
Early Bird Alarm Clock
ECE 445, Senior Design

Sasin Gudipati
Siddharth Sharma
Shouri Addepally

Fall 2022
TA: Stasiu C.

Abstract

This paper will outline our senior design project, the Early Bird Alarm Clock. It will go

into detail on each aspect of our project, starting with the design process and ending with the

testing process. This paper was written by the same three members who completed this project:

Sasin Gudipati, Siddharth Sharma and Shouri Addepally under course staff Stasiu C. and

Professor Arne Fliflet. The appendix section will provide sources we used, visual documentation

of our project and our digital files (as well as a link to its GitHub).

Table of Contents
Abstract 2

I. Introduction 4

II. Design 5
A. Modules 5
B. High Level Requirements and Successes 6
C. Physical Design 6
D. Parts List 7
E. Major Design Choices 7
F. Software Development 9

III. Verification 12
A. UI Module 12
B. Movement Module 13
C. Math Module 14
D. Power Module 14

IV. Operational Efficiency 15
A. Costs 15
B. Timeline 15
C. Group Responsibilities 15
D. Group Organizational Standards 16

V. Conclusions 17

VI. Appendix 18
A. Works Cited 18
B. Diagrams 19
C. External Links 24

I. Introduction

The hardest part of starting the day is actually getting out of your bed and waking up.

Many people set multiple alarms every morning, only to snooze them all and sleep through them.

According to an article written by AmeriSleep, “more than one in three adults press snooze three

times before getting up in the morning” [1]. Hitting the snooze button is known to ruin your

REM sleep as it will wake you up in the middle of your sleep cycle rather than at the end of it

[1]. ScienceDaily provides an article on brain activity, describing that “they found that most

people’s brains were most excitable at [early morning times]” [2]. It is also proven by Michael J

Breus PhD that “getting up and out” of bed helps you wake up more active than simply setting

alarms [6].

Young adults in education have trouble waking up early in the morning and using their

brain immediately. So, we wanted to come up with an idea to help get out of bed in time to start

the day the right way. Our solution is to create an alarm clock that will help you wake up in the

morning. This clock will be an interactive clock as it forces the user to wake up. It will run away

from its user once the alarm is triggered, and in order to turn it off, there will be a math equation

the user has to solve to turn it off. Once the math equation is solved, the alarm will shut off and

the user can go about their day. Section II will describe in detail the physical design of our

project as well as the design process.

II. Design

This section will detail the design process from start to finish.

A. Modules

1. Movement Module

For the movement module, the physical components required are three HR-S04

ultrasonic sensors, two 12V DC motors operating at 2000 rpm, and a L298N H-Bridge

motor driver. Additional physical components include two wheels and two hubs,

manufactured by the machine shop, which allow the 12V DC motors’ shafts to fit

properly with our alarm clock’s wheels.

The movement module also features the main functionality of obstacle avoidance

along with quick movement and directional turning based on the ultrasonic sensors’

distance readings. The general obstacle avoidance algorithm and enhancements via

reinforcement learning will be discussed further under Software Development (Section

II.F).

2. User Interface Module

The physical components that relate to this module are the LCD Display and

Buttons. On our PCB, we included a shift register (detailed in Section II.D), button

connectors and crystal oscillator. This module could be split into two states, the Alarm

State and the Clock State. The buttons help manage the input into the clock system, being

able to set the clock time in the clock state, change and set the alarm in the alarm state

and solve the math equation.

The UI Module displays the time, alarm time and an indicator (for whether or not

the alarm is set), shown in Figure 10 (Appendix). The button layout is simple: we

allocated three buttons for math functions, one enter button and four buttons for the clock

functions. The three buttons for mathematics are to increment the hundreds, tens and ones

digits for the number, and the four for the clock functions are increment hour and

minutes, set to alarm state and set to clock state.

B. High Level Requirements and Successes

Below are the high level requirements we set to achieve before starting the project.

1. The device can function as an alarm clock. The user should be able to set the current

time, alarm time, alarm on and off as well as visibly see an indicator showing that the

alarm is ready.

2. The alarm clock can move around the room and avoid hitting an obstacle using ultrasonic

sensors.

