LENS CONTROLLER FOR
BIOMEDICAL CAMERAS
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INTRODUCTION TO PROJECT

e Margin of error in many medical operations 1is very slim

e One prime example 1s cancer treatment

o It requires high degree of accuracy
o 25% of breast cancer patients, 35% of colon cancer patients, and 40%

of head and neck cancer patients suffer from incomplete tumor removal

e Hence, this is a significant problem and requires

solution.



OBJECTIVE

e To remotely control the camera’s focus and shutter for
use in the operating room

e The desired goal is that the camera’s specifications can
be adjusted to make sure that the entire tumor(s) is

removed
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CHANGES MADE SINCE THEN: PCB SUB-SECTION

e Redesigned sub-section completely since Design Document
e Originally thought that one flexible PCB would be enough
to connect the FPGA and the lens mount

e Found that new system would have to be developed
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PROTECT BUTLD: PCB SUB-SECTION

e 2 PCBs:

o A rigid-flex-rigid which would transport the signals through the
tight constraints of the lens mount
o A flex PCB, which will connect the signals from the FPGA to the the

bottom of the lens mount



RIGID- FLEX PCBS

e Rigid section with flex section emerging from the middle

e Allows for rigid PCBs to be placed in tight regions




EMERGING FLEX SECTION CONNECTS TWO RIGID SECTIONS




LAYER STACKU?

e Important to correctly incorporate layers for optimum
signal integrity
e Flex signal layers need to be properly extended
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ROUTING AND ELECTRICAL CONNECTIONS

e Rigid and flex sections are on different layers

e Signals transported between different layers using vias




BEND ANGLE/BEND RADIUS OF FLEX REGION

e Bend angles are all 90°,
experimented with bend
direction

e Bend radius was dependent

on bend angle




FLEX PCBS

e Used to navigate tight mechanical constraints
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FLEX PCB SPECS

e Flex PCB 1is used to connect the FPGA connector and the
camera body via contact pads and an exposed beveled edge




FLEX PCB LAYER STACKUP

Coverlay 0.492mil
Adhesive 0.59Tmil
L1 Signal 0.472mil
Dielectric 0.984mil

L2 Signal 0.472mil
= Adhesive 0.591mil

Coverlay 0.492mil




ROUTING AND WIRE CONNECTIONS

e Beveled edge and contact pads are on the same layer




SUCCESSES AND FATLURES: PCB SUB-SECTION

Successes Failures

e Un-bending the CAD model & e Biggest setback was that we

making it our board shape believed that the port
e Using vias to ensure mapping of the FPGA
optimal signal routing connector was the port
e Implementing different mapping of the lens
layer stackups connector
e Application of rigid-flex e Did not anticipate the
and flex PCB knowledge process of actually

ordering the PCB



PROJECT BUTLD: FPGA +PC

FPGA
e XEM7310-A75 (testing purpose)

e XEM7310-A200(in actual design).

e FPGA 1is for communication between the computer and the lens.
o Lens - SPI protocol
o Computer/PC - OK modules & python codes

e Users will be sending the commands for the lens to the FPGA
using the python code on their PC.



SERTAL PERTPHERAL INTERFACE (SPT) PROTOCOL

e Tt is a common interface used to send data between a

microcontroller and small peripheral devices such as sensors.
e It consists of clock, data lines, and select line.
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PROJECT BUTLD: FPGA +PC

e Commands
o 0x12 : Change aperture
m + one 8-bit argument

o Ox44 : Change focus
m + two 8-bit arguments

o Ox05 : Focus to max

o Ox06 : Focus to min

o OxOA : Read/sync



PROJECT BUILD: FPGA +PC

e Python
o Spyder IDE
m Enables us to make PC communicate FPGA.

e Verilog
O Modules to transfer data between FPGA and PC.
m OkWireln

m OkWireOQOut

O State Machine
m Transfer and receive data in between the FPGA and the
lens using SPI protocol



PYTHON

variable_1 =
variable_2
variable_3
variable_4 =

print(“Variable ] ] str(int(variable_1)
print(“Variable i str(int(variable_2)
print(“Variable ) £ str(int(variable_3)
print(“Variable i = str(int(variable_4)

