held inside of the

custom cube and are battery powered. The system is operated by a microcontroller

which is able to store imputed moves into memory and then reverse them through

motor control. Additionally, it can also perform the scrambling process on its own.

This paper serves to overview the entirety of the development process for this

project.
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1 | Introduction

1.1 Background

Designed and created by Hungarian teacher, Erno Rubik, the Rubik’s Cube

has been a smash hit for puzzle solvers across the globe. Since its release to stores

in 1980, over 450 million Rubik’s cubes have been sold making it the most popular

and best-selling toy in history. Along with these incredible numbers, Rubik’s Cube

has also found itself a dedicated group of avid solvers, commonly known as ‘cubers’.

From the beginning, these people have been learning, working, and competing for

faster times in solving the cube. With the current world record for a single 3x3

Rubik’s cube solve sitting at 3.47 seconds, it is clear that modern cubers have

become incredibly quick at solving the once impossible puzzle.[1]

The standard Rubik’s Cube consists of six faces each with a 3x3 grid of

colored squares. In its solved state, all 9 of the squares per side will show the same

color. In a scrambled state, the colors are scattered and each face will show an

array of colors. The standard color set is red, blue, white, orange, green, and yellow.

Each of the sides revolve around the center square within the 3x3 grid and can be

rotated in either direction.

1.2 Problem

Naturally, the puzzle can be di�cult to solve when attempting it for the first

time. Beginners are often daunted by the algorithms used to solve the cube and

struggle with memorizing them as well. It can almost even feel like learning a new

language with all of the strings of letters, numbers, and apostrophes that

‘instructionalize’ the solving algorithms. There are many tools and resources online

that can be used to aid the learning process, but these are not always perfect. It is

often unclear in depicting the exact steps required to solving the cube. Especially

for a beginner, starting out on the cubing journey can be complicated.
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On the other end of the spectrum, skilled cubers often find scrambling the

cube to be a cumbersome task. You have to randomize which sides to turn and

which way to rotate them by. There must be at least around 20 steps worth of

randomization in order to achieve a high quality scramble[2]. However, years of

practicing cubing leads to random biases during the scrambling process. Turns

become less random and cubers often end up giving themselves suboptimal

scrambles. These make for worse practice and slow down improvements to skill.

1.3 Solution

We have worked towards creating a Rubik’s Cube that is capable of

scrambling and solving itself. Our device contains six integrated motors (one for

each side of the cube) with controllers for each of them. They’re controlled by a

microcontroller and powered by batteries. Bi-directional switches are located on

each of the motor controller PCBs to aid with rotation monitoring and precision

turning control. Users are able to interface with the cube to initiate solving and

scrambling settings by quickly rotating specific sides back and forth.

The cube is programmed to use the hardware inside of it to solve itself

regardless of whatever state it might be in. This allows beginner cubers to visually

see the necessary steps to solve the cube, and gain better hands-on experience

with the correct algorithms. With this, beginners do not have to sift through dense

tutorials for suboptimal solving algorithms.

Experienced cubers are also able to extend their skills through better

scrambles. The cube is programmed to scramble itself to the optimal 20 moves with

(pseudo) random processes[2]. This prevents experienced users from gravitating

towards internally biased scrambles from their years of continued cubing.
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1.4 Visual Aid

Figure 1: Project Functionality Visual Aid

1.5 High-Level Requirements List

1. The cube must be able to function as a normal Rubik’s cube would,

independent of the electronics inside of it.

2. The cube must be no larger than 150mm x 150mm x 150mm

3. The cube must be able to solve and scramble itself in under a minute.
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2 | Design

2.1 Block Diagram

Figure 2: Block Diagram of Project Systems

2.2 Physical

The overall cube structure operates in the same general method as a

traditional Rubik’s Cube. Pieces are interlocked with each other and are anchored

around each face’s central square. In our case, the central square is also sleeved

over a motor shaft via friction fit. The original design called for a screw to hold the

piece in place, but was not implemented in the final design. Internally, the cube’s

core holds six motors which holds everything together.