3. The device will display a math equation for the user to solve, while also accepting an

input until the answer is correct. Once the problem is solved, the alarm should turn off

and the user can put the car down.

Out of these three high level requirements, we were able to completely meet two of the

three of them. We had issues with the second High level Requirement due to the chassis built

by the Machine Shop (described in detail in the next section). We were able to generate a

completely working User Interface module, where the user could set the alarm, trigger the

alarm, change the clock and solve the math equation to turn off the sound. We were able to

get the Movement module set up, with basic movement, and also had the sensors tell the

motors which direction to go, however, we could not fully test the movement module

because of the chassis.

C. Physical Design

Our alarm clock will fit into a chassis that can house all of our components (Appendix,

Figure 9). We will have a PCB inside the chassis powering the device, with three batteries

connected. We will have motors plugged in (to a H-Bridge) on each side of the car, with a

ball-bearing in the back to allow it to be balanced so it can move forward comfortably. Two

of the three batteries will be used for the H-bridge (12V power), which will power the motor

driver. The third battery is for our PCB.

On the outside of the chassis, we will have an LCD display, a series of buttons and a

buzzer all connected to our PCB. We will have three sensors laying in the front of the car,

which are giving the distance data to the microcontroller.

D. Parts List

Part Purpose Quantity Cost

16x2 Serial Interface Adapter
Module Blue Backlight

LCD Display to display clock,
alarm and math systems

1 $15.99

4 PIN Push Buttons Switch Buttons for User Interface 8 $2.99

MH-FMD Piezo Buzzer Buzzer for Alarm 1 $1.99

Motors DC 12V 200RPM Gear Motor
High Torque

2 $29.98

HC-SR04 Ultrasonic Sensor 3 $9.99

6V, 2000mAh NiMH Battery Batteries 3 $29.98

Other parts include the hardware made by the Machine Shop at the ECE Building.

They provided a chassis (shown in Figure 10 of the Appendix). A slight issue with the

build was that it was made with aluminum, so the bottom of our PCB (which had leads

poking through from the solder) would provide a current to the aluminum box. So, we

added wrap around our PCB to help fix this issue. But, this shorting issue continued, and

we were wary of completely closing the top of the chassis. This is the main reason the

movement module would not work. We used the multimeter and we got a reading of

roughly 0.42V off the aluminum lid when the chassis was fully closed.

E. Major Design Choices

● Microcontroller Choice: ATMEGA328-P

This design choice was by far the most important one we had to make. We originally

decided to choose the PIC-16F877A. This choice was made because we liked how easy it

was to program and how fast it could execute instructions (200 nanoseconds) [3].

However, after completing more research, we decided to use the ATMEGA328-P. This

microcontroller is able to complete instructions also at very quick intervals (in a single

clock cycle). The ATMEGA328-P also has a very good approach to balancing power

consumption and processing speed. Below are the comparison stats for the

microcontroller.

ATMEGA328-P [4] Specification PIC-16F877A [3]

Flash Program Memory Type Flash

32 Program Memory Size 14

20 CPU Speed 5

1024 Data EEPROM 256

6 Stand Alone PWM 0

8 ADC Channels 8

As you can see, the ATMEGA328-P has more Program Memory Size, CPU Speed,

PWMs and Data EEPROM (user-modifiable ROM that can be erased and reprogrammed

repeatedly through a normal electric voltage) [5].

● Motor Choice: L298HN (H-Bridge)

The motor we decided to purchase was one that could power two motors at once. We

decided on the L298HN Dual Full-Bridge Driver to support this. This driver takes up to

50 Volts to power the motors and from 0.3 to 7 V of input voltage to power the driver

(which comes from our Circuit Board).

● Saving of I/O Pins:

○ Motor Logic: When designing our circuit, we realized that there were a limited number

of input and output pins. So, to save pins on our circuit, we wanted to be able to create a

signal (IN2) using a Karnaugh Map. We figured out the five signals we needed:

■ Forward: 1010

■ Left: 1001

■ Back: 0101

■ Right: 0110

■ Stop: 0000

We were able to create the following table with three inputs (IN1, IN3, IN4) to calculate

IN2. For example, if we provide IN1, IN3, IN4 as 0, 0, 1 (respectively), we should be

getting 1 as IN2. Below is the work shown to achieve the output.

