

ECE ILLINOIS

Remotely Adjustable Cast ECE 445: Group 10

Alice Getmanchuk, Saloni Garg, Jack Burns

Professor Viktor Gruev + TA Stasiu Chyczewski

ABOUT US

Jack Burns

Alice Getmanchuk

ן נ

Saloni Garg

TABLE OF CONTENTS

O1 OBJECTIVE

The problem

02

SOLUTION

Our project

03

DESIGN

Our subsystems + whole process

04 SUCCESSES & CHALLENGES Our self-assessment

05 CONCLUSION

3

Final thoughts

OBJECTIVE

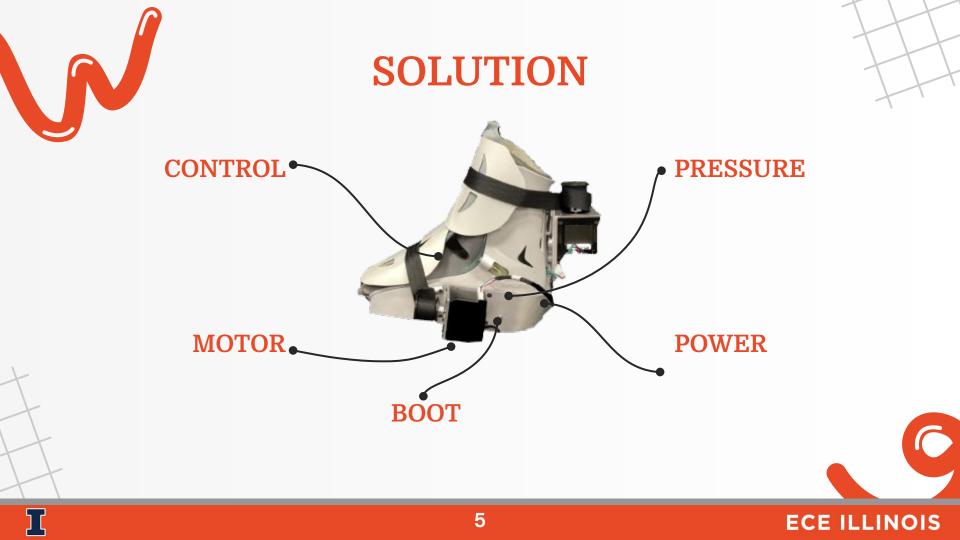
CLEAN

Traditional casts **can develop mold** due to their irremovable nature.

PORTABLE

Traditional casts inhibit mobility and in some cases require the use of scooters.

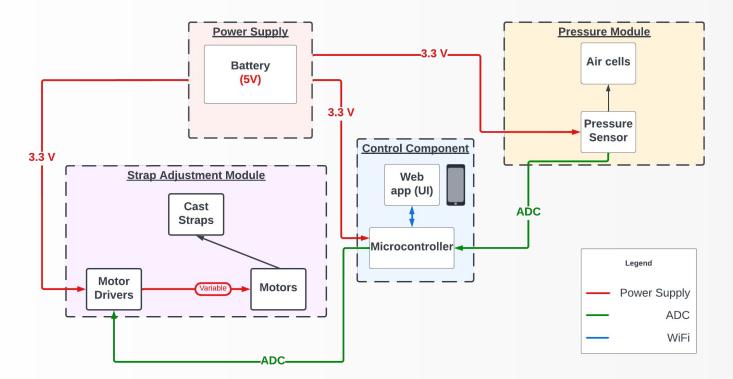
4



ACCURACY

Patients may not properly re-tighten the AirCast which can **hinder recovery plan**.

High-Level Requirements


2

The cast's straps are adjusted/tightened per doctor's settings without manual adjustment

The doctor's cast adjustments for pressure and tightness can be stored 3

All necessary components for auto-adjustment of the cast fit on the cast without extreme addition to the original weight of the cast

Block Diagram

Subsystems & Requirements

8

Strap Adjustment

Able to tighten straps to doctor prescribed tension and to **not hurt the patient** even more