Faces are aligned by way of a bi-direcitonal switch. The switches are

soldered to a PCB which is screwed into the motor gearbox. These are activated by

nubs placed radially equidistant at the base of the center face shaft. The nubs force

the switch to actuate every 90 degrees as the center face rotates. In this way,

rotational direction can be determined based on the direction of switch activation

and precision turning can be achieved based on nub location.
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Figure 3: Center Face Connection Design (left)  and Switch Module (right)

Figure 4: DC Motor Hub Core (left) and Core Sliced View (right)
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Figure 5: CAD of Outer Cube Shell
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2.3 Subsystem Overview

2.3.1 Switch Module

The switch modules contain a bidirectional switch, an I2C I/O expander, and a

motor driver. The switch is a Panasonic ESE24, which features separate outputs for

both left and right switching directions. The I/O Expander is a PI4IOE5V9554, which

has 3 address pins allowing up to 8 bit states to be used in the same system[3]. It

contains 8 I/O pins, of which only 4 are needed. The ZXBM5210 Motor Driver allows

the motor to be driven in forward and reverse directions as well as be set in coast

and brake states[4]. This motor driver has a maximum output current of 1.5A, which

is well above the 0.67 A stall current of the motors. Additionally, the driver contains

an internal PWM oscillator which can be tuned to lower the motor output power if

needed. The maximum supply voltage is 18 volts, which is well above the nominal

motor voltage of 6V. Each motor driver drives one mini gear motor. The motors have

a 1:298 gear ratio, rotating at approximately 45 RPM at 6V, with a stall torque of 70

oz-in.

Figure 6: Switch Module PCB with Components
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2.3.2 Power and Control System

The control module contains both the microcontroller and the voltage

regulator. The motors are powered by two 3.2V LiPo batteries resulting in a nominal

battery voltage of 7.4V. This is used to power the motors through the switch

modules. As the system only ever powers a single motor for ~0.5 seconds at a time,

this does not put any major strain on the output capacity of the batteries. However,

this is far too much power to be supplied to the microcontroller. As such, the

original plan was to use a 3.3V regulator to step down the voltage so as to not over

power the controller.

2.3.3 Software System

The software system controls the motors and is also responsible for keeping

track of the state of the cube at all times. This is taken care of by the STM32

microcontroller which is capable of communicating over the I2C bus. It takes input

from the bi-directional switches and can set motor states to each face over the I2C

bus.

Two forms of user interaction are available from its solved state. A user can

choose to either free scramble the cube on their own, or trigger the automated

scramble. These algorithms can be triggered by quickly rotating a specified side

back and forth. Two di�erent sides correspond to triggering the solve and

scrambling algorithms respectively.

The default mode for the motors is set to “coast” so that the user can rotate

the cube freely. In this way, the cube can be scrambled without the self scrambling

feature. This allows for more freedom to control the cube directly if the user

chooses. Alternatively, for an initiated self scramble, the software system generates

a random number to determine the face ID number that will be rotated. The motor

setting is then changed to “forward”, while all others will be set to “brake”. This

process is repeated for 20 turns, and motors are set back to “coast”.
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In either case, a basic back tracing algorithm is implemented to solve the

cube. As it is scrambled, the rotations are stored in an array in the STM32’s memory.

When a self solve is triggered, the rotations are played back in reverse order to

return the cube to its original state. Through this, we are able to solve the puzzle

regardless of what state the cube is in after its scramble.

2.4 Verification and Testing

The verification and testing process for the project can be broken down into

three categories: Hardware, Software, and Mechanical. The hardware testing and

verification timeline started with the motors, controllers, and switches. The primary

goal when we first got our components together was to make sure the motor would

be able to respond or provide signals that we could use. Originally, we were planning

on testing this all through our switch module PCB. However, once we realized the

delays were going to prevent this testing route from being successful, we were

forced to explore other options. Because our ICs are all SMD components, we had to

work through soldering them to pin headers through perfboards in order to make

them usable.