○ Shift Register: Another way of saving pins was to use a shift register for our buttons.

We used this to convert eight button input to 4 output pins that go into the

microcontroller. The shift register we chose is the 74HC165, which is a Parallel-Load

(in), Serial-Out register. The 74HC165 is a 8-bit shift register that takes in the button

values as a binary value, so for example if button 7 (enter) was clicked, then it would

print 00000001 to the microcontroller, and that value would be taken in as the user input.

● Ultrasonic vs. Lidar: This choice was a major design choice for our movement module.

The main arguments for ultrasonics included a better price point, less memory usage and

availability. We found lidar sensors to be better at environment detection and mapping.

However, with how little memory our microcontroller had, we could not allocate enough to

mapping the environment, so we decided to use the HCSR04 Ultrasonic Sensors that were

readily available. The cost price point helped keep our project cost down while also

achieving basic object detection with the vehicle.

F. Software Development

We have also set up our codebase in a module format, where there are multiple

.cpp and .h files that complete different functions of the project. Additionally, to make

the code more readable, we created a hierarchy for each file. The top of the hierarchy is

AlarmClock.ino. The following are the file names: motors.cpp, ultrasonics.cpp,

buttons.cpp, obstacleAvoidance.cpp. The text below will describe the codebase purpose

of each file and any significant algorithms used.

AlarmClock.ino - Top Level File

Function: The AlarmClock.ino file serves as the top-level module of our software and

instantiates objects of all the other submodules in its code. The code then gets the current

time from the RTC and displays this on the LCD display, along with an “EarlyBirds

Meow” default text. Then, based on which buttons are pressed by the user, the alarm

clock module handles that specific scenario. If the user’s button input corresponds to the

alarm-set function, then the user is able to cycle through the hours and minutes fields and

set a time of their choosing. Once the alarm has been set, the speaker will start ringing,

and the motors will initiate movement. Once the alarm is set, the user is able to turn it off

based on an answer to a randomly generated decimal addition problem. The user is once

again able to use the buttons to input and cycle through values at the ones, tens, and

hundredths places. If the user answer matches the internal computation to the problem,

then the speakers are shut off and the movement will be stopped as well. Otherwise, the

speakers will continue to ring, and the motors will continue their movement.

Motors.cpp

Function: The motors.cpp file contains basic motor driver code which enables the alarm

clock to move around and perform turns. Specifically, the motors code module contains

functions which allow the alarm clock to move forwards, backwards, turn left, turn right,

and stop. The motors module is then called in the top-level hierarchy file, where the

respective motor functions are called to control the alarm clock’s general movement.

This module is also instantiated as an object inside of our obstacle avoidance software

module.

Ultrasonics.cpp

Function: The ultrasonics.cpp file contains code which obtains readings from the three

ultrasonic sensors which are mounted at the front of our alarm clock. Because the

ultrasonic sensors return distance readings in float format, we have written individual

functions to extract distance readings from each of the three sensors. In each of these

functions, we also “filter” out distance readings which are either too small (close to the

sensor) or too large (far from the sensors). The filtering is done by simply returning a

MAX_DISTANCE constant which is set to an arbitrarily large value, which allows us to

identify this reading as improper and not utilize it during our basic obstacle avoidance

algorithm. This ultrasonics module is instantiated as an object inside of the obstacle

avoidance software module as well.

buttons.cpp

Function: The buttons.cpp file contains code which initializes a button vector and allows

it to hold a value based on various button inputs. This button vector holds 8 button inputs

which are either a binary value of 1 when pressed, or 0 when not pressed. The buttons

module is then called in the top-level file as an object, and its button vector is extracted

and used as part of the decision making process in the alarm clock code.

obstacleAvoidance.cpp

Function: The obstacleAvoidance.cpp file contains code which performs a simple

obstacle avoidance algorithm using the motor driver, sensor, and buttons code

respectively. As part of our basic obstacle avoidance, we repeatedly fill an array of three

elements with ultrasonic sensor readings from each of the three sensors (left, middle,

right). This module contains a preliminary check using the input buttons’ pressed vector

which determines whether or not the user has pressed the appropriate buttons before the

algorithm begins. Then, based on the distance we acquire from the middle sensor, we

immediately move backwards if the distance reading indicates that we are close to any

object. Otherwise, we take a max across all of the distance readings and turn in a

direction which returns the greatest distance value. This obstacle avoidance code is then

called in our top-level file.