.SetWireInValue(©x00, variable_1) #I
.SetWireInValue(@x01, variable_2) #
.SetWireInValue(@x02, variable_3)
.SetWireInValue(@x03, variable_4)

e variahle 4 == 0O-

dev.UpdateWireOuts()
RET = dev.GetWireOutValue(©x21)
response = dev.GetWireOutValue(0x20)
print(“response is : " + str(int(response)))
- RET 1:
variable 4 = 1
dev.SetWireInValue(©x03, variable_4)
dev.UpdateWireIns()

variable_1 10
variable_2 = 14
variable_3 = 0 #
variable_4 = 0

print(“Variable 1 is initili = str(int(variable_1)))
print(“Variable 2 is initi str(int(variable_2)))
print(“Variable 3 is 1initi 5 str(int(variable_3)))
print(“Variable 3 1is initilized to " + str(int(variable_4)))

dev.SetWireInValue(@x00, variable_1) #
dev.SetWireInValue(@x@1l, variable_2) #
dev.SetWireInValue(@x@2, variable_3)
dev.SetWireInValue(©x@3, variable_4)




VERILOG

okWireIn wirelO ( .OkHE (okHE) ,
.ep_addr (8'h00) |

.ep datooutlvaridbie i1}s okWireOut wire20 ( .0kHE (okHE) ,
.OkEH (okEHx[ 0*65 +: 65 ]),
okWireIn wirell ( .okHE (okHE) , .ep_addr 8'h20)}
.ep_addr{8'h01) .ep datain( {24'b0, response} )
.ep dataout (variable 2)):; ) ;

okWireIn wirel2 ( .OkHE (okHE) ,
.ep_addr(8'h02) |
.ep _dataout (variable 3)):;

okWireOut wire2l ( .0kHE (okHE) ,
JOKEH (okEHxX[ _1¥65 *+: 65 ]);
.ep_addr(8'h21),
okWireIn wirel3 ( .okHE (okHE) , .ep datain( {31'b0, FIN} )):;
.ep addr (8'h03)
.ep:dataout(variable_4));

dev.SetWireInValue‘@xOO] variable 1)

dev.SetWir'eInValue( variable 2) RET = dev.GetWireOutValue(@x21}

dev.SetWireInValue(@x@2)| variable 3) response = dev.GetWireOutValue(©x20)

dev.SetWireInValue(©x03, variable 4)




VERILOG (STATE MACHINE) - INITIAL VERSION
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VERILOG (STATE MACHINE) - SECOND VERSION
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VERILOG (STATE MACHINE) - SECOND VERSION




VERILOG (STATE MACHINE) - SECOND VERSION
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VERILOG (STATE MACHINE) - THIRD VERSION

e Setup and Hold Time Violation
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VERILOG (STATE MACHINE) - THIRD VERSION
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PROTECT BUILD: FPGA +PC
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SUCCESSES AND FATLURES: FPGA SUB-SECTION
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SUCCESSES AND FATLURES: FPGA SUB-SECTION
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SUCCESSES

§ AND FATLURES: TPGA +

Successes

Managed to get the lens to
move according to the
command input by the user
Managed to carry out SPI
protocol using the state
machine through the
verilog code without using
standard IP block

il

Failures

There are certain values
that we need to put 1in for
the argument. We did not
have enough time to figure
out what are the available
argument values.



WHAT DID WE LEARNT (TECHNICAL)

e SPI Protocol

e General Process of engineering
o Implementation/Code => Simulation => Testing =>
Debugging => Success

e OK Modules
e Rigid-Flex/Flex PCBs

o Layer stackup requirements

Routing rules

Routing debugging

Navigating mechanical design constraints
Vias and Tented Vias

o O o o



WHAT DID WE LEARNT (SOFT SKILLS)

e Ask more questions to prevent misunderstandings later
e Being seen as ‘dumb’ for asking certain questions
e Always have a time cushion for every step

e Dealing with setbacks and how to move forward from them



CONCLUSION AND FINAL THOUGHTS

e Proud of what we have accomplished, disappointed we
couldn’t make it a reality

e Learned hard lessons to carry with us into the future

e Enjoyed putting our skills to the test and picked up
necessary knowledge to achieve our goals

e Picked the right team members to do this project with
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FINAL THOUGHTS




ETHICAL CONCERNS

e Privacy concerns using the camera
e Mechanical hazards in the event of an accident
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