Figure 7: IC Soldered to Pin Headers (left) and Breadboard Implementation (right)

Luckily, once we were able to get across this issue, we were able to connect

everything successfully. Our first tests were to make the motor rotate in the
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direction of the actuation of the switch. While this was not the actual intended

functionality of the components, it was enough proof of concept for us to feel

comfortable with proceeding with development. After the PCBs had arrived, we

were able to start connecting the motor to the center facepiece and the switch

module. We then tested the actual functionality and made sure that the PCBs read

the correct rotational direction and that the motors stopped rotating after 90

degrees. From there we were able to start wiring up all six motors together and

make sure we were able to communicate with each of them individually over I2C.

While there were initial issues with noisy outputs, we were later able to solve this by

resoldering some wires and cleaning up connections.

Figure 8: Noisy Oscilloscope Reading

After that, it was primarily testing the software component of the project.

Throughout the testing period of the hardware, we were simultaneously doing

minor checks on its compatibility with our software. As a result, the merging

process between the two systems went fairly smoothly. Our initial checks to make

sure the software was receiving readings on the motor rotations and also sending

the correct ones paid dividends at the end. The switch register allowed us to read

and send precise 90 degree turns. The one major issue we ran into was problems

with debouncing. When the switch was returned to its neutral position it sometimes

overshot itself and registered an extra erroneous actuation. We were able to solve

this through adding hold timers in software and adding capacitors in hardware.
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Both of which would have likely solved the issue individually but together provided

further reliability.

Figure 9: Early Assembly of Inner Core

For the mechanical portion of the project. We spent a significant amount of

time working on the 3D printing and cleaning them up. While the center face pieces

came out surprisingly well, the corner and side pieces did not. There was a ton of

time spent on trying to get them to a workable level, but ultimately we decided it

was not realistic to accomplish. The quality level of the 3D print was simply too low

and would not allow for reliable enough rotations.

3 | Cost and Components

3.1  Cost Analysis

The total cost of the project can be separated into two expenses. Mainly, the

labor and materials cost. Labor can be calculated based on the total hours being

put into the project and the average salary for electrical and computer engineers.
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Assuming an average salary of $40/hr * 2.5 hrs/day * 75 days * 3 members =

$22,500 in total labor costs[5].

The material costs are further split between the components list and 3D

printing costs. Our original estimates for a full print of the cube was set around $40

given 125mm sides with 15% infill at $0.15/gram[6]. Unfortunately, this was

underestimating this cost by some margin. The center face pieces were relatively

cheap printing at around $2 a piece. But, the corner and side pieces combined for a

cost of $80 to print them all. Given there were a few iterations of the center face

prints, the total cost of 3D printing came out to a little under $100. We did not

account for this great of an expense in our project budget, so it ended up being

covered through our own dollars.

By contrast, with our components list, we save more money than we

originally anticipated. While the motors were predictably still our largest expense,

the other components ended up costing less than we thought they would. Mainly,

we saved money by not having to pay for our microcontroller. Group member Byron,

having been a former intern at STMicroelectronics, was able to source the STM32F4

without any cost associated with us. The batteries also were cheaper than we

thought. Despite the original prediction of $20 for two, we ended up paying $10 for

five. It was also convenient that we were able to use the SMD resistors, capacitors,

and wiring that were stocked within the course lab room for free as well. With all

these costs accounted for, the total cost of the project stands at  $22,500 + $100 +

$114.45 = $22,714.45.

3.2  Components List

Description Quantity Total Price Link

Micro Gear Motor 6 $77.70 Link

Link (alternative)

Motor Driver 10 $9.73 Link

Two Way Switch 10 $6.04 Link
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I2C Expander 10 $10.98 Link

STM32F4 MCU 1 $0.00 Link

Battery 5 $10.00 Link

4 | Ethics and Safety

4.1  Ethics

As engineers working towards a brighter future and a better planet, we

adhere to the IEEE Code of Ethics throughout all engineering practices. For the

duration of the project and going forward during work in the real world, we will

ensure integrity, responsibility, and ethical practices in our work environment. All

members of our team are mutually respected and treated as such. We will work to

ensure the ethical nature of our project is not tainted and it will likewise refrain

from producing unethical outcomes for others. We do not foresee many points of

ethical contention with our project, but that will not prevent us from remaining

weary of any possible conflicts[7].