III. Verification

Below are our Verification Tables for our Modules and Sub-Modules. These helped us

progress in our project as it would help us achieve objectives every meeting.

A. UI Module

Requirement Verification

● The microcontroller should be able
to iterate through the set of values
(0-9) and display the values on the
LCD Display.

● We can test this by observing the LCD display and
checking if the values are iterated through properly.

● The microcontroller should be able
to utilize the time subsystem and
keep track of the time and display
it on the LCD with a margin of
error of 1 second

● A test can be done by the microcontroller
displaying the time on an LCD and comparing the
time to the clock on a computer.

● For a single-digit hour or minute
value, the microcontroller should
include a 0 in front of the digit as
part of the time displayed on the
LCD.

● We will increment input via our buttons and verify
that a leading 0 is present for any single-digit hours
or minutes.

● The microcontroller should be able
to take in push button inputs for
time-setting and should be able to
loop back if the minutes’ input
exceeds 59 or if the hours’ input
exceeds 23.

● We will use the buttons to continue incrementing
the values in both the hours and minutes fields until
they hit their respective thresholds of 23 and 59.
Once these thresholds are met, we can verify if an
additional button press loops back to the 0 values.

● When the clock-set or alarm-set
buttons are pressed, the
microcontroller should display
clock-set and alarm-set screens.
When the enter button is pressed
the microcontroller exits the
clock/alarm set state and returns to
the default screen

● We will connect three buttons to the
microcontroller, clock set, alarm set, and enter. We
will also connect the LCD to the microcontroller.
When the clock set button is pressed, the
microcontroller must use the LCD to display the
clock set screen. When the alarm-set button is
pressed, the microcontroller must display the
alarm-set screen on the LCD. If the enter button is
pressed in either of these states, the microcontroller
must display the default screen on the LCD.

● The microcontroller can control the
buzzer to play an alarm at a
specific tone and for at least 15
seconds.

● We can observe the length of time that the buzzer
outputs a sound.

B. Movement Module

Requirement Verification

● There are three ultrasonic sensors at
the front of the alarm clock. The
microcontroller must be able to
identify which sensors have objects in
front of them

● As a unit test, we will connect the sensor array to the
microcontroller, and connect the microcontroller to 5
LEDs, each of which represents one sensor in the array.
We will then place objects within the sensors’ detection
range, and the microcontroller indicates which sensors
detected objects by illuminating the corresponding LED.

● The microcontroller can engage the
motors to turn the chassis 90 degrees
right/left. Each turn should take place
in less than 1 second +/- 0.25 seconds

● The unit test will involve writing a program that drives
the motors to perform turns in the following order:

○ Right, 90 degrees
○ Left, 90 degrees
● For this test, the motors and wheels need to be mounted

on the chassis. We will start the program and verify that
the vehicle is turning in the aforementioned order in
under 1 second for each individual turn.

● The microcontroller can engage the
motors to move the chassis in reverse
for 15 +/- 0.5 cm in under 0.5 +/- 0.25
seconds

● Once again for this test, the motors and the wheels need
to be mounted on the chassis. Next, using the wheel
circumference and the motors rotations per second, we
will calculate the amount of time we need to run the
motors in reverse to move the chassis 15 cm backwards.
Once the program is loaded onto the microcontroller, we
will initiate the program and simultaneously start a
stopwatch. At 0.75 seconds, we will stop the stopwatch
and measure the chassis displacement.

● The microcontroller can engage the
motors to move the chassis forward 1
+/- 0.1 meter in less than 3 +/- 0.25
seconds

● This test is identical to the previous test, except the
chassis is moving forward for 1 meter, and the stopwatch
will be stopped after 3.25 seconds.

