Bluetooth Enabled eWalker Team 4

Lukas Adomaviciute (lukasa3) Darren Domingo (ddd3) Gregory Tow (gtow2)

- General Introduction
- Design
 - □ Smartphone Subsystem
 - Control Subsystem
 - Power Subsystem
- Conclusions from the Project
- Future Ideas
- Questions

Motivation

Technological Advancement

- Smartphone interface is very common
- Walkers left behind

Problems with existing designs

- □ Lighting and charging features
- Flashlights
- No loT

Solution - High Level Requirements

Button Functionality

Initiate calls/texts within 8 seconds

Messaging System

Send different text messages based on the severity of the situation

Power Unit

- Rechargeable battery pack of 20800mAh capacity
- □ 5V 2A USB Type A charging ports
- Provide 9V 1A to the control unit.

Visual Aid

Gyroscope

ECE ILLINOIS

- General Introduction
- Design
 - Block Diagram
 - □ Smartphone Subsystem
 - Control Subsystem
 - Power Subsystem
- Conclusions from the Project
- Future Ideas
- Questions

Block Diagram

ECE ILLINOIS

- General Introduction
- Design
 - Block Diagram
 - Smartphone Subsystem
 - Control Subsystem
 - Power Subsystem
- Conclusions from the Project
- Future Ideas
- Questions

Smartphone Subsystem - eWalker Application

Smartphone Subsystem - eWalker Application Bluetooth

Flag Value:	Logical Response:
00	Do Nothing
A/B	Text Contact 1 / Contact 2 Configured Message
C/D/E	Call Contact 1 / Contact 2 / Emergency Services
Z	Text Contact 1 AND Contact 2 Configured Emergency Text Message

Smartphone Subsystem - Challenges

- □ Properly configuring API for text messages.
- Initializing Bluetooth pairing
- Permissions with direct calls

- General Introduction
- Design
 - Block Diagram
 - □ Smartphone Subsystem
 - Control Subsystem
 - Power Subsystem
- Conclusions from the Project
- Future Ideas
- Questions

Control Subsystem - ATMega328P-PU PCB

- Power supply, Connectors, LED Drivers, Microcontroller
- **Gamma** Replicates functions of an Arduino Uno
- Collect and process data from PCB, push buttons, and gyroscope

80.3mm

PCB Layout

PCB Schematic

Control Subsystem - HC-05 Bluetooth Module

- SoftwareSerial package on Arduino IDE converts ASCII
- Only TXD is required to transmit data
- □ Receives power from microcontroller

Control Subsystem - Gyroscope

GY-521 MPU6050 6-axis gyroscope sensor
Interfaces with the ATMega chip to send signals to the bluetooth module

Control Subsystem - Gyroscope

- □ Code adapted from provided source code
- aZ and aY variables are used for orientation tracking
- Values >15000 or less <-15000 for 8 seconds trigger an emergency text

aX	=	-15932	1	aY	=	160	1	aZ	=	1068	
aX	=	-15648	1	aY	=	48	1	aZ	=	1124	
aX	=	-15880	1	aY	=	128	1	aZ	=	1256	
aX	=	-15844	1	aY	=	20	1	aZ	=	1296	
aX	=	-15772	1	aY	=	0	1	aZ	=	1260	
aX	=	-15808	1	aY	=	160	T	aZ	=	1300	
aX	=	-15748	I.	aY	=	16	I.	aZ	=	1132	
aX	=	-15784	1	aY	=	68	1	aZ	=	1252	
aX	=	-15848	1	aY	=	-564	1	aZ	=	1612	
aX	=	-18572	1	aY	=	-816	1	aZ	=	1540	
aX	=	-14776	1	aY	=	148	1	aZ	=	4680	
aX	=	-12832	1	aY	=	-356	1	aZ	=	10776	
aX	=	-6872	1	aY	=	-300	1	aZ	=	14232	
aX	=	-7836	1	aY	=	-892	T	aZ	=	18008	
si	yna	al high									
si	Jna	al low									
aX	=	-1764	1	aY	=	-428	1	aZ	=	17400	
aX	=	-1604	1	aY	=	-464	1	aZ	=	17340	