4.2  Safety

There are a few main safety concerns with our project. Namely with all

electronics there is danger of electrical shock. As such we will work to create a non

conductive housing for the electrical components to prevent injuries or accidents

of this nature. This too comes with considerations for battery safety. We must be

cautious when working with such components as they are prone to cause major
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accidents when not kept a watchful eye over. We will work to make sure batteries

are in good, working condition when in use and stored away properly when not. This

will all ensure a safe workplace for our team and others around us. We will also

consider implementing temperature sensors and a hard limit switch to turn o� the

device in case the battery reaches hazardous conditions.

As a final safety concern, we recognize that there is a potential issue for

people with long hair. Our project contains strong turning motors with crevesaces

that allow for hair to get caught. Users with longer hair are at a higher risk for an

accident of this nature. To prevent this as much as possible, we will work to

minimize gaps in the hardware and warn users of this hazard when applicable.

5 | Conclusion

5.1  Successes and Challenges

Overall, the project was quite successful. While the delays with the PCBs and

the issues with 3D printing prevented us from having the perfect product, the most

important goal was still achieved. We were able to develop a product that could

solve and scramble itself. Obviously, this felt a little unsatisfactory without it all

being perfectly contained within a cube. However, there was still a significant

amount of great work that was done. First and foremost, the PCB designs were

fantastic. Barring issues with the screws grounding the PCB at times, they

functioned as perfectly as we could have expected them to. The printing design for

the center face nubs also ended up being far more precise than we had initially

anticipated. In what was expected to be a several week long project of printing,

testing, and redesigning the center face to work properly, we got it nearly on the

first try. Altogether, the switch module, motor, and center face combo was a major

success. It allowed us to have precision motor control as well as rotational readings.
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The software component of this project was also a major success. While we

did not have enough time to work through optimized solving algorithms for the

cube like we originally wanted to, we also understood that was a long shot goal and

knew backtracking would be much more realistic. In the end, the backtracking

worked fantastically. In what may seem like a simple idea, the software

implementation for the backtracking algorithm ended up being far more

complicated than we had thought. Despite this, we were able to have a consistently

functional backtracking algorithm with motor control for the cube. The user

movement detection also worked incredibly well. The cube is able to detect every

move that a user performs on the cube and stores it into memory well. All of this

together combines to help us achieve the lofty goal of self solving and scrambling.

The biggest challenges associated with the project ended up being 3D

printing and delays. While we did expect 3D printing to be a big hurdle, we did not

realize just how big it would be. Ironically, the relatively simple design of the corner

and side pieces ended up being the most troublesome prints. The low quality of the

printer created major tolerance issues when rotating the cube. Because of this,

unless the cube was rotated to absolute perfection, it would get caught on itself

and prevent further rotations. As a result we had to scrap the corner and side

pieces for the final demo.

The delays in our project caused significant problems for our development

timeline. We could not perform almost any of the major testing that we needed to

do without the PCBs. In a much more obvious way, we also could not implement the

control module and power system at all due to the PCB delays. It simply was not

possible to do the testing and verification for the entirety of the subsystem given

the PCB came in within a few days of the final project demo. While we attempted to

put the subsystem together, we failed in the sense that we ran out of time to

complete all the testing to feel confident that it would work with consistency.
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5.2  Future Revisions

Most of the revisions that could be done revolve around simply having more

time. The addition of the control module and power system would likely be able to

be implemented given even just one more extra week. However, that would simply

be completing the rest of our base project. In terms of additional revisions that we

did not initially have as a part of our base project, the largest would be optimized

solving algorithms. We would want to program the cube to read the cube state and

use di�erent solving strategies to optimize its solve time. This would require a lot

more time invested into the software behind the cube, but could result in vastly

reduced solve times.

One of the more minor revisions that could be made would be adding bevels

to the 3D print. The main issue with the 3D prints was that the quality was too low.

This can be partially worked around by editing bevels onto the corners of each of

the pieces. This would allow for the tolerances to increase and make it possible to

turn the cube even with suboptimal turns.