● The microcontroller can use the
ultrasonic sensor input to drive the
motors so that the chassis never makes
contact with any obstacles.

● The unit test for this requirement consists of a program
that drives the motors and monitors the output of the
ultrasonic sensors. The car’s default state is to move
forward. Depending on the particular combination of
ultrasonic sensors that detect an object, the program will
choose either to turn the chassis 90/45 degrees in a
certain direction, move forward, or reverse.

● The obstacle avoidance program will be tested using the
three test cases:

1. freestanding objects (such as a toy lying in the middle of
the room)

2. Walls
3. Corners

C. Math Module

Requirement Verification

● The microcontroller can generate two
random two-digit hexadecimal
operands and compute their sum

● Create a subroutine that randomly generates two
operands and calculates their sum. The microcontroller
will output these operands to the serial port. We can
view the two operands and the sum by connecting the
microcontroller to a computer. We will run the
subroutine 50 times to ensure that operands are
random and the sums correct.

● The user will use three buttons to input
an answer and an ‘enter’ button to
submit. The hundreds place, tens
place, and ones place each have a
dedicated input button. When an input
button is pressed, the value in the
corresponding place should increase
by 1 until the value reaches 9, at which
point the value should reset to 0.

● A unit test for this requirement consists of outputting
the value of the answer punched in by the user to the
serial port, and connecting the serial port to a
computer where we should see the answer value
changing in response to button presses.

● The microcontroller can identify when
the user has inputted the answer that
matches the calculated sum for the
math equation

● This requirement will be tested by connecting the
microcontroller to the computer using the serial port.
We will run the subroutine that generates the math
equation, and then use the push buttons to submit
answers. The microcontroller will send a 1 to the serial
port when an answer that matches the calculated sum
is entered.

D. Power Module

Requirement Verification

● The power subsystem needs to provide
5V +/- 0.3V to the LCD, the
ATMEGA328P, the HCSR04
ultrasonics, the motor driver, the RTC,
the buzzer, and the push buttons.

● Use an oscilloscope to measure the output voltage of
the voltage regulator and verify that it is between 4.7
to 5.3V.

● The power subsystem needs to provide
11-13V to the DC motors.

● Use an oscilloscope to measure the output voltage of
the voltage regulator and verify that it is between 11 to
13V.

IV. Operational Efficiency

A. Costs

The cost of this project was $350 for parts and circuit boards. The added cost is an

implied cost based on industry standard for the salary of hardware and software

engineers, which ended up totaling to roughly $7,600. We spend roughly 40 hours a week

for 5 weeks working on this project, at an industry rate of $38 an hour. This makes the

total project cost just under $8,000 for 3 engineers (roughly $2,600 a person).

B. Timeline

Task Module Timeline

Project Proposal, Design Document,
Preliminary Research

N/A Early September

Parts Ordering, Start of PCB Design N/A Late September

PCB Design I, Sensors Movement Module Early October

Motors Movement Module Late October

Clock Function UI Module Late October

Motors with Sensors Movement Module Early November

PCB Design II, Alarm Function UI Module Early November

Buttons UI Module Early November

Alarm with Motors Movement, UI Modules Early November

Math Function UI Module Early November

Buttons with Alarm, Math and Clock
Functions

UI Module Late November

Testing Movement, UI Modules Late November

Final Demo, Final Project Report, Final
Presentation

N/A Late November, Early
December

C. Group Responsibilities

Our team split responsibilities of the project based on interest and experience.

However, instead of splitting responsibilities and working separately, we wanted

everyone to be involved in each part of our project. So, we gave each person a part of the

project they would take lead on. Specifically, Sasin is an Electrical Engineering major

and is proficient in design softwares, so he took the lead for designing the schematic and

the circuit board. Siddharth and Shouri are proficient in programming languages C and

C++ so they took the lead on the programming aspect of our project. Specifically,

Siddharth took the lead on the UI Module and Shouri took the lead on the Movement

Module. This worked really well because each person was able to contribute to each part

of the project to a high level, so there is a very good common understanding of what is

occurring during the project. Additionally, it made debugging certain parts easier as each

student could figure out what each part of the project is doing.

