LENS CONTROLLER FOR
BIOMEDICAL CAMERAS

OVERVIEW

e Introduction & Objective

e Design

e Project Build & Functional Test Results
e Successes & Challenges

e Conclusion & Areas of Improvement

INTRODUCTION TO PROJECT

e Margin of error in many medical operations 1is very slim

e One prime example 1s cancer treatment

o It requires high degree of accuracy
o 25% of breast cancer patients, 35% of colon cancer patients, and 40%

of head and neck cancer patients suffer from incomplete tumor removal

e Hence, this is a significant problem and requires

solution.

OBJECTIVE

e To remotely control the camera’s focus and shutter for
use in the operating room

e The desired goal is that the camera’s specifications can
be adjusted to make sure that the entire tumor(s) is

removed

ORIGINAL DESIGN

Power
Supply

PCB |-«
Port
Connections
T
!
Memory FPGA
ik i Host USB
Artix-7 FPGA I(-Interfa<:94)MiCro_USB 30—»
= VDS XC7A75T-1FGG484 Bus
200 MHz
- 611/0 + XADC 63110
[VO Ports |
5V

Power
Supply

Power

5V
v
[Contacts] Lens
\ Shutter
/ Motor
- Lens ﬂ
StepplngH PCB |
Motor |
'f Shutter
Program
USB
Micro
Legend
Data (Digital) o
—_—

CHANGES MADE SINCE THEN: PCB SUB-SECTION

e Redesigned sub-section completely since Design Document
e Originally thought that one flexible PCB would be enough
to connect the FPGA and the lens mount

e Found that new system would have to be developed

1
- -
=S j<coOraiTTTEe
-

PROTECT BUTLD: PCB SUB-SECTION

e 2 PCBs:

o A rigid-flex-rigid which would transport the signals through the
tight constraints of the lens mount
o A flex PCB, which will connect the signals from the FPGA to the the

bottom of the lens mount

RIGID- FLEX PCBS

e Rigid section with flex section emerging from the middle

e Allows for rigid PCBs to be placed in tight regions

EMERGING FLEX SECTION CONNECTS TWO RIGID SECTIONS

LAYER STACKU?

e Important to correctly incorporate layers for optimum
signal integrity
e Flex signal layers need to be properly extended

== e PO e RO

FR-4 (1701gmin)

- fCwoe

Prepreg (2 x 1080, no fiow)
Laer . —

FR-4 (17019 min)

[2]

Overlay
Solder Mask
Surface Finish
Signal
Adhesive
Prepreg

Signal
Surface Finish

Solder Mask

Overlay

Tmil
0.512mil
1.378mil
2mil

7.087mil

1.378mil
8mil

1.378mil
7.087mil

1.378mil
0.512mil

Tmil

Coverlay

0.984mil

Adhesive

0.984mil

L2

Plane

Signal

1.378mil

8mil

1.378mil

Adhesive

0.984mil

Coverlay

0.984mil

Overlay
Solder Mask
Surface Finish
Signal
Adhesive

Prepreg

Signal
Surface Finish
Solder Mask

Overlay

Tmil
0.512mil
1.378mil
2mil

7.087mil

1.378mil

8mil

1.378mil
7.087mil

1.378mil
0.512mil

Tmil

ROUTING AND ELECTRICAL CONNECTIONS

e Rigid and flex sections are on different layers

e Signals transported between different layers using vias

BEND ANGLE/BEND RADIUS OF FLEX REGION

e Bend angles are all 90°,
experimented with bend
direction

e Bend radius was dependent

on bend angle

FLEX PCBS

e Used to navigate tight mechanical constraints

[3]

FLEX PCB SPECS

e Flex PCB 1is used to connect the FPGA connector and the
camera body via contact pads and an exposed beveled edge

FLEX PCB LAYER STACKUP

Coverlay 0.492mil
Adhesive 0.59Tmil
L1 Signal 0.472mil
Dielectric 0.984mil

L2 Signal 0.472mil
= Adhesive 0.591mil

Coverlay 0.492mil

ROUTING AND WIRE CONNECTIONS

e Beveled edge and contact pads are on the same layer

SUCCESSES AND FATLURES: PCB SUB-SECTION

Successes Failures

e Un-bending the CAD model & e Biggest setback was that we

making it our board shape believed that the port
e Using vias to ensure mapping of the FPGA
optimal signal routing connector was the port
e Implementing different mapping of the lens
layer stackups connector
e Application of rigid-flex e Did not anticipate the
and flex PCB knowledge process of actually

ordering the PCB

PROJECT BUTLD: FPGA +PC

FPGA
e XEM7310-A75 (testing purpose)

e XEM7310-A200(in actual design).

e FPGA 1is for communication between the computer and the lens.
o Lens - SPI protocol
o Computer/PC - OK modules & python codes

e Users will be sending the commands for the lens to the FPGA
using the python code on their PC.