Another minor change would be to edit the switch module PCB to prevent

the grounding issue. This is very straight forward as all we would have to do is move

some of the trace lines to be further away from the screw down points. Despite the

simplicity of this change, it would have prevented quite a bit of headache during

the development process and would also make the entire system more reliable

going forward.

5.3  Broader Impact

In seeing many of the other projects, one might believe that ours was not

necessarily as impactful as others. With so many of them being directly to human

health and safety, their impact can be directly seen. While our project does not

contain that explicit help towards human health and safety, we believe that our

project can still help people in a positive way. While a self solving/scrambling

Rubik’s cube may not change the world, its impact should not be underestimated.

The Rubik’s cube puzzle itself has long since been helpful in providing recreational
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entertainment to the masses for years. Our project will help others pursue their

passion and help others begin their journey into a wonderful community of great

people all devoted towards the goal of solving the world’s most popular puzzle. With

that, there is simply no way of measuring the possible positive impact on mental

health of providing a loving and passionate community to join. What is an extremely

low impact on world resources, can ultimately end up making an extremely high

impact on people’s passion. And for that, this project contains an infinite ceiling of

positive impact for people around the world.
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Appendix A | Requirements and Verification Tables

Switch Module:

Requirement Verification

Switch must be activated when each
face is aligned 90 degrees

Rotate face 2 full rotations in either
direction, ensure switch is closed when
face is within 5 degrees of alignment
and is open when the face is
misaligned.

Motors must have enough torque to
turn the cube (est. 0.5 N*M)

Adjust spring tension until current
required to drive cube is within
recommended current limit of motors
(250 mA)

Motor driver must supply enough
current to the motors without
overloading

Measure current consumption of
motors while turning cube, should not
exceed 1A

Power Subsystem:

Requirement Verification

Batteries must supply enough current
for the motors and control system

Measure the current consumed by the
motors and control system using a
bench power supply, ensure rated
battery current is above that.

Battery voltage must be within 6.0 to
8.0v with 1A output

Measure voltage of battery while
drawing 1A.

Voltage Regulator must be able to
supply 3.0v to 3.6v with enough current
to the ICs

Measure the control system only and
ensure the rated current from the
regulators is above that.
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Software Subsystem:

Requirement Verification

Must be able to distinguish between a
full face rotation from all other partial
rotations

Will check the current state of the cube
of the internal software system to see if
it matched the outer cube appearance
during a simulated partial turn

Must be able to keep track of states of
full cube

Will check the current state of the cube
in memory against the physical state of
the cube after numerous rotations, and
resets.

Must be able to identify user control
rotations

Will check the current flag of the user
interaction to see if it identifies as user
control rotation

Must be able to scramble cube
randomly

Match cube face rotations to random
number generated rotation string

Should be able to solve the cube from
any state it is in

From the unsolved rubix state, trigger
the solve algorithm and check that the
end state results in solved faces.
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Appendix B | Circuit Schematics

Switch Module Schematic:
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Control Module Schematic:

23



Appendix C | PCB Schematics
Switch Module PCB:
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Control Module PCB:
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Appendix D | Code
Link to Project Gitlab:
https://gitlab.engr.illinois.edu/walteru2/ece-445-senior-design

extern "C"

{

#ifdef __GNUC__

#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)

#else

#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)

#endif

PUTCHAR_PROTOTYPE

{

HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, HAL_MAX_DELAY);

return ch;

}

}

class Movement

{

public:

int motor;

std::string direction;

int time;

};

int motors[6] = {56, 57, 58, 59, 60, 61};

int validMoveTime[6] = {0, 0, 0, 0, 0, 0};

int randmotor[5] = {0, 1, 2, 4, 5};

std::vector<Movement> history;

HAL_StatusTypeDef ret;

uint8_t data[6];

uint8_t last_data[6];

uint8_t cmd[] = {3, 0x3f};

uint8_t read_cmd;

/* USER CODE END 0 */

void recordMoves(int motor, std::string direction)