D. Group Organizational Standards

Our group practiced proper documentation techniques: writing down information

consistently, organized GitHub practices and sharing files through a Google Drive folder.

We were able to meet consistently every week (roughly 4 to 5 times a week), and were

able to easily communicate with each other outside of class or lab time. We each

contributed evenly and were in attendance at each and every meeting.

V. Conclusions

We started off this project saying that we had two main objectives: learn as much as we

can and complete this project. We ended up focusing on the first and realized the second

would follow as we completed each objective of the project.

All in all, we were able to nearly finish the project and succeed. The project definitely

tested our ability to stay on deadlines, knowledge of intricate electrical components and

systems, programming as well as our creativity. We worked well as a group as we each

tackled an equal part of the project and used our expertise to our advantage. We had a good

balance of work and life, making sure that we were working at reasonable hours, rather than

sleeping late and getting up early. This helped us be more productive as we were working

very efficiently because we were well rested. We also made sure to study outside of the class,

learning about the project in new ways and making sure we could apply what we learned to

the objectives we completed. With our emphasis on research, we were able to get our PCB

working on the first order, making it easy to finish the project in time.

However, with all of our successes, there were some troubles when working on the

device. We had trouble working with the machine shop because we had very little experience

with mechanical components and were not sure which parts would work. They were very

helpful and gave us tips that helped us finish this project.

Outside of what we completed for the demonstration, we had a few ideas on how we

could get the project to be more efficient. With more time, we could focus on our movement

algorithm and get it to decide quickly and move faster. We could also work on the chassis a

bit and make it look a little less industrial. A major change we could make was to decrease

the size of the PCB, use less batteries and make the final product a little lighter so we could

house all these components in a smaller body.

Overall, this project was a success as we learned a lot about the design process of a

product from start to finish and were able to complete objectives along the way.

VI. Appendix

A. Works Cited

[1] M. Taylor, “The Negative Impact of Hitting the Snooze Button,” Amerisleep,
14-Nov-2022. [Online]. Available:
https://amerisleep.com/blog/negative-impact-snooze-button/. [Accessed: 07-Dec-2022].

[2] U. of Alberta, “Morning People and Night Owls Show Different Brain Function,”
ScienceDaily, 24-Jun-2009. [Online]. Available:
https://www.sciencedaily.com/releases/2009/06/090623150621.htm. [Accessed:
07-Dec-2022].

[3] Microchip. (n.d.). PIC16F877A - connected | secure | microchip technology.
PIC16F877A. Retrieved December 7, 2022, from
https://www.microchip.com/en-us/product/PIC16F877A

[4] Microchip. (n.d.). ATMEGA328P - connected | secure | microchip technology.
ATmega328P. Retrieved December 7, 2022, from
https://www.microchip.com/en-us/product/ATMEGA328P

[5] Lithmee, “What is the difference between PROM EPROM and EEPROM?,”
Pediaa.Com, 07-Feb-2019. [Online]. Available:
https://pediaa.com/what-is-the-difference-between-prom-eprom-and-eeprom/. [Accessed:
07-Dec-2022].

[6] J. Guerra, “12 Quick Ways to Wake Yourself Up in the Morning, from Sleep
Specialists,” mindbodygreen, 12-Mar-2012. [Online]. Available:
https://www.mindbodygreen.com/articles/how-to-wake-yourself-up. [Accessed:
07-Dec-2022].

B. Diagrams

Figure 1: Original Block Diagram

Figure 2: Final Block Diagram

Figure 3: Original Printed Circuit Board

Figure 4: Final Printed Circuit Board

Figure 5: Original Circuit Schematic

Figure 6: Final Circuit Schematic

Figure 7: Original Visual Aid

Figure 8: Final Visual Aid

Figure 9: Chassis

Figure 10: LCD Display

C. External Links

Codebase and KiCad Files (Located along with Codebase): Codebase Link
Presentation: Presentation Link

https://github.com/siddharthsharma123/ECE445
https://docs.google.com/presentation/d/1rshILBSHi4b_tSJlN0rM3-AiYKPHm88U/edit?usp=share_link&ouid=108612422938553916254&rtpof=true&sd=true