SERTAL PERTPHERAL INTERFACE (SPT) PROTOCOL

e Tt is a common interface used to send data between a

microcontroller and small peripheral devices such as sensors.
e It consists of clock, data lines, and select line.

CLOCK + CLOCK
DATA + DATA ™ +- RX
idle or
idl next byte
i > i data bits
PICO > PICO tart idle
CLOCK_I_HJ-_HJ-JHHH PocCI «——]PocCI idle K0 1234656 700 nextbyte
g & 5 &% N 4 & i VYYYVYYVYV
01234567 i
I P ‘ . Controller to Peripheral Peripheral to Controller,,, .. I__l 1HE HHHHE
DATA : ! : : : idle next byte E 5 :
f} bl | il SCK 17117001010
10824910 HHIHH]HIH_HHLHIHHW =ason ¥
0x53 = ASClI 'S’ Controller UL iguuuuuy - ’
01 01234567
Synchronous R e T8 1 j | | Asynchronous
Peripheral-In :
0

Controller-Out4 4 0 0 1 0 1
0x53 = ASCII 'S’
POCI
Peripheral-Out
Controller-In

5PL PROTOCOL

Master Slave
SCK SCK
PICO PICO
POCI POCI

Controller to Peripheral Peripheral to Controller,,. ..
idle next byte

SCK
Clock from
Controller . e e

01234567

PICO
Peripheral-in | ' L__J LJ L
Controller-Out 4 1 00 1 0 1 0

0x53 = ASCII 'S’

POCI

Peripheral-Out
Controller-In

=

PROJECT BUTLD: FPGA +PC

e Commands
o 0x12 : Change aperture
m + one 8-bit argument

o Ox44 : Change focus
m + two 8-bit arguments

o Ox05 : Focus to max

o Ox06 : Focus to min

o OxOA : Read/sync

PROJECT BUILD: FPGA +PC

e Python
o Spyder IDE
m Enables us to make PC communicate FPGA.

e Verilog
O Modules to transfer data between FPGA and PC.
m OkWireln

m OkWireOQOut

O State Machine
m Transfer and receive data in between the FPGA and the
lens using SPI protocol

PYTHON

variable_1 =
variable_2
variable_3
variable_4 =

print(“Variable]] str(int(variable_1)
print(“Variable i str(int(variable_2)
print(“Variable) £ str(int(variable_3)
print(“Variable i = str(int(variable_4)

.SetWireInValue(©x00, variable_1) #I
.SetWireInValue(@x01, variable_2) #
.SetWireInValue(@x02, variable_3)
.SetWireInValue(@x03, variable_4)

e variahle 4 == 0O-

dev.UpdateWireOuts()
RET = dev.GetWireOutValue(©x21)
response = dev.GetWireOutValue(0x20)
print(“response is : " + str(int(response)))
- RET 1:
variable 4 = 1
dev.SetWireInValue(©x03, variable_4)
dev.UpdateWireIns()

variable_1 10
variable_2 = 14
variable_3 = 0 #
variable_4 = 0

print(“Variable 1 is initili = str(int(variable_1)))
print(“Variable 2 is initi str(int(variable_2)))
print(“Variable 3 is 1initi 5 str(int(variable_3)))
print(“Variable 3 1is initilized to " + str(int(variable_4)))

dev.SetWireInValue(@x00, variable_1) #
dev.SetWireInValue(@x@1l, variable_2) #
dev.SetWireInValue(@x@2, variable_3)
dev.SetWireInValue(©x@3, variable_4)

VERILOG

okWireIn wirelO (.OkHE (okHE) ,
.ep_addr (8'h00) |

.ep datooutlvaridbie i1}s okWireOut wire20 (.0kHE (okHE) ,
.OkEH (okEHx[0*65 +: 65]),
okWireIn wirell (.okHE (okHE) , .ep_addr 8'h20)}
.ep_addr{8'h01) .ep datain({24'b0, response})
.ep dataout (variable 2)):;) ;

okWireIn wirel2 (.OkHE (okHE) ,
.ep_addr(8'h02) |
.ep _dataout (variable 3)):;

okWireOut wire2l (.0kHE (okHE) ,
JOKEH (okEHxX[_1¥65 *+: 65]);
.ep_addr(8'h21),
okWireIn wirel3 (.okHE (okHE) , .ep datain({31'b0, FIN})):;
.ep addr (8'h03)
.ep:dataout(variable_4));

dev.SetWireInValue‘@xOO] variable 1)

dev.SetWir'eInValue(variable 2) RET = dev.GetWireOutValue(@x21}

dev.SetWireInValue(@x@2)| variable 3) response = dev.GetWireOutValue(©x20)

dev.SetWireInValue(©x03, variable 4)

VERILOG (STATE MACHINE) - INITIAL VERSION

SPI Core
[AXI QUAD
SPI
LogiCore IP]