{

Movement move;

move.motor = motor;

move.direction = direction;

move.time = HAL_GetTick();

validMoveTime[motor] = move.time;

history.push_back(move);

}

// controls motor movement and sends signals to pin
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void motorControl(int motor, std::string state)

{

if (state == "forward")

{

printf("---- STARTED TURNING BACKWARDS----\r\n");

uint8_t addr = 0;

int flag = 0;

int firstCommand = 0;

ret = HAL_I2C_Master_Transmit(&hi2c1, (motors[motor] << 1) + 0, &addr, 1, 1000);

if (ret != HAL_OK)

{

printf("Theres been a Transmit HAL error!!!!!!!\r\n");

HAL_I2C_Master_Transmit(&hi2c1, (motors[motor] << 1) + 0, &addr, 1, 1000);

}

while (1)

{

// Telling to read from input register

ret = HAL_I2C_Master_Receive(&hi2c1, (motors[motor] << 1) + 0, &data[motor], 1, 1000);

printf("Motor: %d,turning Backward, Current Data %x Last Data %x \n\r", motor,

data[motor], last_data[motor]);

if (ret != HAL_OK)

{

printf("Theres been a Recieve HAL error!!!!!!!\r\n");

}

printf(" inverted data: %x \r\n", (~data[motor]));

if (~data[motor] & L_MASK)

{

printf("Detected Backward Turn \r\n");

if (flag == 1)

{

printf("We are done spinning\r\n");

break;

}

}

else if (~data[motor] & R_MASK)

{

printf("detected Forward Turn\r\n");

if (flag == 1)

{

printf("We are done spinning\r\n");

break;

}

}

else

{

flag = 1;

}
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cmd[0] = 1; // this is say to preform a write

cmd[1] = REV & (~FWD); // this is saying to set bits 2,0 to 1,0 respectively

// moves the motor backward

ret = HAL_I2C_Master_Transmit(&hi2c1, (motors[motor] << 1) + 0, cmd, 2, 1000);

if (ret != HAL_OK)

{

printf("Theres been a Transmit HAL error!!!!!!!\r\n");

}

firstCommand = 1;

ret = HAL_I2C_Master_Transmit(&hi2c1, (motors[motor] << 1) + 0, &addr, 1, 1000);

if (ret != HAL_OK)

{

printf("Theres been a Transmit HAL error!!!!!!!\r\n");

}

}

// After the break statement we break the motor

cmd[0] = 1;

cmd[1] = 0xff;

// break mode

ret = HAL_I2C_Master_Transmit(&hi2c1, (motors[motor] << 1) + 0, cmd, 2, 1000);

if (ret != HAL_OK)

{

printf("Theres been a Transmit HAL error!!!!!!!\r\n");

}

printf("---- STOPPED TURNING ----\r\n");

}

else if (state == "backward")

{

printf("---- STARTED TURNING BACKWARDS----\r\n");

uint8_t addr = 0;

int flag = 0;

int firstCommand = 0;

ret = HAL_I2C_Master_Transmit(&hi2c1, (motors[motor] << 1) + 0, &addr, 1, 1000);

if (ret != HAL_OK)

{

printf("Theres been a Transmit HAL error!!!!!!!\r\n");

}

while (1)

{

// Telling to read from input register

ret = HAL_I2C_Master_Receive(&hi2c1, (motors[motor] << 1) + 0, &data[motor], 1, 1000);

printf("Motor: %d,turning Backward, Current Data %x Last Data %x \n\r", motor,

data[motor], last_data[motor]);

if (ret != HAL_OK)

{

printf("Theres been a Receive HAL error!!!!!!!\r\n");
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}

printf(" inverted data: %x \r\n", (~data[motor]));

if (~data[motor] & L_MASK)

{

printf("Detected Backward Turn \r\n");

if (flag == 1)

{

printf("We are done spinning\r\n");

break;

}

}

else if (~data[motor] & R_MASK)

{

printf("detected Forward Turn\r\n");

if (flag == 1)

{

printf("We are done spinning\r\n");

break;

}

}

else

{

flag = 1;