Control Subsystem - Text/Call Push Buttons

- Used E-Switch TL1105AF100Q model for our buttons
- Left and right side designated for contact 1 and 2 respectively
- Center designated for emergency call

ILLINOIS

⊁

Bluetooth

Keypad

😰 🔌 🕤 💷 37% 🗋

ECE ILLINOIS

Control System Challenges

- Stabilizing the signal communication between the ATMega and the eWalker application
- Code upload to the ATMega chip
- PCB layout and soldering

General Introduction

Design

- Block Diagram
- □ Smartphone Subsystem
- Control Subsystem
- Power Subsystem
- □ Conclusions from the Project
- Future Ideas
- Questions

Power Subsystem - Rechargeable Battery Pack

Placement Left to Right

- USB Port Terminal
- BQ2057 Li-Ion Charger IC
- Battery Life Indicator Terminal
- Power Switch Terminal
- In-line 5A fuse

Rechargeable Battery Pack

- Consists of eight UltraLast 18650 Lithium Ion Batteries
 - Each cell rated for nominal 3.7V and 2600mAh
 - □ Parallel connection, 20800mAh total capacity
- The control system consumes about 400-500mA, allowing for almost two days of continuous operation.
- The batteries are manually balanced with the use of an external charger.

Rechargeable Battery Pack

Battery Life Indicator Unit, LM3914

- Minimum threshold at 3.2V is set to prevent discharging the lithium batteries further below the typical suggested minimum, which is below 3.0V.
- Each LED represents a 10% voltage change, with 1 LED being baseline at 3.2V and 10 LEDs being 4.2V.

LNOIS

The pack is isolated from the control system with the use of an illuminated rocker switch in addition to a 5A inline fuse.

Power Subsystem - DC-DC Boost Converter

- □ 1.5µH Inductor
- Input/Output Decoupling Capacitors
- MP3429
- 9V Output Terminal

DC-DC Boost Converter

□ MP3429 High Efficiency, Fully Integrated, Synchronous Boost Converter

- Powers the control unit PCB and output charging ports
- Manufacturer provides a reference DIY schematic
- □ Configured for 2.7V 4.2V input to output 9V 3A (27W) average power

mEZD41503A-X 2.7V - 10V Input, 3A, Step-Up Power Supply DIY Schematic

Power Subsystem - Output Charge Ports

- Input/Output Decoupling Capacitors
- L78S05
- Optional Fixed Current Resistor
- Output Charge Port Terminals

Output Charge Ports

□ L78S05 Voltage Regulator

- □ 9V input from boost converter output to 5V 2A output
- □ USB Charging
 - □ 5V required, smartphone circuit adjusts input current
- Load Resistor limits max 2A output current

Power System Challenges

- On-board Input Charging Circuit
 - BQ2057 Li-Ion Charging IC replaced with external battery charger
- Soldering
 - Boost Converter Circuit SMT soldering
- USB Output Charging
 - USB devices are able to be charged, but not at the desired rate

LINOIS

- General Introduction
- Design
 - Block Diagram
 - □ Smartphone Subsystem
 - Control Subsystem
 - Power Subsystem
- Conclusions
- Future Ideas
- Questions

Conclusions

Accomplishments

- **G** Fully functional product meeting high level requirements
- □ Kept the general walker's functions unchanged
- Built our own Arduino
- Charging capabilities
- GPS positioning

Takeaways

- Plan ahead
 - Lower costs

ECE ILLINOIS

- Time to fix errors
- □ Find team members strengths
- □ Importance of following IEEE and ACM Code of Ethics
- Be specific in stating product expectations and liability

- General Introduction
- Design
 - Block Diagram
 - □ Smartphone Subsystem
 - Control Subsystem
 - Power Subsystem
- Conclusions
- Future Ideas
- Questions

Future Ideas

- Phone mount
- Phone camera live stream
- □ IR proximity sensor
- Hidden wires and built in buttons
- □ Smaller microcontroller and enclosure
- On-board quick charger

- General Introduction
- Design
 - Block Diagram
 - □ Smartphone Subsystem
 - Control Subsystem
 - Power Subsystem
- Successes & Challenges
- Conclusions
- Future Ideas
- Questions

ECE ILLINOIS