VERILOG (STATE MACHINE) - SECOND VERSION

o ‘

VERILOG (STATE MACHINE) - SECOND VERSION

VERILOG (STATE MACHINE) - SECOND VERSION

T

VERILOG (STATE MACHINE) - THIRD VERSION

e Setup and Hold Time Violation

! *setup !' “hold !
I [|
| I 1
I [|
I |
I |
L [|
Clock : - |

aE

OK I L
| | |
Data - e
| | I

1 |

i

Setup Violation I T

I | i

| | |

I I / i

| 1 I

 Hold Violation | : :

VERILOG (STATE MACHINE) - THIRD VERSION

Comman d[n] L Comman d[n] U Comman d[n] U Comman d[n] ‘

output | | | }
| |
/:__

PROTECT BUILD: FPGA +PC

Power
Supply

5V

Power

¥
PCB |- Contacts Lens
Shutter
Port k \L / Motor
k : ens
Connecti SPI Stepping|, | pcp
Motor
Protocol Shutter
Memory FPGA ‘ Program
. 4S8 USB
<~ State = N OK ‘H
VDS 1 o
200 MHz Machine Modules |)
Clock 611/0 +X \
| /0O Ports | ‘
X
i Legend
Power Data (Digital) _
Supply

SUCCESSES AND FATLURES: FPGA SUB-SECTION

| “ ‘ l | |
““ “ “‘ “‘ ‘J‘
\ | =
\
|

AXL)-(0-:00000000
1/AX = 20.000Hz
AY =

(1)=10 n/ mV

e .
_J | L f |

SUCCESSES AND FATLURES: FPGA SUB-SECTION

nnnnnnnnnnnn

3((ESS[S AND FALLURES: _ B

i
!IIII i
|

|%IH Illl!l

,HH l

SUCCESSES

§ AND FATLURES: TPGA +

Successes

Managed to get the lens to
move according to the
command input by the user
Managed to carry out SPI
protocol using the state
machine through the
verilog code without using
standard IP block

il

Failures

There are certain values
that we need to put 1in for
the argument. We did not
have enough time to figure
out what are the available
argument values.

WHAT DID WE LEARNT (TECHNICAL)

e SPI Protocol

e General Process of engineering
o Implementation/Code => Simulation => Testing =>
Debugging => Success

e OK Modules
e Rigid-Flex/Flex PCBs

o Layer stackup requirements

Routing rules

Routing debugging

Navigating mechanical design constraints
Vias and Tented Vias

o O o o

WHAT DID WE LEARNT (SOFT SKILLS)

e Ask more questions to prevent misunderstandings later
e Being seen as ‘dumb’ for asking certain questions
e Always have a time cushion for every step

e Dealing with setbacks and how to move forward from them

CONCLUSION AND FINAL THOUGHTS

e Proud of what we have accomplished, disappointed we
couldn’t make it a reality

e Learned hard lessons to carry with us into the future

e Enjoyed putting our skills to the test and picked up
necessary knowledge to achieve our goals

e Picked the right team members to do this project with

€ ARRA

FINAL THOUGHTS

ETHICAL CONCERNS

e Privacy concerns using the camera
e Mechanical hazards in the event of an accident

SPECTAL THANKS 10

e Illinois BioSensors Lab
o Professor Viktor Gruev
o Zhongmin Zhu

e Our TA: Zhicong Fan

CITATIONS

[1] “Home,” Flex PCBs | Rigid Flex PCBs | PCB Unlimited. [Online]. Available: https://www.pcbunlimited.com/products/rigid-flex-pcbs.
[Accessed: 24-Nov-2022].

[2] “What is Flex PCB? - an overview of Flex and Rigid-Flex PCB - news,” PCBway. [Online]. Available:
https://www.pcbway.com/blog/News/What_is_Flex_PCB An_Overview_of_Flex_and_Rigid_Flex_PCB.html. [Accessed: 24-Nov-2022].

[3]“Basics of Flex Circuit Design - Minco Products.” [Online].
Available:https://www.minco.com/wp-content/uploads/Minco_BasicsofFlexDesign.pdf [Accessed: 29-Sep-2022].

[4] M. Grusin, “Serial Peripheral Interface (SPI) - learn.sparkfun.com,” Sparkfun.com, 2019.
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all

[5] “Final thoughts images — browse 2,487 stock photos, vectors, and video,” Adobe Stock. [Online]. Available:
https://stock.adobe.com/search?k=final+thoughts. [Accessed: 27-Nov-2022].

[6] “Ethics issues in the engineering profession,” Railway Age, 12-Sep-2022. [Online]. Available:
https://www.railwayage.com/regulatory/ethics-issues-in-the-engineering-profession/. [Accessed: 27-Nov-2022].

https://www.minco.com/wp-content/uploads/Minco_BasicsofFlexDesign.pdf
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all