}

cmd[0] = 1; // this is say to preform a write

cmd[1] = (~REV) & FWD; // this is saying to set bits 2,0 to 1,0 respectively

// moves the motor backward

ret = HAL_I2C_Master_Transmit(&hi2c1, (motors[motor] << 1) + 0, cmd, 2, 1000);

if (ret != HAL_OK)

{

printf("Theres been a Transmit HAL error!!!!!!!\r\n");

}

firstCommand = 1;

ret = HAL_I2C_Master_Transmit(&hi2c1, (motors[motor] << 1) + 0, &addr, 1, 1000);

if (ret != HAL_OK)

{

printf("Theres been a Transmit HAL error!!!!!!!\r\n");

}

}

// After the break statement we break the motor

cmd[0] = 1;

cmd[1] = 0xff;

// break mode

ret = HAL_I2C_Master_Transmit(&hi2c1, (motors[motor] << 1) + 0, cmd, 2, 1000);

if (ret != HAL_OK)

{

printf("Theres been a Transmit HAL error!!!!!!!\r\n");

}

printf("---- STOPPED TURNING ----\r\n");

}
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else if (state == "brake")

{

// send signal to pin for motor

cmd[0] = 1;

cmd[1] = 0xff;

// break mode

HAL_Delay(50);

HAL_I2C_Master_Transmit(&hi2c1, (motors[motor] << 1) + 0, cmd, 2, 1000);

HAL_Delay(50);

}

else if (state == "coast")

{

// send signal to pin for motor

cmd[0] = 1;

cmd[1] = 0xf0;

// coast mode

HAL_Delay(50);

HAL_I2C_Master_Transmit(&hi2c1, (motors[motor] << 1) + 0, cmd, 2, 1000);

HAL_Delay(50);

}

}

void allControl(std::string state)

{

motorControl(0, state);

motorControl(1, state);

motorControl(2, state);

motorControl(3, state);

motorControl(4, state);

motorControl(5, state);

}

void randomize()

{

//  set all motors to break

printf("---------- RANDOMIZE STARTING ----------\n\r");

allControl("break");

// while loop to 20 moves

int count = 0;

while (count < 20)

{

// rand call for which motor to control

int motor = rand() % 5;

// rand call determines which direction to turn motor

int direction = rand() % 2;

if (direction == 0)

{

motorControl(randmotor[motor], "backward");

recordMoves((randmotor[motor]), "backward");

}
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else

{

motorControl(randmotor[motor], "forward");

recordMoves(randmotor[motor], "forward");

}

count = count + 1;

}

// setting all motors to coast

printf("---------- RANDOMIZE ENDING ----------\n\r");

allControl("coast");

for (int x = 0; x < 6; x++)

{

data[x] = 0;

// Telling to read from input register

HAL_I2C_Master_Transmit(&hi2c1, (motors[x] << 1) + 0, &data[0], 1, 1000);

/* Get the intial state of all the switches for the motors*/

HAL_I2C_Master_Receive(&hi2c1, (motors[x] << 1) + 0, &last_data[x], 1, 1000);

}

}

void solve()

{

// Setting all motors to break

printf("solve\r\n");

allControl("brake");

while (!history.empty())

{

Movement temp = history.back();

printf("Current record is motor %d in the %s direction\r\n", temp.motor,

temp.direction.c_str());

if (temp.direction == "backward")

{

printf("Solve is moving motor %d forwards\n\r", temp.motor);

motorControl(temp.motor, "forward");

}

else

{

printf("Solve is moving motor %d backwards\n\r", temp.motor);

motorControl(temp.motor, "backward");

}

// popping history

history.pop_back();

}

printf("Solve sequence is done\n\r");

allControl("coast");

for (int x = 0; x < 6; x++)

{

data[x] = 0;
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// Telling to read from input register

HAL_I2C_Master_Transmit(&hi2c1, (motors[x] << 1) + 0, &data[0], 1, 1000);

/* Get the intial state of all the switches for the motors*/

HAL_I2C_Master_Receive(&hi2c1, (motors[x] << 1) + 0, &last_data[x], 1, 1000);

}

}

void checkInterface()

{

if (history.size() >= 2)