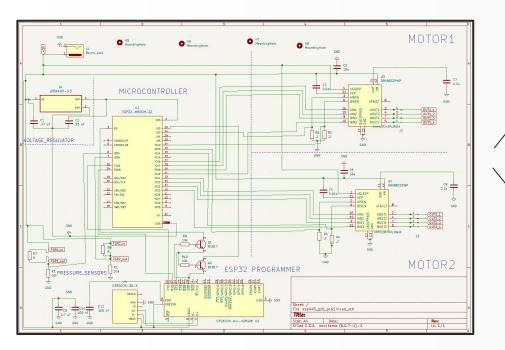
Pressure

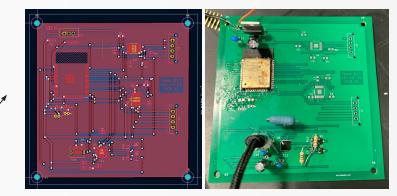
Able to read the pressure exerted by the patient's foot and not over-tighten the foot til unhealthy

Subsystems & Requirements Cont.

Control Unit

Able to interface with pressure and motor subsystems to properly adjust all parts of the boot




Power

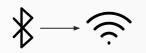
Able to be power all subsystems via portable battery pack (5V) cut down to 3.3V reliably



PCB and Breadboard

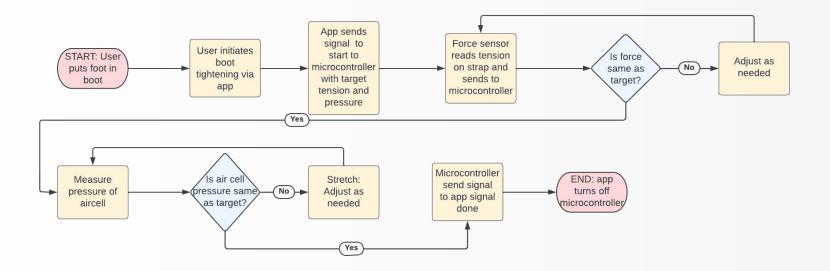
ן כ

Original Design


11

Design Changes

ヘフ ピン


Elimination of Force Sensors in Strap Subsystem

Bluetooth vs WiFi

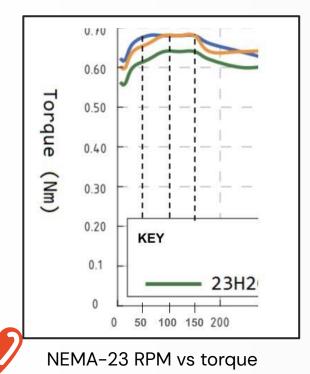
Size and Location of Pressure Sensors

Boot Logic Flowchart [Original Design]

Project Video

ן כ

- 10

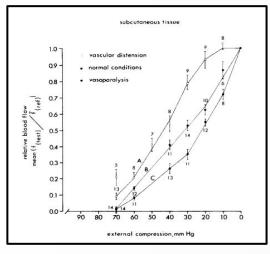


Results [Quantitative]

Motor Subsystem

•••

15


Torque applied: 0.6 N Speed of each motor: 60 RPM Foot strap angle: ~90 degrees Strap length (radius): 0.177 m Equation used: τ = F * r * sinΘ

Pulling Tension Force: 3.37 N*m (*"as prescribed by doctor"*)

Results [Quantitative]

Pressure Subsystem

Limb compression and blood flow relationship for(int counter = 0; counter < 10; counter ++) {
int a1 = analogRead(PRESSUREPIN1);
int a2 = analogRead(PRESSUREPIN2);
int aModulus1 = int (a1 / (600));
int aModulus2 = int (a2 / (600));
intervals1[aModulus1] += 1;
intervalValues1[aModulus1] += int(a1 % 600);</pre>

intervals2[aModulus2] += 1; intervalValues2[aModulus2] += int(a2 % 600);

pressure1 = map(pressure1, 0, 4095, 0, 51.671);

Interval probing to eliminate noise & Mapping FSR resistance to mmHg

Successes and Challenges

Subsystem Successes

- All of the subsystems work as desired
- High level requirements satisfied

PCB Challenges

- Designing a programming circuit
- ESP32 not connecting to WiFi

17

Other Challenges

- Broken components
- Unexpected part tolerances
- Communicating with ESP32

Reflection

18

What We Learned

- Fail often and adjust
- How to design a PCB
- Idea -> final product
- Design process is never done
- Having the right parts

What We'd Change

- Create final PCB
- Add belt to house electronics
- Install permanent clamps to secure straps
- Smaller motors

Thank You!

Special thanks to Stasiu Chyczewski, Professor Viktor Gruev, and Glen Hedin

Any Questions?