

Bench Press Smart Helper

ECE 445 Team 35

- Alejandro del Rosal
- Eduardo Quintana
- Carlos Suberviola

May 3, 2022

Introduction

Introduction

shutterstock.com · 430936051

Injury-related concerns

- According to a recent study by BMJ Open Sport & Exercise Medicine conducted over sub-elite to elite powerlifters, up to 46 % of injuries in powerlifting are caused by the bench press
- According to St. John and St. Elizabeth hospital, the two most common bench press-related injuries are the subacromial bursitis and the torn rotator cuff
- Recovery from a torn rotator cuff might take 4 to 6 months or even longer in severe cases

Performance-related concerns

To avoid those injuries, one tends to:

- Not perform the exercise at maximum intensity
- Perform at maximum intensity, but not to failure
- Choose alternative exercises

Performance-related concerns

NOT Ideal, because:

 The best exercise according to the two largest EMG studies conducted for chest activation is the BARBELL BENCH PRESS

Introduction

THE SPOTTER

Introduction

Our solution

We:

- Eliminate the need for a spotter
- Allow you to always perform the exercise at maximum intensity
- Guarantee that you get the best result out of the bench press

Motivation

Bench Press Leg Self Spotting

Smith Machine for Bench Press

High Level Requirements

- 1. Repetition Tracking & Failure Detection
- 2. Hoist Activation
- 3. User Control

Repetition Tracking & Failure Detection

- Python computer vision program
- Real-time coordinates tracking and time measurements
- Provide useful help and prevent injuries

Hoist Activation

- Protection relays
- 3.3V from Raspberry Pi to 5V in microcontroller
- Physical integration

User Control

- User input (repetitions to be performed without and with help)
- Adjust position of hoist
- Mobile control

pi@raspberrypi:~/Documents/gorilift \$ python3 gorilift.py
How many repetitions will you attempt to perform without help? 3
How many repetitions will you perform with help? 1

Design

Control Subsystem

Key Requirements:

- Hardware: establish communication protocol
 Raspberry Pi → PCB → Hoist
- **Software:** track the motion of the barbell accurately and develop the hoist activation logic

Major Challenges:

- PCB implementation
- Barbell coordinate tracking
- System integration

PCB Design

Sensing Subsystem

Key Requirements:

 The webcam should be able to capture the barbell from end to end horizontally and follow along the vertical motion

Major Challenges:

- Different camera resolutions
- Varying lighting conditions
- Background noise

Mechanical Subsystem

Key Requirements:

- Remove the manual switch of the hoist
- Control the hoist with our PCB
- Mounting frame

Challenges:

- Hoist control with ATMEGA328
- Capacitor discharge

Power Subsystem

Key Requirements:

Level shifter must perform the 3.3 V → 5 V conversion correctly (within a desired range)

Major Challenges:

- Malfunctioning components
- Late component arrival / tight deadlines

Conclusions

Conclusions

What we learned

Personal:

- Value engineering skills in solving real life problems
- Teamwork and consistency are key to success
- Almost nothing works on the first try.

Technical:

- PCB design and optimization.
- Component interconnection and communication.
- Soldering
- System Integration
- OpenCV

Conclusions

Future direction

- Optimize the structure
- Modify design for commercial and gym compatibility purposes
- Adjust for other exercises

THANK YOU!

Questions?

Alejandro del Rosal: ad40@illinois.edu

Eduardo Quintana: ehq2@illinois.edu

Carlos Suberviola: carloss5@illinois.edu