{

printf("Checking Interface\r\n");

if (history[history.size() - 1].motor == SOLVE_MOTOR && history[history.size() - 2].motor

== SOLVE_MOTOR)

{

if (history[history.size() - 1].direction != history[history.size() - 2].direction)

{

int timeDif = history[history.size() - 1].time != history[history.size() - 2].time;

if (timeDif <= INT_TIME)

{

// Interface moves were recorded so they must be popped

history.pop_back();

history.pop_back();

// Delay so motors don't immediately impede movement

HAL_Delay(400);

solve();

}

}

}

if (history[history.size() - 1].motor == RAND_MOTOR && history[history.size() - 2].motor

== RAND_MOTOR)

{

if (history[history.size() - 1].direction != history[history.size() - 2].direction)

{

int timeDif = history[history.size() - 1].time != history[history.size() - 2].time;

if (timeDif <= INT_TIME)

{

history.pop_back();

history.pop_back();

// Delay so motors don't immediately impede movement

HAL_Delay(400);

randomize();

}

}

}

}

}

void printHistory()

{
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int size = history.size();

printf("------ History Start ------\r\n");

for (int i = 0; i < size; i++)

{

printf("Motor %d moved %s\n\r", history[i].motor, history[i].direction.c_str());

}

printf("------ History End ------\r\n");

}

int main(void)

{

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU Configuration--------------------------------------------------------*/

/* Reset of all peripherals, Initializes the Flash interface and the Systick. */

HAL_Init();

/* USER CODE BEGIN Init */

/* USER CODE END Init */

/* Configure the system clock */

SystemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */

MX_GPIO_Init();

MX_USART2_UART_Init();

MX_I2C1_Init();

/* USER CODE BEGIN 2 */

srand(HAL_GetTick());

printf("---- Program Starting ----\n\r");

// setting which pins will be input/output

for (int x = 0; x < 6; x++)

{

HAL_I2C_Master_Transmit(&hi2c1, (motors[x] << 1) + 0, cmd, 2, 1000);

HAL_Delay(100);

// reading the pin configuration that was just set

read_cmd = 0;

HAL_I2C_Master_Receive(&hi2c1, (motors[x] << 1), &read_cmd, 1, 1000);

printf("Read config: %x\n\r", read_cmd);

data[x] = 0;

// Telling to read from input register

HAL_I2C_Master_Transmit(&hi2c1, (motors[x] << 1) + 0, &data[0], 1, 1000);

33



}

/* USER CODE END 2 */

/* USER CODE BEGIN WHILE */

allControl("coast");

for (int x = 0; x < 6; x++)

{

data[x] = 0;

// Telling to read from input register

HAL_I2C_Master_Transmit(&hi2c1, (motors[x] << 1) + 0, &data[0], 1, 1000);

/* Get the intial state of all the switches for the motors*/

HAL_I2C_Master_Receive(&hi2c1, (motors[x] << 1) + 0, &last_data[x], 1, 1000);

}

while (1)

{

// checking all I2C controlling all motors

for (int j = 0; j < 6; j++)

{

HAL_I2C_Master_Receive(&hi2c1, (motors[j] << 1) + 0, &data[j], 1, 1000);

if (data[j] != last_data[j])

{

if (HAL_GetTick() - validMoveTime[j] > DEBOUNCE_TIME)

{

// check state relative to the last state

if (~data[j] & L_MASK)

{

printf("L\r\n");

recordMoves(j, "backward");

printf("backward\r\n");

printHistory();

checkInterface();

}

else if (~data[j] & R_MASK)

{

printf("R\r\n");

recordMoves(j, "forward");

printf("forward\r\n");

printHistory();

checkInterface();

}

else

{

printf("rotating\r\n");

}

uint8_t addr = 0;

// telling the I2C which register we want to read from

// reading from the input register

HAL_I2C_Master_Transmit(&hi2c1, (motors[j] << 1) + 0, &addr, 1, 1000);
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printf("Received Data: %x\r\n", data[j]);

last_data[j] = data[j];

}

}

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

}

/* USER CODE END 3 */

}

}
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